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Abstract Reliability-based design optimization (RBDO)
combined with metamodel is a powerful tool to deal with
variation of system output induced by uncertainties during
practical engineering design. In this paper, the importance
boundary sampling (IBS) method is proposed to enhance the
efficiency of Kriging-model-based RBDO. Rather than fitting
all the parts of the limit state constraints precisely within the
design region, the proposed IBS mainly selects sample points
on the critical parts of the limit state constraints. Two impor-
tance coefficients are proposed to identify these critical
boundary parts: the first importance coefficient is determined
by the objective function value; and the second one is calcu-
lated using the joint probability density value of the design
variables. The sampling and optimization processes are con-
ducted alternately to select the sample points more rationally.
The computation capability of the proposed method is dem-
onstrated using several mathematical RBDO problems and a
box girder design application. The comparison results show
that the proposed IBS method is very efficient.

Keywords Reliability-based design . Uncertainty
optimization . Importance boundary sampling . Importance
coefficient . Krigingmodel

1 Introduction

Uncertainties in practical engineering design are usually
inevitable. RBDO considers uncertainties stemming
from various sources (e.g., geometrical sizes (Du and
Chen 2004), material properties (Chen et al. 2014),
operational uncertainties (Sues et al. 2001), environ-
mental uncertainties (Chan et al. 2010), numerical uncer-
tainties (Du et al. 2005), etc.). And it can yield a reliable design
(Aoues and Chateauneuf 2008; Hack et al. 2009; Kang et al.
2012); therefore it has received extensive attention in the past
several decades.

The most challenging issue in RBDO is the unbear-
able computational cost while evaluating structure reli-
abilities. Probabilistic constraints are usually implicit
and need to be evaluated through reliability analysis,
in which simulation methods and analytical methods
can be used. Simulation methods are accurate, such as
Monte Carlo simulation (MCS) (Kuczera et al. 2010;
Lee et al. 2008a; Lee et al. 2011; Papadrakakis and
Lagaros 2002; Valdebenito and Schuëller 2011). How-
ever, this kind of method is computationally unafford-
able, especially when the probability of failure is low.
Analytical methods are commonly used due to their
efficiency compared to simulation methods; They are
generally gradient-based, such as the worst case analysis,
the moment matching method (Du and Chen 2001) and
the most probable point (MPP) based method (Hasofer
and Lind 1974; Lee et al. 2008b). The worst case anal-
ysis method and the moment matching method are earlier
reliability analysis methods which suffer from accuracy
issue when random variables have large variations.

The strategy of searching the MPP is more efficient. Reli-
ability index approach (RIA) (Enevoldsen and Sørensen 1994;
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Gasser and Schuëller 1997; Grandhi and Wang 1998; Jiang et
al. 2011; Nikolaidis and Burdisso 1988; Reddy et al. 1994; Tu
et al. 1999; Weiji and Li 1994) and performance measure
approach (PMA) (Youn et al. 2005a) are the most commonly
used MPP-based analytical methods. Many other efficient
reliability analysis methods have also been developed, includ-
ing the advanced mean value method (AMV) (Youn et al.
2005b), the hybrid mean value method (HMV) (Youn et al.
2005b), the arc search method (Du et al. 2004) and the
dimension reduction method (DRM) (Lee et al. 2012; Lee
et al. 2008a).

The integration strategies of reliability analysis and
optimization also have great influence on the accuracy
and efficiency of RBDO (Valdebenito and Schuëller
2010). Double-loop method has a nested structure,
which is not efficient; Single-loop method (Agarwal et
al. 2007; Chen et al. 1997; Kharmanda et al. 2002;
Kirjner-Neto et al. 1998; Kogiso et al. 2012; Li et al.
2013; Liang et al. 2008; Shan and Wang 2008) only has
one loop through removing the reliability analysis by its
Karush–Kuhn–Tucker (KKT) optimality conditions, it is very
efficient for the linear and mild nonlinear problems, but is
inaccurate for highly nonlinear problems; Decoupled-loop
method (Chen et al. 2013a; Li et al. 2013, ; Cheng et al.
2006; Ching and Hsu 2008; Cho and Lee 2011; Du and Chen
2004; Royset et al. 2001; Yi et al. 2008; Chen et al. 2013b; Zou
and Mahadevan 2006) performs optimization and reliability
analysis sequentially, it has a good balance between the accu-
racy and efficiency in solving RBDO problems.

Performance functions in practical engineering design
are usually implicit and very expensive to evaluate.
Therefore, metamodel-based RBDO methods have been
developed to reduce the computational cost. Youn and
Choi (2004b) used the response surface method (RSM)
for RBDO; (Kim et al. 2008) proposed an RSM method
with prediction interval estimation; Zhao et al. 2009)
(Zhao et al. 2009) used the RSM and sequential sam-
pling for probabilistic design; Papadrakakis and Lagaros
proposed RBDO method using neural network and MCS
(Papadopoulos et al. 2012; Papadrakakis and Lagaros
2002); Choi, Youn et al. (2001) used the moving least
square (MLS) method based on selective interaction
sampling for RBDO; (Ching and Li 2008) proposed
the reliability analysis method using artificial neural
network (ANN) based genetic algorithms; Mourelatos
(2005) adopted symmetric optimal Latin hypercube sam-
pling and Kriging model for RBDO; Pretorius, Craig et al.
(2004) used Kriging model as both local and global
approximation for continuous casting design optimization; Ju
and Lee (2008) proposed a RBDO method using the moment
method and Kriging model; Basudhar and Missoum (2009)
proposed an adaptive sampling technique for RBDO based on
support vector machine (SVM);

Metamodels are fitted from space-filling sampling,
whose efficiency and accuracy directly depend on how
to select the sample points. Several advanced sampling
strategies have been developed: Lee and Jung (2008)
suggested a constraint boundary sampling (CBS) method
and Kriging model for RBDO; (Bect et al. 2012) pro-
posed the sequential design of computer experiments for
the estimation of a probability of failure (Bect et al.
2012); (Lee et al. 2011) introduced a sampling-based
RBDO method using the stochastic sensitivity analysis
and dynamic Kriging method; (Bichon et al. 2008)
proposed the efficient global reliability analysis for non-
linear implicit performance functions; Kim and Lee
(2010) suggested an improvement of Kriging-based se-
quential approximate optimization method via extended
use of design of experiments; (Echard et al. 2011)
proposed an active learning reliability method combin-
ing Kriging and Monte Carlo simulation; (Picheny et al.
2010) presented the adaptive designs of experiments for
accurate approximation of a target region; Huang and
Chan (2010) developed a modified efficient global op-
timization algorithm for maximal reliability in a proba-
bilistic constrained space; Zhuang and Pan (2012) intro-
duced a new sequential sampling method for design
under uncertainty.

