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Abstract Robust design optimization (RDO) is a popular
framework for addressing uncertainties in the design of
engineering systems by considering different statistical
measures, typically the mean and standard deviation of
the system response. RDO can lead to a wide range of
different candidate designs, establishing a different com-
promise between these competing objectives. This work
introduces a new robustness measure, termed probability
of dominance, for assessing the appropriateness of each
candidate design. This measure is defined as the likeli-
hood that a particular design will outperform the rival
designs within a candidate set. Furthermore, a multi-
stage implementation is introduced to facilitate increased
versatility/confidence in the decision-making process by
considering the comparison among smaller subsets within
the initial larger set of candidate designs. For enhancing
the robustness in these comparisons the impact of predic-
tion errors, introduced to address potential differences
between the real (i.e. as built) system and the numerical
model adopted for it, is also addressed. This extends to
proper modeling of the influence of the prediction error,
including selection of its probability model, as well as
evaluation of its impact on the probability of dominance
and on the RDO formulation itself. Two illustrative ex-
amples are presented, the first considering the design of a
tuned mass damper (TMD) for vibration mitigation of
harmonic excitations and the second a topology

optimization problem for minimum compliance.
Extensive comparisons are presented in these two exam-
ples and the discussions demonstrate the power of the
proposed approach for assessing the designs’ robustness.

Keywords Robust design optimization . Probability of
dominance . Uncertainty quantification .Model prediction
error . Probabilistic design

Nomenclature
γ Parameter associated with definition of predic-

tion error variance
Δ Set of candidate designs
ε Log of error when it is incorporated through

a multiplicative formulation
Θ Uncertain Space
θ uncertain model parameters
{θ j} Set of samples from p(θ)
λ Decay rate for exponential correlation function
μ(x) Mean for system model
μs(x) Mean for real system
[μo σο] Utopia point (minimum mean and standard

deviation) for system model
[μs σs] Utopia point (minimum mean and standard

deviation) for real system
vl Weight for defining norm for exponential

correlation
ρik Correlation function for the prediction errors

associated with designs xi and xk
Σil

d Covariance matrix for the vector composed
of the error for ith design subtracting the errors
from each of the designs in Sil

d

σ(x) Standard deviation for system model
σe Standard deviation for prediction error
σs(x) Standard deviation for real system
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d Dimension of subsets of Δ under consideration
Dd(xi) Degree of dominance of design xi against

the d-dimensional subsets
Dt Threshold for acceptable dominance level
Dhil

d(θ) Vector of the different between performance
for ith design and the performance of the designs
in Sil

d

Dlil
d(θ) Version of Dhil

d(θ) utilizing log of performance
Ε[.] Expectation for random variable
e Prediction error
FG[.] Gaussian cumulative distribution function
f(x) Objective function
h(x,θ) Performance function for system model
hs(x) Performance function for real model
I(Ai,θ) Indicator function for dominance of xi against set

A for given θ
.i Subscript i. Characteristic associated with the ith

design
Mil

d Margin of dominance for design xi within set Sil
d

m Number of designs in Δ
N Number of samples for stochastic simulation
nθ Dimension of θ
nx Dimension of x
PD(xi|A) Probability of dominance of design xi over set A
PD(xi|A,θ) Probability of dominance of design xi over

set A given the system configuration θePD xijAð Þ Probability of dominance of design xi over set A
calculated through Monte Carlo simulation

p(θ) Probability density function for θ
p(e) Probability model for prediction error
Sd Set of all possible d-dimensional subsets of Δ
Si
d Set of d-dimensional subsets of Δ including

design xi
Sil
d l th subset of d-dimensional subsets of Δ

including design xi
w Weight used in the RDO formulation
X Admissible design space
x Ordered of candidate designs based

on probability of dominance PD(xi|Δ)
x Design variable vector
xk
dli k th design within the Sil

d set

1 Introduction

In engineering design, the performance predictions for the
system under consideration may involve some level of uncer-
tainty, stemming from the incomplete knowledge about the
system itself and its excitation (Schuëller and Jensen 2008;
Beck and Taflanidis 2013). Explicitly accounting for these
uncertainties is exceptionally important for providing optimal
configurations that exhibit a robust performance (Doltsinis

2004; Beck and Santana Gomes 2012). A probability logic
approach provides a rational and consistent framework for
performing this task (Jaynes 2003), employing probability
models to characterize the relative plausibility of the different
model parameter values. Within this setting, various formula-
tions have been proposed for addressing the design of engi-
neering systems under uncertainty (Schuëller and Jensen
2008; Doltsinis 2004; Beck and Santana Gomes 2012;
Beyer and Sendhoff 2007), one of the more popular ones
being Robust Design Optimization (RDO).

Typically, RDO is formulated (Beyer and Sendhoff 2007;
Lee and Park 2001) by considering as objectives the mean
value as well as the standard deviation of the performance
(although different statistical measures can be also used),
either within a multi-objective setting (Doltsinis 2004;
Marler and Arora 2004) or, and perhaps more commonly, by
formulating a single objective through the introduction of an
appropriate weight between these two competing objectives
(Dunning and Kim 2013; Lee and Park 2001). Different
design can then be attained through this problem formulation
either by varying the latter weight or by approaching the initial
problem as an explicit multi-objective optimization, establish-
ing a different compromise between the mean and standard
deviation of the performance. Viewing this as a multi-
objective optimization problem, these designs will lay on the
region of the objective space defined as the Pareto frontier
(Sawaragi et al. 1985). Frequently, this approach will provide
designs that are fundamentally different in the design space,
but exhibit similar robust traits (i.e. values for mean and
variance). Selecting the most suitable design among the can-
didate set is then a challenging task, as it requires either some
measure of appropriateness, or that a design stands out from
the rest because of its superior performance (mean value) and
robustness (standard deviation), which is, though, not the
typical case as the two competing objectives usually conflict
with one another.

The final design selection among the set of Pareto-optimal
points, can be then viewed as the responsibility of a
Decision Maker (DM) (Miettinen 1999). This selection pro-
cess will typically involve the integration of additional criteria
that were not part of the initial objective function formulation
incorporating the DM preferences and experience. Normally,
the DM preferences are explicitly quantified through adoption
of a utility (or valued) function (Keeney and Raiffa 1993)
which might entail some a posteriori modification of the
problem objective/constraints. An interactive implementation
can be also considered, with the DM providing explicit feed-
back during the solution phase (Reeves and Gonzalez 1989),
which is though not the typical case in RDO applications,
where the selection of a final design is executed after the
Pareto-optimal designs have been generated (employing any
desired method). A common preference function in this case
(i.e., for RDO) for selecting the final design, especially when
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no other utility function is available and the DM cannot
impose additional preferences a posteriori, is to use some
metric between the Pareto-optimal points and a point of inter-
est (Rangavajhala 2007), normally the utopia point, corre-
sponding to the minimummean and standard deviation treated
as single-objectives for each instance (Beyer and Sendhoff
2007). This requires the definition of a proper norm (to quan-
tify distance), and establishing a proper weighting of the two
objectives for this purpose is not always straightforward.

This work introduces a new preferences measure, termed
probability of dominance, and a multi-stage evaluation ap-
proach to aid the DM in assessing the appropriateness of
different candidate designs within an RDO setting. This is
intended to serve as an additional tool for the designer towards
the selection of a preferred robust design, complementing any
other preference and utility functions that may exist for the
specific application of interest. The probability of dominance
compares simultaneously the entire set of candidate designs
and examines the favorability of each design for all different
model parameter values. It is defined as the likelihood that the
performance of a design will outperform all other designs in
the set. This likelihood is quantified by considering the prob-
abilistic description of the system uncertainties, explicitly
incorporating all information available to the designer for
comparing the available designs. A multi-stage implementa-
tion is also proposed that facilitates increased versatility in the
decision-making process (and ultimately robustness) by con-
sidering the comparison among smaller subsets within the
initial larger set of candidate designs. It should be stressed
that this new preference measure requires a probabilistic def-
inition of the uncertainties influencing the performance of the
different designs under consideration, i.e. it is not devised for
design selection of just any multi-objective problem.

For enhancing the robustness in the definition of the pref-
erence measure, the impact of prediction errors is introduced
to address potential differences between the real (i.e. as built)
system and the model adopted for it and quantify the incom-
plete information for the latter model (Weber 1987; Beck and
Taflanidis 2013). Since inclusion of this error in the analysis
has received little attention within the robust optimization
literature, different aspects are examined in detail. This ex-
tends to proper modeling of the prediction error influence,
including selection of a probability model for it, as well as its
impact on the probability of dominance and on the RDO
formulation. Two different error models are considered, cor-
responding to either additive or multiplicative influence of the
prediction error, and comparisons are drawn between them.
The correlation between the errors for different design config-
urations is also explored.

In the next section, the RDO formulation is reviewed, while
in Section 3 the probability of dominance and the multi-stage
formulation are introduced. Section 4 discusses the prediction
error and then in Section 5 two illustrative examples are

presented. The first one considers the design of a tuned mass
damper (TMD) for vibration mitigation under harmonic exci-
tations and the second one is a topology optimization problem
of minimum compliance. Extensive comparisons are
discussed in these two examples, with some emphasis on the
influence of the prediction error on the robustness traits of the
obtained solutions.

2 RDO problem formulation

Consider a system that involves some controllable param-
eters defined henceforth as design variables, and let x
¼ x1 x2… xnx½ � ∈X⊂ℝ nx be the vector of design variables
where X denotes the bounded admissible design space.
Moreover, let θ ¼ θ1 θ2…θnθ½ � ∈Θ⊂ℝnθ be the vector of
uncertain model parameters (random variables) for the
system model, where Θ denotes the set of their possible
values defining the uncertain space. Α Probability Density
Function (PDF) p(θ) - which incorporates our available
knowledge about the system into its assumed numerical
model - is assigned to these uncertain parameters. In addi-
tion, let h x;θð Þ : ℝnx� nθ→ℝ be the scalar performance
function characterizing the favorability of the system’s
behavior for the design selection x and model configura-
tion θ. The simplest case for h(.) is to correspond directly
to the model response; nevertheless, in many engineering
applications other utility functions can be chosen to char-
acterize the system performance. Initially we will assume
that the numerical model provides accurate predictions for
the performance of the real system. The existence of errors
in these predictions will be addressed later, in Section 4.

Under the influence of the uncertain parameters in θ,
h(x,θ) is itself a random variable. For RDO, two different
statistical measures of h(x,θ) are typically used to characterize
and address the impact of uncertainty in the description of the
system-model (Doltsinis 2004). The first one is the mean
value for h(x,θ), given by

μ xð Þ ¼ E h x;θð Þ½ � ¼
Z

Θ
h x;θð Þp θð Þdθ; ð1Þ

where E[.] stands for expected value, in this case under
probability model p(θ), and the second one the standard
deviation of h(x,θ), given by

σ xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E h x;θð Þ2
h i

−E h x;θð Þ½ �2
r

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ

Θ
h x;θð Þ2p θð Þdθ−μ xð Þ2

s
: ð2Þ
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Furthermore, σ2(x) corresponds to the variance of h(x,θ).
RDO establishes a compromise between the minimization

of the mean value of the performance and the minimization of
the spread of this performance around this mean value. The
latter directly influences the robustness characteristics of the
approach by implicitly providing a measure of response var-
iability in the RDO formulation. These two statistical mea-
sures, define the feasible objective space, F xð Þ :¼
μ xð Þ σ xð Þ½ � ∈F⊂ℝ2 , and most often conflict with each other;
therefore, the RDO problem can be viewed as a multi-
objective minimization of μ(x), and σ(x). A key feature of
the objective space F(x) is the utopia point, corresponding to
the minimum of μ(x) and σ(x), when each of them is viewed
as a separate objective. This point corresponds to the best
solution in F, but in general is unattainable. The compromise
between μ(x), and σ(x) is typically expressed through the
Pareto front, composed (Marler and Arora 2004) of the de-
signs for which no other feasible design exists that will simul-
taneously improve both competing objectives (in other words,
it cannot make one better without making the other worse).

Several different methods have been proposed for
formulating/solving the multi-objective RDO problem
(Marler and Arora 2004; Kalyanmoy and Gupta 2006). A
popular approach for obtaining an approximation to the
Pareto front is to employ the weighed sum as objective func-
tion, in which a single objective is formed by employing a
weighted liner combination of μ(x), and σ(x). This is the
approach adopted in this study, leading to the optimization
problem

x� ¼ arg min
x∈X

f xð Þ; ð3Þ

where any constraints are incorporated in the definition of the
admissible design space X and the objective function defined
as

f xð Þ ¼ 1−wð Þμ xð Þ
μn

þ w
σ xð Þ
σn

; ð4Þ

where w∈[0,1] is the weight parameter and μn, σn are nor-
malization constants for the mean and standard deviation
respectively. Commonly, μn and σn are selected as the mini-
mum mean and standard deviation (Lee and Park 2001),
denoted by μο and σο that can be obtained by solving (4)
when considering w=0 and w=1 respectively. Τhe point [μο
σο] is in fact the utopia point (Beyer and Sendhoff 2007).
Moreover, the solution to the probabilistic integrals in Eqs. (1)
and (2) is challenging to obtain, since often a close form solution
does not exist. Thus, different approaches have been proposed
for performing the optimization in Eq. (3), mainly differentiated
by the methodologies adopted for approximating the afore-
mentioned integrals. The references (Beyer and Sendhoff

2007; Doltsinis 2004) offer a detailed review of these methods
in the context of RDO.

Independent of the optimization approach adopted, solu-
tion of the multi-objective RDO problem will lead to a set of
optimum designs Δ={xk

*, k=1,…,m} composed of m differ-
ent designs with corresponding objectives [μ(xk

*) σ(xk
*)].

Selection of a final design among this set requires the defini-
tion of an appropriate utility and preference functions to
quantify appropriateness of each considered design. As
discussed in the introduction, a common approach within
RDO is to use as such preference function the distance in
the objective space of each Pareto optimal point from the
utopia point, which measures the departure of the established
resultant probabilistic performance [μ(xk

*) σ(xk
*)] from the

best (but unachievable) performance [μο σο] using some ap-
propriate weighted norm to calculate this distance. In this
work a new probabilistic measure is introduced as a potential
preference function that rather than looking at such resultant
probabilistic measures or having to select an ad-hoc normal-
ization, compares designs directly with one another with
respect to the performance measure h(x,θ) over the uncertain
parameter space.

3 Probability of dominance

Assume that a finite set of candidate designsΔ={xk, k=1,…,
m} is provided, where each design is accompanied by their
associated performance h(xk,θ), and model parameters char-
acterized by probability model p(θ). The framework
discussed here ultimately provides a preference measure/
index for assessing the appropriateness of each design, to aid
the decision maker in the selection of a final design among the
set members. Note that the approach is completely decoupled
from the process of obtaining the setΔ; it simply assumes that
some designs have been provided by the decision maker. This
may correspond to a finite number of Pareto-optimal solutions
for the problem under consideration, or to any desired set of
candidate designs. For this purpose the explicit notation * to
denote optimal design for x is not used henceforth.

3.1 Formulation for the entire set of candidate designs

The foundation of the method is the introduction of new
preference measure, termed probability of dominance. This
measure is defined as the likelihood that a candidate design xi
outperforms its rival designs within the set Δ under probabil-
ity model p(θ) for the uncertain model parameters. Based on
the total probability theorem this probability of dominance PD
is given by

PD xijΔð Þ ¼
Z

Θ
PD xijΔ;θð Þp θð Þdθ; ð5Þ
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where PD(xi|Δ,θ) stands for the probability of dominance
given the model configurationθ and is equal to the probability
that the performance for the ith designwill outperform all other
designs. Dominance is, thus, probabilistically attained when a
particular design xi has a better performance h(x,θ) relative to
other designs under a specific realization of the uncertain
parameters θ.

Assuming that a smaller performance is preferable, one has

PD xijΔ;θð Þ ¼ P
\

k¼1; k≠i

m

h xi;θð Þ < h xk ;θð Þð Þ
" #

: ð6Þ

In the case that no prediction error is assumed for the model
(the case with prediction error will be addressed later) this is
also given by

P
\

k¼1; k≠i

m

h xi;θð Þ < h xk ;θð Þð Þ
" #

¼ P h xi;θð Þ ¼ min
k¼1;…;m

h xk ;θð Þð Þ
� �

ð7Þ

and it finally corresponds to the indicator function

PD xijΔ;θð Þ ¼ I Δi;θð Þ

¼ 1 if h xi;θð Þ ¼ min
k¼1;…;m

h xk ;θð Þð Þ
0 otherwise;

(
ð8Þ

with the notation I(Δi,θ) used to symbolize the indicator
function for the dominance of design i among the designs in
set Δ.

The high-dimensional probability integral in (5) can be
readily calculated through stochastic (Monte Carlo) simula-
tion, leading to

ePD xijΔð Þ ¼ 1

N

X
j¼1

N

PD xijΔ;θ j
� �

; ð9Þ

where the N samples for θ, with θ j denoting the j th sample,
are simulated from p(θ). Since we are ultimately interested in
the dominant design, corresponding to a high probability, it is
anticipated that this approach will yield satisfactorily results
(adequate accuracy) without significant computational burden
(necessity to select high values for N). The accuracy of the
estimation can be assessed through the coefficient of variation
of the estimator whereas variance reduction approaches, such
as importance sampling, can be used if that accuracy needs to
be improved (Robert and Casella 2004).

The probability of dominance ultimately corresponds to a
weighted measure of the hyper-volume of the region over Θ
where a particular design has a performance that is the best

among the candidate designs, with the weight provided by the
relative likelihood p(θ) of the model parameters θ within Θ.
This probability PD(xi|Δ) can be then utilized as a preference
index for assessing the appropriateness of each design. If no
other indicators are used in the decision making process then
the final design may be chosen as the dominant design, i.e. the
one corresponding to the maximum PD(xi|Δ)

xD ¼ argmax
i

PD xijΔð Þ: ð10Þ

An advantage of this measure is that it is independent of the
design process, which allows its application to any arbitrary
group of designs. However, a caveat of the approach is the fact
that the result depends on the exact designs contained in the
setΔ, with the final outcome potentially changing even when
non-dominant designs are introduced into (or removed from)
the set of candidate designs. This can happen if the new design
only dominates (that is, provides better performance) in re-
gions of the uncertain space that the previous best design used
to dominate, thus detracting from the favorability of the pre-
viously dominant design only (and not of any other designs).
This may ultimately switch the preference, without this new
design emerging as the new dominant.

3.2 Multi-stage formulation

To circumvent the challenge identified at the end of the
previous section, and provide enhanced versatility and robust-
ness in the choice of a most appropriate design, a multi-stage
formulation is developed. Rather than looking at the domi-
nance over the entire set Δ, the dominance within d-dimen-
sional subsets of Δ containing d total designs is considered
(simplest choice for d is 2). A design is then termed as d-
dominant if it is the dominant one within the nd different d-
dimensional subsets that include it. To formalize these ideas
we will denote Sd as the set of d-dimensional subsets of d, Si

d

as the set of d-dimensional subsets including design xi and
will use subscript l to distinguish between the different ele-
ments of these sets (so Sl

d denotes the l th subset ofΔ contain-
ing d designs). For instance, if Δ={A, B, C, D}, then
SC
2 ={[C A],[C B],[C D]} (thee candidate sets including two
designs that have C as a member), SC

3 ={[C A B],[C A D]}
(two candidate sets including three designs that have C as a
member) whereas S3={[C A B],[C A D],[D A B]} (three
candidate sets including three total designs). The probability
of dominance over subset Sil

d is then

PD xljSdil
� � ¼ Z

Θ
PD xijSdil;θ

� �
p θð Þdθ

¼
Z

Θ
P

\
k¼1;k≠i

d

h xi;θð Þ < h xdlik ;θ
� �� �" #

p θð Þdθ;

ð11Þ
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where xk
dli denotes the k th design within the Sil

d set. This
probability can be evaluated though stochastic simulation as
in Eq. (9), employing Eq. (8) to describe the probability
function within the integrand. The transformed equations are

ePD xijSdil
� � ¼ 1

N

X
j¼1

N

PD xijSdil;θ j
� �

; ð12Þ

with

PD xijSdil;θ
� � ¼ I Sdil;θ

� �
;

¼ 1 if h xi;θð Þ ¼ min
k¼1;…;d

h xdlik ;θ
� �� �

0 otherwise:

(
ð13Þ

The design xi is defined to be dominant within the set Sil
d if it

has the largest probability of dominance within the set and it is
considered to be d-dominant if it dominates each subset within
Si
d. The overall preferred design could be taken as the one that is
dominant within the lowest possible d-dimensional subsets
considered. This does not necessarily mean that the chosen
design will be dominant for higher values of d-dimensional
subsets, but it exhibits the most robust dominance characteris-
tics for the setΔ. For example, assume that a candidate design
exhibits d=2 dimensional dominance, then if some other de-
sign is removed from Δ, the candidate design will still enjoy
the dominance property, whereas if an additional design is
added, then if the older dominant design outperforms the newly
added, it will also preserve its d=2 dimensional dominance.
Note that for certain values of d, it can be the case that no
design emerges as dominant. For the example discussed in the
first paragraph of this section, this will happen for the two-
dimensional (d=2) comparisons if A dominates B andD, but is
dominated byC, whereasC is dominated at least by B. If on the
other hand A dominates all B, C, and D (always within the
context of individual comparisons) then A is the dominant
design for the d=2 dimensional subsets.