Sampling strategies that locate sample points evenly within
the whole design domain are not efficient, such as Latin
hypercube sampling (LHS) and full factorial design which
are usually applied in the initialization stage. Sequential sam-
pling strategies are more efficient, such as the constraint
boundary sampling (CBS) (Lee and Jung 2008) which selects
sample points sequentially on the limit state constraint bound-
aries within the design domain. However, the target of an
optimization problem is to find the minimum/maximum ob-
jective function value, while the optimal design satisfies the
constraints. Therefore, there is no need to keep all the parts of
the limit state constraints within the design region being
accurate. (Chen et al. 2014) proposed the local adaptive sam-
pling (LAS) method for RBDO using Kriging model. The
LAS method uses the local sampling window strategy, which
can improve the accuracy of the local design region. However,
the LAS method may fall into the local optimum.

In this paper, the importance boundary sampling (IBS)
approach will be proposed to enhance the efficiency of
Kriging-model-based RBDO. However, the IBS method in
this paper is different from classical importance sampling (IS)
method, which is used to calculate the probability of failure Pf
in the reliability analysis process. The classical IS method is
widely applied to theoretical research and engineering appli-
cations to overcome the difficulties in the crude MC method.
The basic idea is to carry out MC simulation with those
sample points having a higher rate of falling in the failure
region, because only these sample points contribute to the
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evaluation of Pf (Glynn and Iglehart 1989; Siegmund 1976;
Tang et al. 2012). The proposed IBS, by contrast, is used to
improve the efficiency of the sampling process in the Kriging-
model-based RBDO.

In the proposed IBS, the sampling and optimization pro-
cesses will be conducted alternatively; and rather than fitting
all the parts of the limit state constraints precisely within the
design domain, IBS will firstly ensure the accuracy of the
critical limit state constraint parts. Two importance coeffi-
cients are proposed to select sample points. The first one is
calculated using the objective function value, and the second
one is determined by the joint probability density value of the
design variables. The optimization results from previous iter-
ation are used in the subsequent sampling process to locate the
sample points more rationally. The sequential optimization
and reliability assessment (SORA) method (Du and Chen
2004) is applied in this paper to solve RBDO problems.

This paper assumes that the original performance functions
are implicit, such as expensive physical test and complex
finite element simulation. The searching of the MPP is based
on the cheap Kriging models. When compared with the im-
plicit performance function calls, the computational effort to
find the MPP is very cheap.

The rest of the paper is organized as follows: the commonly
used methods in RBDO and Kriging model will be reviewed
in Section 2; the proposed IBS method will be explained in
Section 3; Section 4 then uses illustrative examples to dem-
onstrate the application of IBS with four comparison experi-
ments; in Section 5, the conclusion will be drawn.

2 Commonly used methods in RBDO and kriging model

2.1 RBDO model

RBDO problem is typically formulated as follows:

find :d;μX

min : f d;μX ;μPð Þ
s:t: : Prob g j d;X ;Pð Þ≥0

� �
≥Rj; j ¼ 1;⋯;N

dLower ≤ d ≤ dUpper ; μX
Lower ≤ μX ≤ μX

Upper

ð1Þ

where f(d,μX,μP) is the objective function, Prob(gj(d,X,P)
≥0) is the probability function which denotes the probability
of satisfying the jth performance function gj(d,X,P); N is the
number of probabilistic constraints. d is the vector of the
deterministic design variables; X and P are the vectors of
random design variables and random parameters; μX and μP

denote the mean vectors of X and P; Rj denotes the desired
design probability of satisfying the jth performance function.

2.2 Reliability analysis methods RIA and PMA

Reliability analysis is usually performed in the standard
normal space. When the random variables X and P are not
statistically independent or do not have normal distribu-
tions, transformation: u=T(X,P), and (X,P)=T−1(u) will be
needed, such as the Rosenblatt transformation (Rosenblatt
1952) or Nataf transformation (Liu and Der Kiureghian
1986), u is the vector of random variables in the standard
normal space. Then the probabilistic constraint g(d,X,P)
becomes G(u). The vector d of deterministic design vari-
ables will be ignored since it is regarded as constant
during the reliability analysis process.

RIA searches the most probable point (MPP) uRIA
∗ in the

standard normal space that has the minimum distance from the
origin to the limit state constraint. The RIA model can be
expressed as follows:

find : u
min : uk k
s:t: G uð Þ ¼ 0

ð2Þ

Here, u is vector of the random variables in the standard
normal space.

PMA searches the minimum value of the constraint func-
tion, while the design satisfies the target reliability index (e.g.
‖u‖=βt).

find : u
min : G uð Þ
s:t: uk k ¼ βt

ð3Þ

PMA is also called the inverse reliability analysis method.
The optimal design uPMA

∗ obtained from (3) is called the
inverse most probable point (IMPP).

2.3 Sequential optimization and reliability assessment
(SORA)

For simplicity, the vector of random parameters P in (1) is
ignored, that is because the vector P is more easily to be
evaluated than these random variables. In this paper, the
Kriging models are used to substitute the constraint functions,
and the IBS method can be easily extended to account for
random parameters P.