3.3 Quantification of preference within multi-stage
implementation

Beyond just the simple notion of absolute dominance
discussed above, i.e. which one is the best design, additional
information that could be useful to guide the selection process
is the relative dominance, i.e. how much better is one design
over the next best alternative? To quantify a preference index
associated with the relative dominance of a design, we define:
(a) the margin of dominance between a particular design xi
and the rest of the designs within set Sil

d as

Md
il ¼ PD xijSdil

� �
− max

k¼1;…;d;k≠i
PD xk jSdil

� �
; ð14Þ

and (b) the degree of dominance of the design over the d-
dimensional subsets as

Dd xið Þ ¼ min
l¼1;…;nd

Md
il: ð15Þ

The margin of dominance corresponds to the difference
between the probability of dominance for xi compared to the
design among the ones remaining in Sil

d that has the highest
probability of dominance. Positive values for this margin cor-
respond to dominance of xi in subset Sil

d. The degree of dom-
inance corresponds to the minimum of the margin of domi-
nance for xi among all subsets that include it. A positive value
for it corresponds to d-dimensional dominance for xi.

A robust preference towards a design can be then evaluated
based on its degree of dominance by adopting a minimum
threshold Dt ≥ 0; The preferred design will be the one satisfy-
ing Dd(x) ≥Dt, if one exists. If no design satisfies that condi-
tion, then, as discussed above, a larger value of d needs to be
considered. More generally the degree of dominance can be
used to provide guidance in the selection process; this is
established by calculating Dd(x) for different values of d and
using this information to evaluate the different design choices.
In this case, the final selection is made by the designer, with
Dd(x) serving as a tool aiding this decision. It can be the case
that the designer will select a designwith negative valueDd(x)
as long as (i) that value is close to zero (the opposite means
that the design is significantly dominated and thus should
probably be avoided) and (ii) the design has some other desired
attributes (that ultimately guide the preference towards it).

Note that for all the computations required to identify the
dominant design [relying on stochastic simulation as described
by Eq. (12)] the same sample set θj can be used. As such, the
performance function evaluations (which could be computa-
tionally intensive for complex models) used in the estimation
of Eq. (12) can be the same ones used for Eq. (9), and the former
evaluation merely needs proper comparison of these perfor-
mance evaluations (not re-computation of the performance).
Furthermore, to reduce the overall burden the results from the
comparison within the setΔ can be used to guide the priority of
comparisons; designs for which PD(xi|Δ) is small are not ex-
pected to dominate within any considered d-dimensional set and
can be given lower priority in the comparisons. Considering
these observations, the computational framework for identifying
the dominant design within set Δ={xi, i=1,…, m} (i.e. the
design with lowest d-dimensional dominance) is the following:

Step 1 Generate a set of N samples {θ j} from p(θ) and
evaluate the performance for each one to obtain the
set {h(xi,θ

j); i=1,…,m j=1,…,N}, if h(xi,θ
j) is not

readily available from the optimization stage.
Step 2 Calculate the probability of dominance for entire set

Δ for each design i=1,…,m by Eq. (12) utilizing the
performance function evaluations from Step 1. Re-
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order the design based on their dominance PD(xi|Δ)
to obtain set {xc , c=1,…,m} and ignore any designs
as deemed appropriate.

Step 3 Set d=2 and start the comparison form the smallest
possible subset class.

Step 4 Set c=1 and start by considering the most dominant
design based on PD(xi|Δ).

Step 5 For all subsets in Sc
d including xc estimate the prob-

ability of dominance for all designs included in it

PD xk jSdcl
� ��

; l ¼ 1;…; nd ; k ¼ 1; ::; dg using ap-
proximation in Eq. (12), calculated through the readily
available performance function evaluations form Step
1. For the first subset comparisons (when d =2) this
corresponds to comparison of a pair of designs and the
probability of dominances for the compared designs
are complimentary.

Step 6 Calculate the margin of dominance with Eq. (14) and
the degree of dominance with Eq. (15). If the latter is
greater than zero (or the chosen thresholdDt) then xc is
the overall dominant design and process can stop.
Else set c=c+1 and go back to Step 5, understanding

that a lot of the necessary probabilitiesPD x k jSdcþ1ð Þl
� 	

have been already computed (when considering the
smaller valued c’s). Perform Step 5 for the new xc
only if it could emerge as a dominant one, meaning if
it has not yet been dominated by any of the previously
considered designs.

Step 7 If all designs have been examined i.e. c=m, and no
dominant design has been identified for the d-dimen-
sional subsets then set d=d+1 and go back to Step 4.

Through this approach, the design exhibiting the lowest
possible d-dimensional dominance is identified. As will be
illustrated later, this frequently (but not necessarily always)
corresponds to 2-dimensional dominance and to a design
having a large associated value of PD(xi|Δ). This design is
guaranteed to outperform all other designs within the consid-
ered class of candidate designs. If the more general approach
is adopted, i.e. the degree of dominance is evaluated for
different values of d rather than the dominant design identi-
fied, the same computational approach is utilized with the
only difference that the stopping criteria in Steps 6 and 7 for
the identification process are ignored; rather, the evaluation is
repeated for all desired values of d and all designs. The entire
process will be illustrated in the examples considered later.

4 Impact of prediction error on the probability
of dominance

The previous analysis assumed no error between the response
of the actual system, denoted hs(x) henceforth, and that of its

assumed model, h(x,θ) [in other words, it was taken that
hs(x)=h(x,θ)]. The notation hs(x) is used to stress the fact that
the real system is dependent on the exact design selection x,
and its performance is independent of the numerical model
assumed and thus of θ (although θ is obviously related to the
system properties). This assumption, i.e. hs(x)=h(x,θ), is the
reason why the probability PD (xi|Sil

d,θ) ultimately corre-
sponds to the indicator function I(Sil

d,θ) in the analysis
discussed in Section 3.

In any engineering application, though, the adopted model
cannot describe exactly the behavior of the actual system
(Beck 2010); a prediction error always exist and its incorpo-
ration in probabilistic analysis can have an impact on the
design choices as has been shown recently in (Taflanidis and
Beck 2010). This error, e, quantifies the difference between
hs(x) and h(x,θ) and since it is unknown, it can be probabi-
listically described by assigning a probability density function
p(e) for it, treating it like any other uncertain model parameter.
This prediction error can be viewed as describing (a) un-
modeled characteristics of the system model or (b) un-
modeled uncertainties for θ (Beck 2010; Beck and
Taflanidis 2013). In this section, the influence of this error
on the probability of dominance will be investigated to
enhance the robustness in the selection process of the final
design. This will extend to the selection of appropriate prob-
ability models for this error, a task that has received limited
attention for engineering design application. The two most
commonmodels will be considered for the impact of the error,
these are either additive or multiplicative influence on h(x,θ).
Furthermore, the assumption that e is independent ofθwill be
utilized (this ultimately means independence between p(θ) –
or equivalently h(x,θ) – and e). The latter assumption intro-
duces the largest amount of uncertainty in the problem formu-
lation (Taflanidis and Beck 2010; Jaynes 2003) and is the
reason adopted here (establishing a greater robustness), as it
assumes the least amount of information imposed upon the
problem description.

4.1 Correlation of errors between designs

Before moving forward, the correlation between errors for
different design selections needs to be addressed, as this
correlation will be important in assessing the probability
PD(xi|Sil

d,θ). This correlation is expected to depend on the
distance between xi and xk; if the two designs are very similar,
then any prediction errors for the system numerical model are
expected to be the same for both of them since the system
models examined (under design configurations xi and xk) are
similar. Note that assuming no correlation introduces the
largest amount of uncertainty in the problem formulation,
but in this case this is not a reasonable choice. In the examples
considered later, an exponential function will be assumed for
the correlation coefficient ρik between designs i and k given by

Measures for assessing appropriateness of RDO solutions 819



ρik ¼ exp −λ






xi−xk





2v� 	

¼ exp −λ
X
l¼1

nx

v2l xil−xjl
� �2" #

; ð16Þ

where ||xi−xk ||v stands for the weighted Euclidean norm with
vl weight for each component of vector x, while λ is the
assumed decay rate of the exponential function. Exact selec-
tion of these terms will be discussed in the examples later. It
should be stressed that, even though the use of exponential
type of functions to describe correlation is popular in engi-
neering applications (Lophaven et al. 2002), this choice is
ultimately ad-hoc, especially due to the dependence on the
chosen norm and decay rate λ, and if more information is
available for the prediction error and its relationship to the
design configuration, some different correlation structure can
be adopted (Papadimitriou and Lombaert 2012) (note that this
type of information is, though, not available in most practical
engineering problems).

For the analysis in this section, a correlation coefficient ρik
between designs will be utilized, assumed to be defined by the
designer through any appropriate method chosen
(Papadimitriou and Lombaert 2012), whereas in the examples,
the impact of this correlation on the final design choice will be
examined using the correlation function in Eq. (16). Next, the
different modeling choices for the prediction error and their
impact on the probability of dominance are discussed.

4.2 Additive prediction error

The most commonly used assumption for the prediction error
is an additive influence [this agrees with the assumption
commonly used for Bayesian system identification applica-
tions (Beck and Taflanidis 2013)], leading to

hs xð Þ ¼ h x;θð Þ þ e: ð17Þ

The mean for the system model is updated as

μs xð Þ ¼ E hs xð Þ½ � ¼ E h x;θð Þ þ e½ � ¼ E h x;θð Þ½ � þ E e½ �
¼ E h x;θð Þ½ � ¼ μ xð Þ; ð18Þ

where E[e] is taken equal to zero in order to establish unbiased
predictions. Similarly, the variance is transformed to

σ2
s xð Þ ¼ E h2s xð Þ� �

−μ2
s xð Þ ¼ E h x;θð Þ þ eð Þ2

h i
−μ2 xð Þ

¼ E h x;θð Þ2
h i

þ 2E h x;θð Þ e½ � þ E e2
� �

−μ2 xð Þ

¼ E h x;θð Þ2
h i

−μ2 xð Þ
� 	

þ E e2
� �þ 2E h x;θð Þ½ �E e½ �

¼ σ2 xð Þ þ E e2
� � ¼ σ2 xð Þ þ σ2

e ;

ð19Þ

where σe
2 is the variance of the prediction error and for the

second to last equality the independence between e and h(x,θ)
was utilized. These equations show that to characterize the
statistics of interest, knowledge of only the mean and variance
of the error is necessary, while to establish unbiased predic-
tions the mean needs to be zero. This also agrees with model-
ing intuition: the error in Eq. (17) should be zero mean (the
opposite would indicate a consistent bias in the predictions of
the numerical model). Thus, the minimum additional infor-
mation needed to quantify the error statistically is its variance.
Based on this information, the probability model for p(e) is
chosen as Gaussian with zero mean and variance σe

2. This
Gaussian model is the probability model that maximizes the
entropy, or equivalently, it incorporates the largest amount of
uncertainty in the definition of p(e), assuming that only its
mean and variance are known (Jaynes 2003), and is the reason
why it is chosen.

Therefore, the only remaining question for the complete
description of p(e) is: how should its variance be defined?
Note that based on Eq. (17) the error in this case (and so its
variance) has same units as the performance function. Rather
than choosing the variance to be constant in the design space a
reasonable assumption is to take the error statistics to be
dependent upon the statistic of the system model. If the error
is assumed to represent un-modeled uncertainties then σe

2

should be set as a fraction of the variance of the system model

σ2
e ¼ γ2σ2 xð Þ; ð20Þ

where γ is a proportionality constant. Note that this constant
will typically have a small value since the error is expected to
be small, at least if the engineering model predictions are
expected to be close to the real system behavior. Through
Eq. (20) the error statistics are scaled based on the variability
observed for the system model and stemming from the uncer-
tainty in θ; if that variability is small then so will be the error,
showing that in fact the error does primarily address un-
modeled uncertainties. If, on the other hand, the error is taken
to represent also un-modeled characteristics of the system then
a more reasonable assumption is to select it proportional to the
second moment of the response, scaling the overall magnitude
of the response

σ2
e ¼ γ 2E h x;θð Þ2

h i
¼ γ 2σ2 xð Þ þ γ 2μ2 xð Þ: ð21Þ

The latter components in Eq. (21), i.e. γ2μ2(x), can be con-
sidered to address the un-modeled characteristics of the real
system, with the first component representing the un-modeled
uncertainties. Both these assumptions ultimately lead to an
error variance that is dependent upon the design configuration
σe
2=σe

2(x). Modeling assumption in Eq. (20) will be referred
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hereafter as variance proportional andmodeling assumption in
Eq. (21) as moment-proportional.

Once the error has been defined, the important question is
how to incorporate it in the analysis for the probability of
dominance? In other words, how is PD(xi |Sil

d,θ) modified by
considering the influence of the prediction error. In this case
PD (xi |Sil

d,θ) is expressed with respect to the real system
behavior

PD xijSdil;θ
� � ¼ P

\
k¼1;k≠i

d

hs xið Þ < hs xdli
k

� �� �


θ" #
ð22Þ

and utilizing Eq. (17) to introduce the impact of the prediction
error Eq. (22) is transformed to

P
\

k¼1; k≠i

d

hs xið Þ < hs xkð Þð Þ



θ" #

¼ P
\

k¼1;k≠i

d

h xi;θð Þ þ ei < h xk ;θð Þ þ ekð Þ
" #

; ð23Þ

where the superscript dli is omitted herein for notational
simplicity and a subscript is used for e to denote the design
configuration that each error term corresponds to. This then
leads to

P
\

k¼1;k≠i

d

h xi;θð Þ þ ei < h xk ;θð Þ þ ekð Þ
" #

¼ P
\

k¼1;k≠i

d

ei−ek < h xk ;θð Þ−h xi;θð Þ� �" #

¼ P

ei−e1
ei−e2
…

ei−ed

2664
3775≤

h x1;θð Þ−h xi;θð Þ
h x2;θð Þ−h xi;θð Þ

…
h xd ;θð Þ−h xi;θð Þ

2664
3775

2664
3775

ð24Þ;

where the different inequalities in the latter expression are
examined component-wise.

Considering now the vector

ei−e1
ei−e2
…

ei−ed

2664
3775 ð25Þ

and based on the assumed probability model for each of the
error terms, it will follow (Johnson and Wichern 2002) a
Gaussian distribution with zero mean and covariance matrix
with elements (the kth, and qth entry is presented below)

E ei−ekð Þ ei−eq
� �� � ¼ E ei

2
� �

−E ei eq
� �

−E ek ei½ � þ E ekeq
� �

¼ σ2
ei−σeiσeqρiq−σeiσekρkiþσek σeqρkq ;

ð26Þ

where a subscript is used to denote the relationship of the
error’s standard deviation to the design configuration since
such a relationship has been introduced based on Eqs. (20) or
(21). For the diagonal elements of the covariance matrix this
relationship simplifies to

E ei−ekð Þ2
h i

¼ σ2
ei þ σ2

ek −2σeiσekρik : ð27Þ

Since the probability model for the error vector in Eq. (25)
is known, the probability in Eq. (24) corresponds to the
associated cumulative distribution function (CDF). This even-
tually leads to

PD xijS d
il ;θ

� � ¼ FG Dhdil θð Þ; 0;Σd
il

� � ð28Þ

and probability of dominance given by

PD xijS d
il

� � ¼ Z
Θ
FG Dhdil θð Þ; 0;Σd

il

� �
p θð Þdθ; ð29Þ

where FG[Dhil
d (θ),0,Σil

d] stands for the CDF of the multivar-
iate Gaussian distribution with zero mean, and covariance
matrix Σil

d with elements given by Eq. (26) obtained by
comparing the error for the i th design to the error of each other
element of Sil

d. This CDF is evaluated at the vector of differ-
ences between the performances of each of these designs to
the performance of the i th design (recall this vector does not
include the i th design), given by

Dhdil θð Þ ¼
h xdli1 ;θ
� �� h xi;θð Þ
h xdli2 ;θ
� �

−h xi;θð Þ
…

h xdlid ;θ
� �

−h xi;θð Þ

2664
3775: ð30Þ

The introduction of the prediction error leads to modifica-
tion of the initial indicator function, which was imposing a
binary distinction for the system performance (either domi-
nates or not), to a preference function. This function is
expressed as the likelihood of dominance based on the differ-
ence between the performance of the design of interest and the
performance of the other designs under consideration given by
Eq. (30), as well as the statistics of the prediction error, intro-
duced through the covariancematrixΣil

d. Note that this ultimately
corresponds to analytical integration over the prediction error
on the initial probabilistic integral of Eq. (22). Figure 1 illus-
trates this concept for a two-dimensional example (comparison
of two designs). It is evident that increasing the prediction error
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variance (equivalent in this case to increasing β) provides a
smoother transition between the two extreme cases, as the
amount of uncertainty in the system description increases,
reducing the confidence in assessing the real-system dominance
when knowing the dominance characteristics for the model.

Computationally, the probability of dominance with the
prediction error can be still evaluated by Monte Carlo simu-
lation as in Eq. (12) substituting PD (xi |Sil

d,θ j) with
FG[Dhil

d (θ j),0,Σil
d]. The latter multivariate CDF can be esti-

mated by any standard numerical approach. In the example
later, the highly efficient algorithm proposed in (Genz 1992) is
adopted. For assessing the dominance over the entire set, the
approach is same as above and simply needs to utilize Δ
instead of Sil

d.

4.3 Multiplicative prediction error

Modeling prediction errors through a multiplicative as-
sumption is also common in the engineering literature
(Taflanidis et al. 2013; Porter et al. 2007), especially for
performance function that must take strictly positive
values. The relationship between system and model per-
formance in this case is

hs xð Þ ¼ h x;θð Þ⋅e; ð31Þ

with e>0 corresponding to a dimensionless quantity. This
modeling assumption for the prediction error addresses both
un-modeled uncertainties and un-modeled characteristics in
the numerical model since it directly scales the entire perfor-
mance function (the option of addressing only un-model un-
certainties does not exist here). The mean and variance for the
real system, respectively, are

μs xð Þ ¼ E hs xð Þ½ � ¼ E h x;θð Þ⋅e½ � ¼ E h x;θð Þ½ �⋅E e½ �
¼ E h x;θð Þ½ � ¼ μ xð Þ; ð32Þ

σ2s xð Þ ¼ E h2s xð Þ� �
−μ2

s xð Þ ¼ E h x;θð Þ eð Þ2
h i

−μ2 xð Þ

¼ E h x;θð Þ2
h i

E e2
� �

−μ2 xð Þ¼ σ2 xð Þ þ E h x;θð Þ2
h i

E e2
� �

−1
� �

¼ σ2 xð Þ þ E h x;θð Þ2
h i

σ2
e ; ð33Þ

where E [e] is taken equal to one in order to establish
unbiased predictions and the independence between e
and θ was used in the third equality in both relation-
ships above. Similarly to the case of additive prediction
error, only the mean and variance of the error are
necessary to determine the statistics of interest for the
real system behavior. To establish unbiased predictions
the mean of the error needs to be one. Since in this
case the error e is dimensionless and directly scales the
model performance, its variance should be independent
of the characteristics of the model and so it is assumed
to be σe

2 = γ2, with γ having typically a small value
(similar justification as for additive error). Note that
for the same value of γ there is an equivalence for
the statistics of the real-system response between the
multiplicative error and the additive error with
moment-proportional variance modeled through Eq.
(21). This is also consistent with the fact that both of
these cases address both (i) un-modeled uncertainties
and (ii) un-modeled system characteristics.