SORA is one of the most promising decoupled ap-
proaches. It is widely used in practical applications. In
SORA, deterministic optimization and reliability analy-
sis are performed sequentially. The probabilistic optimi-
zation is converted into a deterministic optimization by
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shifting the limit state constraints to the feasible region
as seen in (4). The shifting vector sk+1 is obtained from
reliability analysis.

find : d;μX

min f d;μXð Þ
s:t: g j d;μX � skþ1

X

� �
≥0; j ¼ 1; 2;⋯;N

dLower ≤d≤dUpper;μ
Lower

X ≤μX ≤μ
Upper
X

ð4Þ

where

skþ1
x ¼ μk

X � X k
IMPP

X k
IMPP

¼ T−1 ukIMPP

� �
where N is the number of probabilistic constraints, μX

k

denotes the optimal design in the kth iteration, XIMPP
k is the

IMPP in the original design space corresponding to the IMPP
uIMPP
k obtained from (3).

2.4 Kriging model

Kriging model (also called Gaussian process model) is pro-
posed by a South African geostatistician (Matheron 1963;
Sacks et al. 1989). In Kriging model, the response at a certain
sample point not only depends on the design parameters but is
also affected by the points in its neighborhood. The spatial
correlation between design points is considered (Zhuang and
Pan 2012).

The notations for constructing Kriging models of the con-
straint function g(x) are used in the description. The corre-
sponding Kriging approximations are denoted as bg xð Þ .
Kriging is based on the assumption that the response function
g(x) is composed of a regression model F(x)Tβ and stochastic
process Z(x) as follows (Huang and Chan 2010; Kim et al.
2009a; Picheny et al. 2010):

g xð Þ ¼ F xð ÞTβþ Z xð Þ ð5Þ

where F(x) is the trend function which consist of a vector of
regression functions; β is the trend coefficient vector; Z(x) is
assumed to have a zeromean and a spatial covariance function
between Z(x) and Z(w) as follows:

Cov Z xð Þ; Z wð Þ½ � ¼ σ2
ZR θ; x; wð Þ ð6Þ

where w is a point different from the point x; σZ
2 is

the process variance and R is the correlation function
defined by its set of parameters θ (Echard et al. 2011;
Kim et al. 2009b).

Several models exist to define the correlation function, but
the squared-exponential function (also called anisotropic
Gaussian model) is commonly used (Bichon et al. 2008;

Rasmussen and Carl Edward 2004; Sacks et al. 1989), and is
selected here for R:

R θ; x;wð Þ ¼ ∏
i¼1

n

exp −θi xi � wið Þ2
h i

ð7Þ

where xi andwi are the ith coordinates of the points x andw,
n is the number of coordinates in the points x and w, and θi is a
scalar which gives the multiplicative inverse of the correlation
length in the ith direction. An anisotropic correlation function
is preferred here, as in reliability studies the random variables
are often of different natures (Echard et al. 2011).

Given a set of sample points [x1,⋯xm], xi∈ℜn, and the
responses g, gi=g(xi)∈ℜ, m is the number of samples, then
the expected value bg xð Þ and variance σg

2(x) of the Kriging
model prediction at point x are (Bichon et al. 2008): σZ

2

bg xð Þ ¼ F xð ÞTβþ r xð ÞR−1 g−Hβð Þ ð8Þ

σ2
g xð Þ ¼ σ2

Z− F xð Þr xð Þ½ � 0 HT

H R

� �−1
F xð Þ
r xð Þ

� �
ð9Þ

where r(x) is a vector containing the covariance between x
and each of the m training points (defined by σZ

2 (6)), R is a
m×m matrix containing the correlations between each pair of
training points, g is the vector of response outputs at each of
the training points, and H is a m×q matrix with rows F(xi)T

(the trend function for the ith training point containing q
terms; for a constant trend, q=1). This form of the variance
accounts for the uncertainty in the trend coefficients β, but
assumes that the parameters governing the covariance func-
tion (and θ) have known values (Bichon et al. 2008).

The trend coefficients β is estimated according to the
references (Lophaven et al. 2002) by:

β ¼ HTR−1H
� �−1

HTR−1g ð10Þ
The parameters σZ

2 and θ are determined through maximum
likelihood estimation. This involves taking the log of the
probability of observing the response values g given the
covariance matrix R, which can be written as (Bichon et al.
2008; Jones et al. 1998; Lophaven et al. 2002; Sacks et al.
1989):

log Prob g Rjð Þ½ � ¼ −
1

m
log Rj j−log bσ2

Z

� 	
ð11Þ

where |R| indicates the determinant of R, and bσ2
Z is the

optimal value of the variance given bg xið Þ an estimate of θ and
is defined by

bσ2

Z ¼ 1

m
g �Hβð ÞTR−1 g �Hβð Þ ð12Þ

maximizing (11) gives the maximum likelihood estimate of

θ, which in turn defines bσ2
Z (Bichon et al. 2008).
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Kriging model is an exact interpolation method. The pre-
diction in a point xi of the design of experiments is exact, i.e.bg xið Þ ¼ g xið Þ . Therefore, the Kriging variance is null in these
points and it becomes important in unexplored areas. This
enables to quantify the uncertainty of local predictions with an
easily computable analytical function. These properties are
interesting in reliability studies and metamodels as the Kriging
variance represents a good index to improve a design of
experiments (Echard et al. 2011).

3 Importance boundary sampling method

In this paper, the proposed IBS uses the important coefficients
to identify the critical parts of limit state constraint boundaries.
The objective function values and the joint probability density
values of the design variables in the standard normal space are
also applied to calculate the important coefficients. In addi-
tion, the sampling and optimization processes are conducted
alternately in the proposed IBS method.

The proposed sampling criteria in IBS will be discussed in
Section 3.1; then the procedures and flowcharts of IBS will be
introduced in Section 3.2.

3.1 Importance boundary sampling (IBS) criteria

The proposed IBSmethodmainly selects sample points on the
important parts of the limit state constraints which have rela-
tively smaller objective function values or shorter distances to
the current design point in RBDO. So in IBS, two sampling
criteria will be proposed; and they will work together to
improve the efficiency of Kriging-model-based RBDO. The
constraint boundary sampling criterion will be first discussed,
and then IBS criteria for RBDO will be introduced.

3.2 Constraint boundary sampling (CBS) criterion

In the RBDOprocesses, the design points andMPPs are usually
located on the limit state constraints. Therefore, the accuracy of
the limit state constraint boundaries should first be ensured.