Furthermore, taking the log of Eq. (31) we have

log hs xð Þð Þ ¼ log h x;θð Þð Þ þ log eð Þ; ð34Þ

which means then that the log(e) has an additive influ-
ence on the log of the performance. Based on this ob-
servation the common assumption for the multiplicative
prediction error probability model is a lognormal distri-
bution. This also agrees with the most appropriate model
based on the maximum entropy principle if the available
knowledge is assumed to be on the log of error (rather
than the error itself) to circumvent the e>0 constraint.
This means that ε=log(e) follows a Gaussian distribution
with mean and variance

με ¼ −σ2
ε =2;

σ2
ε ¼ log σ2

e þ 1
� �

≈σ2
e ;

ð35Þ

where the approximation in the second equation is established
assuming that σe

2 is small and the first equality is necessary so
that E[e]=1.
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The modification for PD(xi |Sil
d,θ) is in this case

Pd xijS d
il ;θ

� � ¼ P
\

k¼1; k≠i

d

hs xið Þ < hs xdlik
� �� �


θ" #

¼ P
\

k¼1; k≠i

d

log hs xið Þð Þ < log hs xdli
k

� �� �� �


θ" #

¼ P
\

k¼1; k≠i

d

log h xi;θð Þ þ εið Þ < log h xdli
k ;θ

� �þεdlik

� �� �


θ" #
;

ð36Þ

which is then analyzed in a similar way as for the additive
error since ε=log(e) is Gaussian, leading to

PD xijS d
il ;θ

� � ¼ FG Dl dil θð Þ; 0;Σ d
il

� �
; ð37Þ

where Dldl
i (θ) is the vectors of the difference between the

logarithms of the performance

Dl dil θð Þ ¼
log h xdli

1 ;θ
� �� �� log h xi;θð Þð Þ

log h xdli
2 ;θ

� �� �
− log h xi;θð Þð Þ

…
log h xdli

d ;θ
� �� �

− log h xi;θð Þð Þ

2664
3775

¼
log h xdli1 ;θ

� �
=h xi;θð Þ� �

log h xdli2 ;θ
� �

=h xi;θð Þ� �
…

log h xdlid ;θ
� �

=h xi;θð Þ� �
2664

3775 ð38Þ

and the covariance matrix Σil
d has elements

E εi−εkð Þ εi−εq
� �� � ¼ σ2

ε 1þ ρ̄kq−ρ̄iq−ρ̄ki

� 	
; ð39Þ

where ρik is the correlation between εi=log(ei) and
εk=log(ek), which can be readily obtained (Law and
Kelton 2000) based on the correlation of ei and ek, ρik,
through

ρ̄ik ¼
ln 1þ ρikσ

2
e

� �
ln 1þ σ2

e

� � ≈ρik
σ2
e

σ2
e

¼ ρik ; ð40Þ

where the assumption that σe is small was used for the ap-
proximation in the second equality.

Thus, the evaluation under the impact of multiplicative
error follows exactly the same approach as for the addi-
tive error, simply replace the CDF in Eq. (28) with a
similar CDF given by Eq. (37).

4.4 Impact of prediction error on the RDO formulation

Beyond the impact on the probability of dominance, the
influence of the prediction error on the RDO designs can be
also examined. In the objective function of Eq. (4) the
statistics of the real system are substituted, leading to

f xð Þ ¼ 1−wð Þμs xð Þ
μsn

þ w
σs xð Þ
σsn

; ð41Þ

with [μsn σsn] corresponding to the new normalization, select-
ed based on the utopia point for the real system [μso σso]. For
multiplicative prediction error or for additive prediction error
with moment-proportional scaled variance of Eq. (21) this
leads to

f xð Þ ¼ 1−wð Þμ xð Þ
μso

þ w

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 xð Þ þ E h x;θð Þ2

h i
γ2

r
σso

¼ 1−wð Þμ xð Þ
μo

þ w

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E h x;θð Þ2
h i

1þ γ 2ð Þ−μ2 xð Þ
r

σso

;

ð42Þ

with μso=μo, σso≠σo. For the additive error with the scaling of
Eq. (20) the new objective function is

f xð Þ ¼ 1−wð Þμ xð Þ
μso

þ w
σ xð Þ
σso

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ2

p
¼ 1−wð Þμ xð Þ

μo
þ w

σ xð Þ
σo

ð43Þ

with μso ¼ μo;σso ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ 2

p
σo , and thus it remains iden-

tical to the objective function with respect to the system-model
performance of Eq. (4) as long as the objective function is
normalized with respect to the new utopia point. Note that as
mentioned earlier, the expressions of the additive error with
moment scaling and the multiplicative error yield the same
model variance.

4.5 Summary for modeling/impact of the prediction error

This section addressed the influence of the model predic-
tion error on the probability of dominance as well as on the
RDO formulation. The modeling of this error was also
extensively discussed and various reasonable modeling
assumptions were presented, the most important being that
the adopted numerical model for the system provides un-
biased predictions for the expected performance. Additive
and multiplicative impact of the error were considered and
the assumed probability models were suggested to be (i)
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Gaussian with zero mean and variance scaled according to
the statistics of the numerical model and (ii) lognormal
with mean unity and a constant variance (independent of
the model statistics). The additive prediction error can
possibly be chosen to address only un-modeled uncer-
tainties, with its variance scaled according to the response
variance of the assumed numerical model (because of the
modeled uncertainties θ). In this case, the formulation of
the RDO problem is not impacted at all. The additive error
can also be selected to address both un-modeled uncer-
tainties and un-modeled system characteristics, with its
variance scaled according to the second moment of the
numerical model. This is equivalent to the multiplicative
prediction error in terms of how it impacts the statistics of
the real system performance and ultimately the RDO
formulation.

Lastly, the impact of the modeling error on the probability
of dominance can be readily addressed by substituting the
indicator function describing the favorability of the design
given the system model, with a likelihood function dependent
upon the assumed probability model of the error and the
model performance.

5 Illustrative examples

The proposed framework is now illustrated with two
examples. The first example considers the design of a
tuned mass damper (TMD) for vibration mitigation of
harmonic excitations and extensive comparisons are
established for a variety of different cases. These cases
mainly vary in the probability models utilized for p(θ)
and the error assumptions. Τhe second example discusses
the topology optimization problem for minimum compli-
ance and the discussion (due to space constraints) focuses
only on specific cases of interest.

5.1 Design of a robust tuned mass damper

Tuned mass dampers (TMDs) are widely used to mitigate
vibrations for a variety of different structural systems

(Chang 1999; Karrem and Kline 1993; Kwon and Park
2004). They consist (as seen in Fig. 2) of a secondary
mass, md, connected to the primary mass through a spring
with stiffness ks=ωd

2ms and a dashpot with damping coef-
ficient cd=2ζdωdmd, where ωd represents the damper’s
natural frequency and ζd its damping ratio. Through the
proper tuning of these two design variables (stiffness and
damping) significant reduction of the response can be
achieved for a variety of dynamic environmental
excitations.

The RDO of TMDs has been extensively discussed in
the literature (Marano et al. 2008; Mohtat and Dehghan-
Niri 2011; Debbarma et al. 2010; Zang et al. 2005).
Here the design of a TMD to mitigate the vibrations of
a bridge structure, modeled as a single degree of free-
dom (SDOF) system, under harmonic (monochromatic)
excitation is considered, a problem similar to the one
discussed in (Zang et al. 2005). Fig. 2 shows the
details, a SDOF, with mass ms, stiffness ks=ωs

2ms, and
damping coefficient cs=2ζsωsms (where ωs represents the
natural frequency and ζs the damping ratio), equipped
with a TMD is considered, under the impact of dynamic
excitation Ff(t). The mass of the damper md is taken as
0.5 % of the median (i.e., nominal) mass of the struc-
ture. The design variables correspond to the damper
stiffness and damping coefficient x=[kd cd]

T. The uncer-
tain model parameters correspond to the mass, stiffness,
and damping ratio of the structure, θ=[ms ks ζs]

T. For
all of these, independent lognormal distributions are
assumed with coefficient of variation γc and median
values 17,500 kg for ms, 3 MN/m for ks and 3 % for
ζs. Two cases are considered for γc, representing different
levels of assumed uncertainty in θ, the first corresponding to
30 % coefficient of variation and the second to 10 % coeffi-
cient of variation. These cases will be termed large variability
and small variability, respectively.

The performance function is taken as the maximum
of the amplification factor, corresponding to the maxi-
mum of the dynamic response for a monochromatic
excitation over every potential frequency ω. This ulti-
mately leads to (Chang 1999)

dc
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sc sy
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dk

( )fF t
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( ) ( )
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s d s d d s s s s f

d s d d d d d d

m m y m y c y k y F t
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+ + + + =
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&& && &
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Fig. 2 Schematic of single
degree of freedom system with
tuned mass damper. The
equations of motion are also
shown in the figure
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h x;θð Þ ¼ max
β f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
φ 2−β 2

f

h i2
þ 2ζ dφβ f

� �2r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
s þ D2

s

q
2664

3775;φ ¼ ωd

ωs
;β f ¼

ω
ωs

;

Es ¼ 1−β 2
f

h i
φ 2−β 2

f

h i
−4ζs ζdφβ

2
f −μφ

2β 2
f ;

Ds ¼ 2β f ζs φ 2−β 2
f

h i
þ 1− 1þ μð Þβ 2

f

h i
ζdφ

n o
; ð44Þ

where the auxiliary variables φ and βf correspond to the
tuning ratio for the damper and the non-dimensional excitation
frequency, respectively, while μ=ms/md is defined as the mass
ratio.

The RDO weight parameter w is varied from 0 to 1 with
higher emphasis on lower weight values, w=[0, 0.1, 0.2, 0.3,
0.4, 0.6, 1] (this creates a balanced Pareto-front as will be
shown later), leading ultimately to seven different designs
configurations. The multivariate probabilistic integrals in Eq.
(1) and Eq. (2) needed for the objective function are calculated
using stochastic simulation, with the required expected values
approximated as

E h x;θð Þ½ �≈ 1

Nr

X
j¼1

Nr

h x;θ j
� �

;E h x;θð Þ2
h i

≈
1

Nr

X
j¼1

Nr

h x;θ j
� �2

;

ð45Þ

where {θ j} is the sample-set used for θ, each element corre-
sponding to a sample from p(θ). The total number of samples
to generate the RDO designs is taken as Nr=2000 and an
exterior sampling approach is adopted (Spall 2003) using the
same set {θ j} over the entire optimization procedure, thus
transforming the RDO problem in Eq. (3) into a standard
deterministic optimization problem that can be solved by any
numerical optimization approach (an exhaustive search is
adopted here). The bounds of the design space X are selected
as kd=[1×10

4 1.5×104] N/m and cd=[100 500] Ns/m.
The following cases are considered for comparison

i. No prediction error, termed as NE
ii. Additive prediction error with variance scaling according

to Eq. (20) and γ chosen as 10%. This case is termed as AE.
iii. Additive prediction error with variance scaling according

to Eq. (21) and γ chosen as 5 %. This case is termed as
AEt.

iv. Multiplicative prediction error with γ chosen same as in
AEt. This case is termed as ME.

As discussed in Section 4, the NE and AE cases and ME
and AEt cases lead to identical RDO designs when normali-
zation is established with respect to the utopia point (as was
done here). The higher value for γ chosen for AE compared to
the value for AEt is selected so that similar values are
established for the error variance σe

2 between AE and AEt.

The results for the optimization are shown in Table 1,
and in Figs. 3 and 4. In particular, Table 1 shows for the
different weights, the optimal solution for kd and cd as
well as the performance μ(x) and σ(x) under that optimal
design configuration. For the AEt and ME the variance for
the real system σs(x) is reported (that is, under the influ-
ence of the prediction error). For the AE design this
information is omitted since it merely corresponds to

multiplication of σ(x) by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ 2

p
. Figure 3 then shows

the different optimal solutions in the design space X and
Fig. 4 the Pareto-front in the normalized (with respect
to utopia point) objective space F. The arrow in this
figure represents the closest distance of any design from
the utopia point. The closest point corresponds to the
w=0.4 design for all cases considered, and it would
have been the preferred design based on this traditional
approach for evaluation of appropriateness among RDO
design.

Focusing first on the RDO results, it is evident that the
uncertainty in the system description has an important impact
on the robust design configuration. Different values for w lead
to different optimal designs with the higher variability case
(larger uncertainty in system description) contributing, as
expected, to higher values of the system statistics (mean and
standard deviation). The variation of the normalized values for
these statistics is, though, smaller for this case (Fig. 4), and
same principle applies for the optimal design configurations.
This is easy to explain; because of the higher uncertainty in the
system description the TMD has smaller comparative efficien-
cy (more challenging to regulate the performance over the
entire Θ region of importance) and as such the differences
between the performance for different w values becomes
smaller. The prediction error has an impact on the optimal
design configuration (as seen by the differences in designs
between AEt/ME and NE/AE) especially for the small variabil-
ity case, something that is evident in Figs. 3 and 4. This should
be attributed to the fact that for that case the impact of the
system uncertainty is smaller (smaller variability in system
characteristics), which allows the uncertainty induced by the
error to influence more prominently the resultant design/
performance.

The probability of dominance is examined next. This fur-
ther requires definition of the correlation characteristics for the
prediction error. The exponential function in Eq. (16) is
adopted, with normalization weight vl selected as one over
the length of the design domain for each design variable. The
decay rate λ is selected so that correlation decrease is equal to
ρo=5 % when the total change in the weighted distance
reaches α=30 %, leading to

λ ¼ −log ρoð Þ
α

: ð46Þ
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This assumption leads to the following correlation matrices
ρjk between the different designs for the AE design case (due
to space constraints the results for AEt/ME are not reported)
for the large and small variability cases, respectively

ρjk ¼

1 0:89 0:67 0:44 0:28 0:12 0:03
0:89 1 0:91 0:72 0:54 0:28 0:09
0:67 0:91 1 0:93 0:79 0:51 0:21
0:44 0:72 0:93 1 0:95 0:73 0:38
0:28 0:54 0:79 0:95 1 0:89 0:56
0:12 0:28 0:51 0:73 0:89 1 0:83
0:03 0:09 0:21 0:38 0:56 0:83 1

2666666664

3777777775
;

ð47Þ

ρjk ¼

1 0:78 0:44 0:26 0:17 0:08 0:03
0:78 1 0:84 0:64 0:5 0:3 0:16
0:44 0:84 1 0:94 0:84 0:63 0:41
0:26 0:64 0:94 1 0:97 0:84 0:63
0:17 0:5 0:84 0:97 1 0:94 0:77
0:08 0:3 0:63 0:84 0:94 1 0:94
0:03 0:16 0:41 0:63 0:77 0:94 1

2666666664

3777777775
;

ð48Þ

The probability of dominance overΔ as well as the degree
of dominance for 3 different values of d, equal to 2,3, and 4 are
then calculated and shown in Tables 2, 3, 4 and 5. It is
assumed in this case that the decision maker has chosen not
to just identify the dominant design (based on the procedure
outlined in Section 3.3), but to calculate the degree of domi-
nance for three different d values (2, 3 and 4). Tables 2 and 4
show the results for the NE and AE designs for the large and
small variability cases, respectively. Note that even though the
designs corresponding to these cases (AE and NE) are the
same, the probability of dominance will not be, since the latter
design includes a prediction error (that influences this proba-
bility). Subsequently, Tables 3 and 5 show the results for the
AEt and ME in similar fashion. The results will also be
different, in this case, because of the different impact of the
prediction error. 10,000 samples were used to calculate the
statistics reported in these tables, facilitating a high-accuracy
comparison.

Based on the probability of dominance PD(xi|Δ) over the
entire set Δ, the design corresponding to w=0 is deemed as
the dominant one for all cases considered. Before making a
final selection, the decision maker should additionally look
into the margin of dominance to examine additional robust-
ness traits. For the small variability case, this dominance is
preserved when looking at lower dimensional subsets. This
agreement provides confidence in the design selection since
for all subsets considered, i.e. d=2, 3, or 4, design w=0
emerges as the more dominant one (degree of dominance forT
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it has positive value), although the margin of dominance is
somewhat reduced, dropping to just 15 % for d=2 dimension-
al subsets. Aside from the most dominant design w=0, the
design corresponding to w=0.1 emerges as the second most
appropriate design for all cases considered. It is interesting to
note that this design would have also been the second

preferable one when looking at the entire set Δ. Introduction
of the model prediction error has only a small influence on the
estimated statistics, with the overall trend corresponding to a
relative reduction of the preference, while degrees of domi-
nance trend closer to 0 (note that this trend does not hold for all
instances). No significant changes are reported for the degree of
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Fig. 3 Design space along with
Pareto optimal designs that
compose the set Δ for (a) large
variability case, and (b) small
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preference towards thew=0 design. This should be attributed to
the fact that the main rival design is w=0.1, which has high
correlation to the dominant design w=0 based on the assumed
correlation characteristics for the prediction error [close to 0.8–
0.9 based on matrices Eqs. (47) and (48)]. As such, this error
has only a small impact on the calculated statistics (see also
discussion later in this section). It should be noted that if only
the dominant design was to be identified (based on the frame-
work discussed in Section 3.3) then the evaluation of the degree
of dominance for all cases would start from the design corre-
sponding to w=0 and would immediately stop as soon as the
positive degree of dominance for it D2(x1) was calculated.

For the high variability case, some of these trends change.
Similarly, thew=0 designmaintains dominance when looking
at the entire setΔ. However, it would not emerge as dominant
for some of the cases considered when looking at the lower
dimensional subsets. For the NE case, the w=0.3 design
emerges as the dominant one since it exhibits d=2 dominance,
although with a relatively small (degree of dominance 7.4 %).
It is interesting to note than when looking at higher values for
d, w=0.3 quickly loses its dominance whereas even when
looking at the entire set Δ its associated probability of dom-
inance is rather small (7 %). Another interesting characteris-
tics for the NE case is the fact that no design exhibits domi-
nance for d=3, 4 dimensional subsets, with all of them having

negative values for the degree of dominance. Overall w=0,
w=1 and w=0.3 exhibit the highest probability of dominance
but w=0.3 possesses the most favorable degree of dominance
based on the proposedmultistage approach, focusing on lower
d-dimensional dominance. This discussions demonstrate that

looking solely at ePD xijΔð Þ could not be enough, and inves-
tigating the dominance within smaller subsets becomes nec-
essary. Comparisons among S2 provide the more trustworthy
information, since it is equivalent to one-on-one comparisons
of the designs. Looking at larger dimensional subsets, conclu-
sive information is not necessarily established for selecting a
particular design, though some valuable insight is provided. It
is up to the decisionmaker then to use this insight for selecting
the final design.

The introduction of the error in this case has a bigger
impact (compared to the low variability case); for AE the
statistics change significantly when compared with the NE
case, even though the compared designs are identical. This
demonstrates the importance of explicitly accounting for the
prediction error in the comparisons for the probability of
dominance. For AE, the design w=0.1 exhibits the lower
dimensional dominance (d=2), though with a very small
margin (degree of dominance 3 %), whereas two other de-
signs, w=0.2 and w=0.1, show good performance (degree of
dominance as large as −5%). For this instance, (dominance by

Table 2 ePD xijΔð Þ and degree of dominance for NE and AE designs for large variability case

NE AE

w ePD xijΔð Þ D2(xi) D3(xi) D4(xi) ePD xijΔð Þ D2(xi) D3(xi) D4(xi)

0 0.370 −0.260 −0.203 −0.159 0.352 −0.047 −0.038 −0.001
0.1 0.048 −0.145 −0.515 −0.480 0.084 0.032 −0.342 −0.314
0.2 0.047 −0.083 −0.476 −0.476 0.079 −0.032 −0.379 −0.366
0.3 0.069 0.074 −0.366 −0.377 0.063 −0.094 −0.428 −0.398
0.4 0.038 −0.074 −0.483 −0.483 0.074 −0.129 −0.427 −0.392
0.6 0.059 −0.129 −0.498 −0.469 0.092 −0.172 −0.416 −0.369
1 0.369 −0.262 −0.196 −0.159 0.257 −0.210 −0.228 −0.190

Table 3 ePD xijΔð Þ and degree of dominance for ME and AEt designs for large variability case

ME AEt

w ePD xijΔð Þ D2(xi) D3(xi) D4(xi) ePD xijΔð Þ D2(xi) D3(xi) D4(xi)