The CBS criterion was proposed by Lee and Jung (Lee and
Jung 2008).When there is sufficient sample data to construct the
Kriging model, the prediction of approaches the normal distri-
bution with mean bg xð Þ and standard deviation σg(x).

If the limit state constraint is defined as g(x)=0, then the
probability of the Kriging prediction satisfying the constraint
g(x)≥0 is as follows:

Prob xð Þ ¼ 1� Φ
0� bg xð Þ
σg xð Þ

 !
¼ Φ

bg xð Þ
σg xð Þ

 !
ð13Þ

where, Φ is the cumulative density function of the standard
normal distribution.

Then the standard normal probability density function φbg xð Þ=σg xð Þ� �
can be used to measure the closeness of the

Kriging prediction bg xð Þ to the limit state constraint g(x)=0, as
seen in Fig. 1. The CBS criterion is defined as follows:

CBS ¼
X
j¼1

N

φ
bg j xð Þ
σg j

xð Þ

 !
:D xð Þ if bg j xð Þ≥0; ∀ j

0 otherwise

8>><>>: ð14Þ

where, N is the number of constraints, D(x) is the minimal
distance from the current sample point x to the existing sample
points as defined in (15), m is the number of existing sample
points.

D xð Þ ¼ min x − xik k
max x j − xik k; i; j ¼ 1;⋯;m ð15Þ

When all the constraints are satisfied, the CBS criterion
will have a large value at bg j xð Þ=σg j

xð Þ≈0 , where the sample

point x is close to the limit state constraints bg j xð Þ≈0
� �

or the

Kriging prediction has large variance σg j
xð Þ . Therefore, CBS

can locate sample points efficiently along the limit state con-
straint boundaries.

This paper constrains samples to lie in the predicted feasi-
ble region in CBS and IBS, as seen in (14), that is because
when the design space is very large and constraint boundries
are very long, but the feasible region is relatively small; then
the constraint boundaries lacated outside the feasible region
are not IBS1(I1) necessaryly to be refined accurately.

3.3 IBS criterion 1 for RBDO

Assume that in RBDO, the target is to find the minimum
objective function value. Then the design regions that have
relatively smaller objective function values will be more im-
portant than other regions, and the limit state constraint
boundaries within these design regions will be more critical.
Therefore, these critical limit state constraint boundaries
should first be fitted accurately.

Fig. 1 Feasible probability
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The proposed IBS uses the objective function value to
evaluate the importance coefficient for the limit state con-
straint boundaries as follows:

I1 xð Þ ¼ max f xið Þf gmi¼1− f xð Þ
max f xið Þf gmi¼1−min f xið Þf gmi¼1

ð16Þ

where f(x) is the objective function, xi denotes the ith
sample point, m is the number of existing sample points.

From (16), it can be seen that the smaller the objective
function value f(x) at the sample point x is, the higher the
importance coefficient I1(x) will be; And if the value f(x)
is in the range of [min(f(xi)),max(f(xj))], i, j=1,⋯,m,
then the importance coefficient I1(x) will be in the
range of [0, 1].

The IBS criterion 1 for RBDO f(x) can be expressed as
follows:

IBS1 I1ð Þ ¼
X
j¼1

N

φ
bg j xð Þ
σg j

xð Þ

 !
⋅D xð Þ⋅I1 xð Þ if bg j xð Þ≥0; ∀ j

0 otherwise

8><>:
ð17Þ

where I1(x) is the importance coefficient I1(x) obtained
from (16).

The IBS1(I1) in (17) combines the probability density value
of the Kriging predictor bg j xð Þ , the minimum distance

from the current design point to the existing sample points
and the importance coefficient I1(x). If the objective func-
tion f(x) has a small value at the sample point x, then the
value of the IBS criterion 1 IBS1(I1) will be enlarged, and
this point x will be more likely to be chosen as the next
new sample point.

However, because the importance coefficient I1(x) in (16)
has a linear relation with the objective function value, its
effect on the value IBS1(I1) is limited. In other words, the
importance coefficient I1(x) may not clearly identify the
critical parts of the limit state constraint boundaries. In
this paper, this problem will be overcome through using
the importance coefficient I2(x) as follows:

I2 xð Þ ¼ eτ
:I1 xð Þ ð18Þ

where τ is a constant, “e” is the "na f(x) tural" exponential.
In (18), the importance coefficient I2(x) has an exponential

relation with the objective function value . When using I2(x),
the critical parts of the design region which have relatively
small objective function values will be clearly identified, and
the other parts will be filtered. As mentioned above, I1(x) is in
the range of [0, 1], so the value of I2(x) will be in the interval
[1, eτ], the constant τ in this paper is chosen as 2~4, which can
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Fig. 2 Mesh and contour plot of
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function and the CBS criterion
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Fig. 3 Mesh plot of the IBS
criterion 1 a IBS criterion 1 using
b IBS criterion 1 using I2(x)
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make I2(x) possess enough effect on . This paper has tried to
choose different values to study the sensitivity of the results to
its variations. It found that the value of the parameter τ had
very weak effect to the results of IBS1. Unless the value of τ
was too small as 0.01, or too large as 100, the IBS1 (I2) would
be able to find the new sample point. This paper uses the
nonlinear relationship between the objective function value
and the importance coefficient in (18), so the value of the
parameter τ is not very critical in the sampling criterion of
IBS1(I2).

The IBS criterion 1 using I2(x) can be expressed as follows:

IBS1 I2ð Þ ¼
X
j¼1

N

φ
bg j xð Þ
σg j

xð Þ

 !
⋅D xð Þ⋅ I2 xð Þ if bg j xð Þ≥0; ∀ j

0 otherwise

8><>:
ð19Þ

To illustrate the behavior of IBS criterion 1, a mathematical
problem (Lee and Jung 2008) is tested as follows:

min : f xð Þ ¼ x1‐2ð Þ2‐ x2‐1ð Þ2
s:t: g xð Þ≥0

g xð Þ ¼ −2x21 þ 1:05x41−
1

6
x61 þ x1x2‐x

2
2 þ 0:5

‐2:5≤x1≤2:5; ‐1:5≤x2≤1:5

ð20Þ

The constraint g(x) is a three-hump-camelback function as
seen in Fig. 2 (a). The dotted-lines are the limit state constraint
g(x)=0, and there are three disconnected feasible regions g(x)>
0. The objective function value f(x) decreases up and to the
right within the design region, x∗ is the optimal design point.