0 0.345 0.015 −0.017 0.015 0.329 −0.008 −0.045 0.01

0.1 0.093 −0.015 −0.342 −0.315 0.092 0.008 −0.331 −0.303
0.2 0.079 −0.076 −0.399 −0.373 0.081 −0.047 −0.382 −0.356
0.3 0.067 −0.110 −0.442 −0.394 0.068 −0.083 −0.426 −0.378
0.4 0.079 −0.128 −0.409 −0.382 0.081 −0.103 −0.394 −0.364
0.6 0.099 −0.150 −0.37 −0.353 0.101 −0.127 −0.361 −0.335
1 0.237 −0.168 −0.243 −0.206 0.247 −0.144 −0.216 −0.179
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only a small margin) one would be interested in looking at
higher values for d before assessing overall robustness, and in
this case it is evident that w=0 exhibits better robustness
characteristics. The previous discussion indicates that beyond
the degree of dominance being positive, its value should be
also taken into account by the designer in assessing the pref-
erences towards different designs. Looking next at the other
cases, for the ME and AEt cases the characteristics for domi-
nance also change (compared to the NE case), although with
smaller margins. For ME w=0 emerges as the dominant
design, exhibiting both d=2 and d=4 dominance (but not
d=3 for which no design emerges as dominant, with w=0
having the better performance overall). For AEt designs w=0
and w=0.1 are practically equal. In this case the decision
needs to be based on comparisons of higher order values for
d, which tilts the preference towards w=0. The big impact of
the prediction error on the preference towards different de-
signs for the high variability case can be explained based on
the inability of the TMD to efficiency suppress vibrations over
the entire important Θ region; thus, close performance is
established by a few different designs and this is why the
different preference for this performance given by the different
error-model selections can ultimately shift the dominance
towards different designs.

To further examine the influence of the correlation of the
error on the results, Table 6 shows the probability of domi-
nance for some of the design-cases considered (AE andME for
small variability case and AE for large variability case) if no
such correlation is assumed. Comparison of these results to
the results in Table 2 (forAE and large variability), Table 4 (for
AE and small variability) and Table 5 (for ME and small
variability) shows small differences for the AE case when
small variability is assumed for the system description, but
large for the other two cases. For the large variability case
(AE) the differences are large enough to impact the dominance
of the designs over the d=2 and 3 dimensional subsets; when
no correlation is considered for the prediction error the design
w=0 emerges as the dominant design which was not the case
before. This discussion shows that the assumed correlation of
the prediction error can have an impact on the calculated
statistics, so it should be carefully chosen.

It is also interesting to note that in no case examined the
design selected through the degree of dominance coincides
with the one corresponding to the minimum distance from the
utopia point (w=0.4 as previously shown). In all cases
examined and for all different values considered for d
the latter design has a rather small associated value for the
degree of dominance, and thus would have been avoided

Table 4 ePD xijΔð Þ and degree of dominance for NE and AE designs for small variability case

NE AE

w ePD xijΔð Þ D2(xi) D3(xi) D4(xi) ePD xijΔð Þ D2(xi) D3(xi) D4(xi)

0 0.579 0.158 0.278 0.299 0.577 0.161 0.281 0.301

0.1 0.197 −0.158 −0.381 −0.381 0.200 −0.161 −0.376 −0.377
0.2 0.091 −0.553 −0.684 −0.685 0.082 −0.554 −0.690 −0.691
0.3 0.048 −0.737 −0.819 −0.819 0.048 −0.724 −0.809 −0.810
0.4 0.022 −0.829 −0.891 −0.891 0.021 −0.810 −0.877 −0.876
0.6 0.021 −0.877 −0.916 −0.893 0.024 −0.853 −0.899 −0.877
1 0.039 −0.920 −0.898 −0.875 0.046 −0.896 −0.875 −0.853

Table 5 ePD xijΔð Þ and degree of dominance for ME and AEt designs for small variability

ME AEt

w ePD xijΔð Þ D2(xi) D3(xi) D4(xi) ePD xijΔð Þ D2(xi) D3(xi) D4(xi)

0 0.521 0.153 0.248 0.271 0.513 0.134 0.236 0.260

0.1 0.173 −0.153 −0.363 −0.358 0.172 −0.134 −0.355 −0.350
0.2 0.079 −0.434 −0.606 −0.596 0.081 −0.416 −0.594 −0.583
0.3 0.053 −0.517 −0.674 −0.658 0.054 −0.503 −0.664 −0.648
0.4 0.036 −0.538 −0.683 −0.670 0.037 −0.526 −0.675 −0.660
0.6 0.041 −0.561 −0.666 −0.680 0.042 −0.549 −0.659 −0.670
1 0.093 −0.594 −0.648 −0.617 0.097 −0.584 −0.638 −0.605
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through the proposed approach. This demonstrates the utility
of the new methodology for offering an alternative preference
measure in assessing the robustness characteristics of different
proposed designs.

5.2 Robust topology optimization for minimum compliance

Topology optimization searches for the structural configura-
tion (shape and connectivity of the structure), contained with-
in a given design domain X, that for some given boundary and
loading conditions provides the most favorable response in
terms of some chosen performance measure (Bendsøe and
Sigmund 2003). A popular approach to obtain the solution is
to discretize the domain into finite elements and select the
densities of each element as design variables xe ∈ [0, 1],
e=1,…,Ne (typically interpolated between two states: either
void or full material), where Ne corresponds to the total
number of elements. The performance objective is typically
taken as the minimization of the compliance c(x) for a given
structural domain, subject to a prescribed mass fraction con-
straint mf such that mX ≤mf, where mX denotes the domain’s
mass fraction, which can be computed as

mX ¼ 1

Ne

X
e¼1

Ne

xe: ð49Þ

For a linear elastic material, the compliance is a function of
the global displacement U (found through the finite element
method) and the global stiffness matrix K (Bendsøe and
Sigmund 2003). Here the problem is relaxed by employing
the Solid Isotropic Material with Penalization (SIMP) formu-
lation (Rietz 2001), leading to the compliance function given
by (Sigmund 2001)

c xð Þ ¼ UTKU ¼
X
e

Ne

x
pp
e uTe ko ue; ð50Þ

where pp is a penalization factor employed to avoid interme-
diate densities (i.e. to drive each element towards a particular
state: either void or full material), ue is the local displacement
vector for a given element, and ko is the element’s stiffness
matrix which in turn is a function of the poison ratio ν and the
modulus of elasticity Ee of the element.

The gradient of the compliance can be analytically obtain-
ed (Bendsøe and Sigmund 2003) as

∂c xð Þ
∂xe

¼ −pp xeð Þpp−1uTe ko ue; e ¼ 1;…;Ne: ð51Þ

More information on the general topology optimization
design problem as well as on different solution strategies
may be found in (Bendsøe and Sigmund 2003).

The RDO formulation has been extensively employed for
addressing uncertainties within topology optimization appli-
cations (Chen et al. 2010; Dunning et al. 2011; Tootkaboni
et al. 2012; Dunning and Kim 2013). A problem similar to the
one presented by Chen et al. (2010) is adopted here: a rectan-
gular design domain, with length double its height, is subject-
ed to a central point load at the bottom with simply supported
conditions (Fig. 5). The design domain is discretized into
100x50 elements (resulting inNe=5000) and the mass fraction

Table 6 ePD xijΔð Þ and degree of dominance for some design cases when no correlation is assumed for prediction error

Small variability Large variability

AE ME AE

w ePD xijΔð Þ D2(xi) D3(xi) ePD xijΔð Þ D2(xi) D3(xi) ePD xijΔð Þ D2(xi) D3(xi)

0 0.551 0.160 0.258 0.388 0.127 0.153 0.243 0.013 0.026

0.1 0.202 −0.160 −0.313 0.205 −0.127 −0.158 0.144 −0.013 −0.076
0.2 0.082 −0.538 −0.594 0.122 −0.267 −0.298 0.118 −0.042 −0.115
0.3 0.056 −0.614 −0.667 0.092 −0.361 −0.373 0.111 −0.072 −0.137
0.4 0.042 −0.704 −0.726 0.076 −0.435 −0.432 0.114 −0.092 −0.159
0.6 0.034 −0.775 −0.795 0.063 −0.506 −0.496 0.123 −0.13 −0.185
1 0.030 −0.833 −0.817 0.050 −0.573 −0.535 0.143 −0.180 −0.180

X

E(x,y)

Fy

Fx

F

y

x

Fig. 5 Topology optimization RDO problem formulation
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is taken as mf=0.3 (meaning that 30 % of the domain may be
occupied). The uncertain model parameters correspond to (i)
the loading conditions, where the component of the load in the
horizontal direction Fx is assumed to follow a uniform distri-
bution in [−1, 1] and the component of the load in the vertical
direction Fy a uniform distribution in [0, 2], and (ii) to the
Young’s moduli for each element, assumed to follow a log-
normal distribution with median 1 and coefficient of variation
of 0.2. The performance function is directly taken as the
compliance of the structure h(x,θ)=c(x,θ).

The solution to the optimization problem Eq. (3) is obtain-
ed with the Method of Moving Asymptotes (MMA)
(Svanberg 1987), which is a popular algorithm to solve topol-
ogy optimization problems. To avoid a solution with interme-
diate densities, a penalization factor of pp=3 is employed. In
addition, to avoid the problem where a checker-board pattern
emerges causing artificial stiffness, a filter with size of 1.2 is
employed. More details about the selection of these parame-
ters can be found in (Bendsøe and Sigmund 2003). This
solution approach ultimately required the gradient of the ob-
jective function, meaning the gradients for the mean and
variance of the response. Assuming that the functions
c(x,θ)p(θ) and ∂c(x,θ)/∂xi p(θ) are continuous on the domain
X×Θ and bounded, while also noting that p(θ) does not
depend on x, the differentiation and the expectation operators
commute (Spall 2003), leading to the following expressions
for the elements of these gradients

∂μ xð Þ
∂xe

¼ ∂E c x ;θð Þ½ �
∂xe

¼ E
∂c x ;θð Þ

∂xe

� �
; e ¼ 1;…;Ne; ð52Þ

∂ σ xð Þ
∂xe

¼ ∂
∂xe

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E c x;θð Þ2
h i

−E c x;θð Þ½ �2
r
 �

¼
E c x ;θð Þ∂ c x ;θð Þ

∂xe

� �
−E c x ;θð Þ½ �E ∂ c x ;θð Þ

∂xe

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E c x;θð Þ2
h i

−E c x;θð Þ½ �2
r ;

e ¼ 1;…;Ne:

ð53Þ

All expected values required for the above expressions
within the optimization algorithm are obtained through sto-
chastic simulation employing again exterior sampling (as in
the TMD optimization case) with total of Nr=2000 samples.
Note that for the case corresponding to the multiplicative error
or the moment-proportional additive error, the partial deriva-
tives for the system variance, needed in the objective function
of Eq. (42) are transformed to

∂ σs xð Þ
∂xe

¼
E c x ;θð Þ ∂ c x ;θð Þ

∂xe

� �
1þ γ2ð Þ−E c x ;θð Þ½ �E ∂ c x ;θð Þ

∂xe

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E c x;θð Þ2
h i

1þ γ2ð Þ−E c x;θð Þ½ �2
r ;

e ¼ 1;…;Ne: ð54Þ

In this example, the value of w was varied from 0 to 1 with
equal steps of 0.2, whereas only the following three cases are
considered

i. No prediction error, termed as NE
ii. Additive prediction error with variance scaled according to

Eq. (20) and γ chosen as 10 %. This case is termed as AE.
iii. Multiplicative prediction error with γ chosen as 5 %. This

case is termed as ME.