Figure 2 (b) shows the values of the CBS criterion based on
the Kriging model bg xð Þ which is constructed using 50 uni-
form sample points. The CBS values in all the three feasible
regions are noticeably large, and the maximum value CBSmax

is located in the middle feasible region, which means this
point w I1(x) ill be chosen as a new sample in the CBS
method. However, the target of this example is to find the
minimum objective function value, so the limit state constraint
boundary around the upper right feasible region should first be
fitted accurately.

Figure 3 shows the mesh plot of the IBS criterion 1. When
using the importance coefficient I1(x) as seen in Fig. 3 (a), the
value of IBS1(I1) decreases down and to the left in the design
region, and the maximum value IBS1max is located in the upper
right feasible region. However, the IBS1(I1) value in the
middle feasible region is still very large, which shows that
the effect of the importance coefficient I1(x) on the IBS1(I1)
is limited. When using the importance coefficient I2(x) as
seen in Fig. 3 (b), the IBS values IBS1(I2) in the upper
right feasible region are extremely high; but in the other two
feasible regions, the IBS values are very small. Therefore,
these unimportant feasible regions are filtered, and the sample

Fig. 4 Importance coefficient I3(x) for RBDO
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points will be mainly selected on the limit state constraint
boundary around the upper right feasible region which is more
critical in the optimization process.

3.4 IBS criterion 2 for RBDO

When using analytical method in RBDO, the target of reli-
ability analysis will be to find the minimum distance from the
current optimal design to the limit state constraints in the
standard normal space, and this point is called MPP as de-
scribed in (2). Therefore, the region in the vicinity of the
current design point is more critical, and the limit state con-
straint boundaries within this region should first be fitted
accurately (Wang et al. 2005). In this paper, the joint proba-
bility density value of the random variables is applied to
calculate the importance coefficient.

If the random variables have normal distributions: x~
N(μX,σX), then the importance coefficient is defined as follows:

I3 xð Þ ¼ φ
x‐μX

σX

� 	
ð21Þ

where “φ” is the joint probability density function of stan-
dard normal distribution. Then the IBS criterion 2 for RBDO
can be expressed as follows:

IBS2 xð Þ ¼
X
j¼1

N

φ
bg j xð Þ
σg j

xð Þ

 !
⋅D xð Þ⋅ I3 xð Þ if bg j xð Þ≥0; ∀ j

0 otherwise

8><>:
ð22Þ

If the random variables x do not have normal distributions,
then the transformation: u=T(x), and x=T−1(u) will be need-
ed, such as Rosenblatt transformation (Rosenblatt 1952) or
Nataf transformation (Liu and Der Kiureghian 1986). The
transformed random variables u have normal distributions
u~N(μU,σU), then the importance coefficient can be cal-
culated as follows:

I3 xð Þ ¼ I3 T−1 uð Þ� � ¼ φ
u� μU

σU

� 	
ð23Þ

As seen in Fig. 4, μX is the current optimal design, xMPP

denotes theMPP, x1‐x4 are four potential sample points on the
limit state constraint boundaries. In order to get the MPP xMPP

(a) LAS method                (b) IBS method
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more accurately, the limit state constraint boundary bg xð Þ ¼ 0

in the vicinity of the MPP should first be fitted precisely.
However, the MPP xMPP is unknown until the reliability
analysis process is finished. This issue can be overcome
through using the importance coefficient I3(x), which will
have a large value when x is close to the current optimal
design μX. In Fig. 4, the potential sample points x1 and x2

will first be selected, but the sample points x3 and x4 which are
far away from the current optimal design μX will not be
chosen. Also by using the minimum distance D (x) in (15),
the sample points will not be too close to each other. So the
proposed importance coefficient I3(x) in (23) can make the
selection of the sample points more rational for RBDO.

To illustrate the behavior of IBS criterion 2, a mathematical
problem is tested as follows.

g Xð Þ ¼ −X 1sin 4X 1ð Þ−1:1X 2sin 2X 2ð Þ
X ieN μi; 0:1

2
� �

; i ¼ 1; 2

μ ¼ 3:00; 2:50½ �T
ð24Þ

here, the solid line circles are the contour lines for the IBS
criterion 2; triangle and fork points denote the initial sample

points and new sample points using the IBS criterion 2
respectively.

In Fig. 5, nine samples are selected as initial sampling,
denoted by triangles; 27 sequential samples are selected by
using the IBS criterion 2. It can be seen that the samples that
are close to the design variables are firstly selected. Although
due to the lack of accuracy of the Kriging models in the early
stage of the sequential sampling process, the first four samples
1–4 are not selected strictly according to the distances to the
design variables; the rest 23 samples are chosen according to
their contributions to the refining the critical MPP searching
region. So, the IBS criterion 2 is very effective in the reliability
analysis process.

3.5 Procedures and flowchart o (d0,μ0) f the IBS method

The flowchart of the IBS method is shown in Fig. 6, and the
procedures are described as follows:

1) Initialize design variables for RBDO.
2) Initialize the sample point set s0 using Latin Hypercube

sampling method. The number of samples required to
define a quadratic polynomial (n+1)(n+2)/2 is a conve-
nient rule of thumb (Bichon et al. 2008). So in this paper,
this initial selection is a little larger than the required value
(n+1)(n+2)/2. Then evaluate the responses of the con-
straint functions gj(x), j=1,⋯,N. For simplicity, the vec-
tor of design variables (d,μ) is replaced by x.

3) Construct the Kriging models bg j xð Þ; j ¼ 1;⋯;N for
the constraint functions using the above sample points s0

and the corresponding responses.
4) In the kth iteration of the RBDO, select new sample points

xk using the sampling criterion IBS1 in (19), and then
evaluate the responses of the constraint functions gj(x

k),
j=1,⋯,N at the selected points sk. Add these new sample
points xk to the sample set sk, then reconstruct the Kriging
models bg j xð Þ; j ¼ 1;⋯;N for constraint functions
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based on all the existing sample points sk and the corre-
sponding responses.

5) Conduct optimization using the above constructed Kriging
models gj(x

k), j=1,⋯,N.
6) Select new sample points xk using the sampling criterion

IBS2 in (22), and then evaluate the responses of the con-
straint functions gj(x

k), j=1,⋯,N at the selected points sk.
Add these new sample points xk to the sample set sk, then
reconstruct the Kriging models bg j xð Þ; j ¼ 1;⋯;N for

constraint functions based on all the existing sample points
sk and the corresponding responses.

7) Conduct reliability analysis using the above constructed
Kriging models gj(x

k), j=1,⋯,N. This paper assumes that
the original performance functions are implicit, such as
expensive physical test and complex finite element simu-
lation. The searching of the IMPP is based on the cheap
Kriging models. When compared with the implicit per-
formance function calls, the computational effort to find
the MPP is very cheap.

8) If the design (dk+1,μk+1) converges, then the whole pro-
cess will stop, (d∗,μ∗)RBDO=(d

k+1,μk+1); otherwise, k=
k+1, and the process will go back to step (4).

4 Application

In order to verify the accuracy and efficiency of the proposed
IBS method, five examples are tested and compared to ana-
lytical method, Latin Hypercube sampling (LHS) method and

constraint boundary sampling (CBS) method. The SORA is
chosen as the RBDO method which directly calls the true
performance functions and can yield a relatively accurate
design. The optimal results μ∗ obtained from Kriging-
model-based RBDOmethods are assessed through the relative
error ‖μ∗‐μA

∗‖/‖UB−LB‖, μA
∗ is the optimal design obtained

from SORA, LB and UB are the lower and upper boundaries
of the design variables respectively. The results of the math-
ematical examples are also evaluated byMCSwith ten million
sample size. These examples are tested in the Matlab, and the
tool “fmincon” is used as the optimizer.

4.1 Numerical example 1

The model of this example is the same as the (20), however, its
design variables become random variables xi~N (μi, 0.05), i=
1,2, β=2.0, and the initial design point is located at (0.5, 0.5).
This example is used to compare the behaviors of the pro-
posed IBS method and the local adaptive sampling (LAS)
method (Chen et al. 2014).

The comparison results are shown in Fig. 7. After initiali-
zation with 18 uniform sample points, sequential sampling is
conducted using the LAS and IBS methods separately. The
LAS method chooses 15 sample points, as seen in Fig. 7 (a),
most of these samples are located in the middle feasible
region, and only the local optimum is obtained. The IBS
method selected 19 sample points, and with the advantage of
the IBS1 (I2), most of the sample points are located in the right
upper feasible region, where the optimum is located. So, the
proposed IBS method is more applicable than the LAS
method.

Table 1 Summary of the optimi-
zation results for example 2 Methods Design variables Samples Relative error (%) β1 β2 β3

SORA (5.8545, 3.4236) 294 / Inf. 3.0247 2.9937

LHS (5.8530, 3.2904) 50 1.3319 Inf. 2.5869 3.2266

CBS (5.8586, 3.4228) 33 0.0418 Inf. 3.0251 2.9839

IBS (5.8545, 3.4236) 21 0.0003 Inf. 3.0252 2.9946

Table 2 Summary of the optimization results for example 3

Methods Design variables Samples Relative
error (100 %)

β1

Anal. (2.5078, 4.3986, 5.4951, 5.0963, 3.2037, 4.3986, 6.4925, 3.2037, 4.5979,
2.0115, 5.4951, 3.7014, 3.0048, 6.3927, 3.8010, 4.3986)

323 / 2.9925

LHS (2.5425, 4.4427, 5.5422, 5.1425, 3.2422, 4.4429, 6.5425, 3.2424, 4.6427,
2.0423, 5.5419, 3.7424, 3.0424, 6.4420, 3.8425, 4.4420)

300 1.7094 3.5624

CBS (2.5226, 4.4234, 5.5228, 5.1233, 3.2232, 4.4228, 6.5231, 3.2230, 4.6232,
2.0232, 5.5229, 3.7231, 3.0234, 6.4231, 3.8231, 4.4233)

250 0.9484 3.2983

IBS (2.5082, 4.3990, 5.4944, 5.0959, 3.2043, 4.3978, 6.4922, 3.2047, 4.5975,
2.0106, 5.4956, 3.7013, 3.0055, 6.3921, 3.8016, 4.3988)

219 0.0235 2.9924
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here, lines are the predicted boundaries by Kriging; shaded
area is the feasible region; triangle and fork denote the sample
points from LAS and IBS methods respectively.

4.2 Numerical example 2

This is a non-linear mathematical problem (Youn and Choi
2004). There are two random design variables X1, X2, and
three probabilistic constraints g1, g2, g3. No deterministic
design variable or random parameter exists.

find μ ¼ μ1;μ2½ �T
min f μð Þ ¼ 10−μ1 þ μ2

s:t: prob g j Xð Þ > 0
h i

≤Φ ‐βt
1

� �
j ¼ 1; 2

g1 Xð Þ ¼ 1−
X 2

1X 2

20

g2 Xð Þ ¼ 1−
X 1 þ X 2−5ð Þ2

30
−

X 1−X 2−12ð Þ2
120

g3 Xð Þ ¼ 1−
80

X 2
1 þ 8X 2 þ 5

� �
0:0≤μi≤10:0; X ieN μi; 0:3

2
� �

; i ¼ 1; 2

βt
1 ¼ βt

2 ¼ βt
3 ¼ 3:0; μ 0ð Þ ¼ 5:00; 5:00½ �T

ð25Þ

The objective function value decreases down and to the
right in design region. The third constraint g3 (X)=0 is
highly nonlinear. The optimal design μopt for RBDO is
located at (5.8545, 3.4236) as seen in Fig. 8 (a). The
shaded area is the feasible region. The circle around the
optimal design is the β-circle.

here, dashed lines are the true constraint boundaries; solid
lines are the predicted boundaries by Kriging; shaded area is
the feasible region and square denotes the sample point from
LHS method.

The Latin hypercube sampling method is shown in Fig. 8
(b). 50 points are evenly selected within the design region.
However, many sample points are located out of the feasible
region. The limit state constraints 1 and 3 are not accurate.

The CBS method adopts grid sampling with nine points, 3-
level full factorial design, as initial sampling. It applies 33
sample points to approximate the three constraints as seen in
Fig. 9 (a). Most of the sample points are selected on the limit
state constraints within the feasible region. The boundaries of
the feasible region are well fitted. However, only a few sample
points are located in the vicinity of the optimal design μopt,
which means that most of the samples are not well explored in
improving the accuracy of the results.

The proposed IBS method also adopts grid sampling with
nine points as initial sampling. And it uses 21 sample points to
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Fig. 11 Relative errors of the LHS、CBS、IBS methods for example 3

Fig. 12 A speed reducer

Table 3 Summary of the optimization results for the speed reducer

Methods Design variables Samples Relative error
(100 %)

Anal. (3.5765, 0.7000, 17.0000, 7.3000,
7.7541, 3.3652, 5.3017)

1218 /

LHS (3.5767, 0.7000, 17.0000, 7.3013,
7.7541, 3.3669, 5.3014)

80 0.2212

CBS (3.5769, 0.7000, 17.0000, 7.3013,
7.7544, 3.3662, 5.3016)

77 0.1741

IBS (3.5765, 0.7000, 17.0000, 7.3000,
7.7541, 3.3653, 5.3017)

50 0.0121
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Fig. 13 Relative errors of the LHS、CBS、IBS methods for the speed
reducer
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approximate the three constraints as seen in Fig. 9 (b). Most of
the sample points are located on the important parts of the
limit state constraint boundaries. The region in the vicinity of
the optimal design μopt is accurately fitted, and this will ensure
the accuracy of the RBDO results.

here, dashed lines are the true constraint boundaries; solid
lines are the predicted boundaries by Kriging; shaded area is
the feasible region; triangle and fork denote the sample points
from CBS and IBS methods respectively.

The comparison results for example 1 are shown in Table 1.
It can be seen that analytical method is not efficient. The CBS
method is more efficient than LHS. The number of constraint
function calls in IBS is equal to 21. So IBS is the very
efficient.

For the second constraint, the reliability indexes in IBS
(β2=3.0252) and CBS (β2=3.0251) are almost equal to each
other. However, for the third constraint, the reliability index in
IBS (β3=2.9946) is closer to the target value (β3

t=3.0) than
that in CBS (β3=2.9839). The relative error in IBS also has
the smallest value 0.0003 % as seen in Fig. 10. Therefore, the
proposed IBS method is very accurate.

In this example, the reliability indexes for the optimal
design are (Inf., 3.0247, 2.9937), β3=2.9946 is samller than
the target value β3

t=3.0, that is because the MPP-based
RBDO method has a common issue that it will have some
error for highly nonlinear problems. This paper is based on the
MPP-based RBDO method, although it is roboust, but it may
have some error.

4.3 Numerical example 3

This example is a multi-dimensional problem. There are six-
teen random design variables Xi, i=1,…,16, which are statis-
tically independent and have normal distributions. The

constraint function is highly nonlinear (Shan et al. 2009). This
problem can be expressed as follows:

find μ ¼ μ1;⋯;μ16½ �T

min f μð Þ ¼
X
i

16
μi−cið Þ2

s:t: prob g1 Xð Þ > 0½ �≥Φ βtð Þ

g1 Xð Þ ¼
X
i

16
X i τ þ ln

X i

X 1 þ⋯þ X 16

� 	� 	
X ieN μi; 0:3

2
� �

; 1e−6≤μi≤10; i ¼ 1;⋯; 16

c ¼
h
2:20; 4:10; 5:20; 4:80; 2:90; 4:10; 6:20; 2:90;

4:30; 1:70; 5:20; 3:40; 2:70; 6:10; 3:50; 4:10
i

τ ¼ −17:164; βt
1 ¼ 3:0; μ 0ð Þ ¼ 4:0;⋯; 4:0½ �T

ð26Þ

The comparison results for example 2 are shown in Table 2.
Analytical method is not efficient. CBS is more efficient than
the LHS. The total number of function calls in the proposed
IBS method is equal to 219. So IBS is very efficient.

LHS is not accurate, for its relative error is the largest one as
seen in Fig. 11, and the reliability index evaluated by MCS is
3.5624 which is far away from the target value 3.0. The optimal
design from the IBS method is very close to the result of the
analytical method; the relative error is 0.0235 %; also the
reliability index in IBS is closer to the target value 3.0 than
the result of CBS. So the proposed IBSmethod is very accurate.

Table 4 Summary of the MCS
results for the speed reducer Methods β1 β2 β3 β4 β5 β6 β7 β8 β9 β10 β11

Anal. Inf. Inf. Inf. Inf. 3.0000 3.0023 Inf. 3.0002 Inf. Inf. 2.9991

LHS Inf. Inf. Inf. Inf. 3.3297 2.9513 Inf. 3.0106 Inf. Inf. 3.0288

CBS Inf. Inf. Inf. Inf. 3.2029 2.9835 Inf. 3.0172 Inf. Inf. 3.0447

IBS Inf. Inf. Inf. Inf. 3.0196 3.0037 Inf. 3.0003 Inf. Inf. 2.9984

Fig. 14 Box girder design
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4.4 A speed reducer

A speed reducer shown in Fig. 12 is used to rotate the
engine and propeller with efficient velocity in light plane
(Ju and Lee 2008). This problem has seven random var-
iables and 11 probabilistic constraints. The objective func-
tion is to minimize the weight, and probabilistic con-
straints are related to physical quantities such as bending
stress, contact stress, longitudinal displacement, stress of
the shaft, and geometry constraints. The random design
variables are gear width (X1), gear module (X2), the number of
pinion teeth (X3), distance between bearings (X4,X5), and
diameter of each shaft (X6,X7)

The description of the RBDOmodel of the speed reducer is
shown as follows:

find μ ¼ μ1;⋯;μ7½ �T
min f μð Þ ¼ 0:7854μ1μ

2
2 3:3333μ2

3 þ 14:9334μ3−43:0934
� �

−1:508μ1 μ2
6 þ μ2

7

� � þ 7:477 μ3
6 þ μ3

7

� �
þ 0:7854 μ4μ

2
6 þ μ5μ

2
7

� �
s:t: prob g j Xð Þ > 0

h i
≤Φ −βt

j

� �
; j ¼ 1;⋯; 11

where g1 Xð Þ ¼ 27

X 1X 2
2X 3

−1; g2 Xð Þ ¼ 397:5

X1X 2
2X

2
3

−1;

g3 Xð Þ ¼ 1:93X 3
4

X 2X 3X 4
6

−1; g4 Xð Þ ¼ 1:93X 3
5

X 2X 3X 4
7

−1;

g5 Xð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
745X 4

.
X 2X 3ð Þ

� �2
þ 16:9� 106

r
0:1X 3

6

−1100;

g6 Xð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
745X 5

.
X 2X 3ð Þ

� �2
þ 157:5� 106

r
0:1X 3

7

−850;

g7 Xð Þ ¼ X 2X 3−40; g8 Xð Þ ¼ 5−
X 1

X 2
;

g9 Xð Þ ¼ X 1

X 2
−12; g10 Xð Þ ¼ 1:5X 6 þ 1:9

X 4
−1;

g11 Xð Þ ¼ 1:1X 7 þ 1:9

X 5
−1;

βt
1 ¼ ⋯ ¼ βt

11 ¼ 3:0;
2:6≤X 1≤3:6; 0:7≤X 2≤0:8; 17≤X 3≤28;
7:3≤X 4≤8:3; 7:3≤X 5≤8:3;
2:9≤X 6≤3:9; 5:0≤X 7≤5:5;
X ieN μi; 0:0052

� �
; i ¼ 1;⋯; 7;

μ 0ð Þ ¼ 3:2; 0:75; 23:0; 8:0; 8:0; 3:6; 5:0½ �T
ð27Þ

The comparison results for the speed reducer are shown in
Table 3. The number of constraint function calls in analytical
method is 1218, it is not efficient. CBS is more efficient than
the LHS. The number of function calls in the proposed IBS
method is equal to 50. So IBS is very efficient.

The optimal design from the IBSmethod is almost identical
with the result of the analytical method; the relative error is
0.0121 % as seen in Fig. 13. Table 4 shows the MCS results.

In IBS, the reliability indexes for constraints 5, 6, 8 and 11 are
closer to the target value (βi

t=3.0, i=1,…,11) than that in
CBS. Therefore the proposed IBS method is very accurate
during the Kriging-model-based RBDO methods.

4.5 Box girder design

As shown in Fig. 14, it is a large scale box girder; the total
length is 14,620mm. The target of the box girder design is to
reduce its total weight. There are six random design variables
di, i=1,…,6, which denote the thicknesses of the stiffeners at
different parts of the box girder. The main loads applied to the
box girder are F1, F2, F3, F4, F5 and F6, as seen in Fig. 15.
There are eight probabilistic constraints gi(X), i=1,⋯,8,
which denotes the displacements along x and z axes at 1, 2,
3 and 4 places.

These probabilistic constraints are implicit and need com-
puter simulations, each finite element simulation will take
about 2 min, the total computational cost is unaffordable when

Fig. 15 Force analysis of the box girder
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Fig. 16 Relative errors of the LHS、CBS、IBS methods for the box
girder design
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these computer simulations are directly applied in RBDO. The
optimization problem is defined as below:

find d1; d2; d3; d4; d5; d6ð Þ
min : total weight

s:t: prob g j Xð Þ < 1:059
� �

≥Φ βtð Þ j ¼ 1;⋯; 8

X ieN di; 0:2
2

� �
; βt

i ¼ 3:0
16:00≤di≤22:00 i ¼ 1;⋯; 6

ð28Þ

The comparison results for the box girder design are shown
in Table 5. The number of function calls in analytical method
is 4,736, which is not efficient. Though the CBS method uses
a smaller number of function calls than LHS, it cannot yield an
accurate result and its relative error is 0.1589 % as seen in
Fig. 16. In the proposed IBS method, the number of function
calls is 193, which means the computational cost is reduced
significantly and IBS is very efficient. The optimal design
obtained from IBS is almost identical with the result of the
analytical method; the relative error is 0.0007 %. Therefore,
IBS is also very accurate.

5 Conclusion

In this paper, the importance boundary sampling method is
proposed to improve the efficiency of Kriging-model-based
RBDO method. Rather than fitting all the parts of the limit
state constraint boundaries precisely within the whole design
region, the proposed IBSmethodmainly selects sample points
on these important constraint boundary parts. In the RBDO
process, two importance coefficients are proposed to identify
the critical parts of the boundaries. Also, in IBS, the sampling
and optimization processes are conducted alternatively so that
the optimization results can be used in the following sampling
process to make the selection of the sample points more
appropriate.

Several examples are tested to verify the accuracy and
efficiency of the proposed method. Through the examples it
can be seen that the proposed IBS method is very efficient. By
using the importance coefficients, the IBS identifies the crit-
ical parts of the limit state constraint boundaries, and then
chooses sample points mainly on these important boundary
parts. Most of sample points could give useful information to
the optimization process, and the Kriging models in the

vicinity of the optimal design are well fitted. The results from
IBS are almost identical with that of analytical method, which
verifies that the proposed IBS is very accurate. Also, the IBS
method uses the smallest number of constraint function calls,
which confirms that the computational cost is reduced signif-
icantly and the proposed IBS method is very efficient.

However, there are still many challenges need to be over-
come to improve the accuracy of kriging model. For example,
selecting a small number of initial sample points can lead to
loss of information in certain regions of the design space,
while selecting a large number of initial sample points might
lead tomore computational times. The initial samples will also
decide whether the global solution can be found always. So it
is a significant research to find an efficient method for decid-
ing the initial raining set size. In the future work, we will study
this issue to make the IBS method more applicable to RBDO
problems.
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