The resultant optimal solutions were very similar for the
NE/AE and ME cases (almost identical topologies), thus the
various results are primarily reported for the former only. The
optimal topologies for different values of w are shown in
Fig. 6 whereas the statistics (mean and standard deviation)
in Table 7. 5,000 samples were used for the statistics reported
in this table, facilitating, again, a high-accuracy comparison.
Figure 7 shows the Pareto-front in the normalized (with re-
spect to utopia point) objective space F for all three design
cases considered. The arrow in this figure represents the
closest distance of any design from the utopia point. The
closest point corresponds to the w=1 design for all cases,
and it would have been the preferred design based on this
traditional approach for evaluation of appropriateness among
RDO design.

These results agree with the ones reported by Chen et al.
(2010) where asymmetry is observed in the optimum designs
due to asymmetric boundary conditions. It is possible to
observe that the different designs have a similar statistical
response even though they correspond to distinct topologies.
In fact, the values for μ and σ between the different designs are
so similar that it would be very challenging to select a pre-
ferred design from the set solely based on these statistics. The
probability of dominance, which in this case corresponds to
the probability of having a lower compliance overΘ, provides
a rational measure for assessing the appropriateness of the
candidate designs. For the correlation of the prediction error
needed to calculate this probability (and similar to the TMD
example), the exponential function in Eq. (16) is adopted, with
normalization weight vl selected as one and decay rate λ
selected so that correlation-decay is equal to ρo=5 % when
the total change in the weighted distance between designs
reaches α=30 % [as described by Eq. (46)]. This assumption
leads then to the following correlation matrix ρjk between the
different designs for the AE design case (due to space con-
straints the results for ME design not reported)

ρjk ¼

1 0:63 0:34 0:11 0:07 0:03
0:63 1 0:67 0:19 0:11 0:05
0:34 0:67 1 0:37 0:20 0:06
0:11 0:19 0:37 1 0:74 0:17
0:07 0:11 0:20 0:74 1 0:27
0:03 0:05 0:06 0:17 0:27 1

26666664

37777775 ð55Þ
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The probability of dominance overΔ as well as the degree
of dominance for 2 different values of d (equal to 2 and 3) are
shown in Table 8. As in the TMD example, rather than just
identifying the dominant design based on the procedure
outlined in Section 3.2, the degree of dominance for different
d values is reported to facilitate a more thorough comparison.

For the NE case, design w=0 emerges as the dominant one
when looking at the entire set Δ, with that preference also
upheld over d=2 (S2) subsets and d=3 (S3) dimensional
subsets. For the d=3 case actually no design emerges as
dominant [values of D3(xi) are negative for all of them],
though for the w=0 design the value of D3(xi) is very close
to zero, and much larger than all other designs, indicating a
strong preference for it, especially when combined with the
information for dominance over Δ and over the two-
dimensional subsets. It is interesting to note that design w=
0.2 is close to being dominant over the two dimensional
subsets [value of D2(xi) only slightly negative] but has poor
performance when looking at the three dimensional subsets or
at the entire set Δ. This stresses the importance of looking at
different subsets to evaluate the preference toward a specific
design, especially when the dominance properties it exhibits
have a narrow margin (values close to zero). When incorpo-
rating the additive prediction error in the analysis (AE case in

Table 8), we see significant differences in the calculated
probabilities. This should be attributed to the fact that the
compared designs have very similar statistical characteristics
(as shown in Table 7), contributing to stronger influence from
the prediction error. Design w=0 still emerges as the preferred
one when looking at lower dimensional subsets (d=2 or 3,
nothing though that for d=3 there is no dominance) but with
much smaller margins compared to the NE case, whereas
when looking at the entire set Δ it practically ties with the
w=1 design. Changing the probability model for the predic-
tion error to multiplicative influence (ME case), changes its
overall impact. Though the prediction error still has a strong
influence on the calculated probability of dominance (changes
over the NE case) the relative impact as compared to the AE
case changes, without, though, a change in the overall prefer-
ence (w=0 is still the dominant design with actually increased
robustness margins when looking at the lower dimensional
subsets). This validates the previous conclusions that the
prediction error model may have an impact on the results.

Finally is also interesting to note that, like the TMD exam-
ple, in no case examined the design selected through the
degree of dominance coincides with the one corresponding
to the minimum distance from the utopia point (w=1 in all
cases as previously discussed). Though the w=1 design has
competitive values when considering the probability of dom-
inance over the entire set Δ, for some cases it corresponds to
rather small values for the probability of dominance for lower
values of d, and would have been avoided through the

w = 0 w = 0.2

w = 0.4 w = 0.6

w = 0.8 w = 1

Fig. 6 Optimal topologies for different values of w for the NE/AE
designs

Table 7 Mean and stan-
dard deviation of optimal
solution for the NE case
for the topology optimi-
zation problem

w μ(xi) σ(xi)

0 39.01 29.85

0.2 39.03 29.75

0.4 39.08 29.66

0.6 39.32 29.59

0.8 39.40 29.50

1 39.44 29.30

1 1.005 1.01

1

1.002

1.004

1.006

1.008

1.01

1.012

1.014

1.016

1.018 NE
ME

μ(x)/μo

σ s(
x)

/σ
so

w=0

w=0.2

w=0.4

w=0.6

w=1

w=0.8

Fig. 7 Pareto-front for the Topology RDO implementation. Closest
design to utopia point indicated with an arrow
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proposed approach. This further demonstrates the utility of the
new methodology for assessing the robustness characteristics
of different proposed designs.

6 Conclusions

A novel approach for assessing the appropriateness of a set of
candidate designs was introduced based upon the definition of
a new robustness measure, termed probability of dominance.
This measure is defined as the likelihood that a given design will
outperform the rival designs within the candidate set. Given that
the resultant probability is a function of the exact designs
composing the set, a multi-stage approach was also formulat-
ed for enhancing robustness of the chosen solution. This
approach compares designs within smaller dimensional sub-
sets and searches for the design that dominates within all
subsets that include it. For evaluating the relative preference
towards a design the degree of dominance is introduced,
which is obtained by comparing the probability of dominance
for the candidate design against the probability of dominance
of all other designs within all different subset that the candi-
date design belongs to. This degree of dominance can be
utilized as a tool to guide the selection of the final design,
with absolute dominance corresponding to a positive value for
it. For enhancing the robustness in this selection the impact of
prediction errors between the real system and the assumed
numerical model was additionally investigated. Two different
error models were explored; these correspond to either an
additive or multiplicative influence, while reasonable assump-
tions for selecting the error characteristics were discussed in
detail. The additive prediction error can be ultimately chosen
to address two different sources of modeling uncertainty. It
can be selected to address only un-modeled uncertainties,
when its variance is scaled according to the response variance
of the assumed numerical model. If this assumption is select-
ed, the formulation of the RDO problem is not impacted at all.
This error can also be also selected to address both un-
modeled uncertainties and un-modeled system characteristics,

when its variance is scaled according to the second moment of
the numerical model. This in turn is equivalent to the multi-
plicative prediction error in terms of how it impacts the
statistics of the real system performance and ultimately the
RDO formulation. In addition, it was shown that when model-
ing errors are considered, the impact on the probability of
dominance corresponds to substitution of the indicator func-
tion, describing the favorability of each design, by a likelihood
function dependent upon the assumed probability model of
the error and the model performance.

Two RDO illustrative examples were presented, the first
considering the design of a tuned mass damper (TMD) for
vibration mitigation of harmonic excitations, and the second
the robust topology optimization for minimum compliance. It
was shown in these examples that the new approach provides
an alternative to the established popular methodologies for
assessing the appropriateness of the candidate designs. Thus,
it ultimately equips designers (decision maker) with an addi-
tional tool in the search for a preferred design. The results also
showed that looking solely at the probability of dominance
(over the entire set) does not always lead to the most appro-
priate choice. Comparison among smaller dimensional subsets
can guide decisions better and further facilitate a deeper un-
derstanding of the preference toward each design, even when
none emerges as dominant. It was also demonstrated that
beyond the degree of dominance being positive, its value
should also be taken into account by the designer in assessing
the preferences for different designs. Small values for the
degree of dominance should be carefully examined by the
designer when evaluating the different designs. Moreover, it
was shown that explicitly including the prediction error in the
comparison can have a significant impact on the assessment.
In this case, the assumed correlation of the prediction error
between different designs needs to be carefully considered.
The influence of the prediction error is especially critical when
the compared designs have similar statistical performance
despite corresponding to different design configurations. In
general, the proposed method showed promising results and
provided a rational framework for assessing the appropriate-
ness of a set of candidate robust designs.

Table 8 ePD xijΔð Þ and degree of dominance for NE, AE, and ME for the topology optimization problem

NE AE ME

w ePD xijΔð Þ D2(xi) D3(xi) ePD xijΔð Þ D2(xi) D3(xi) ePD xijΔð Þ D2(xi) D3(xi)

0 0.371 0.030 −0.005 0.207 0.005 −0.043 0.267 0.055 0.065

0.2 0.009 −0.030 −0.47 0.143 −0.005 −0.126 0.158 −0.055 −0.162
0.4 0.164 −0.084 −0.280 0.161 −0.016 −0.081 0.163 −0.092 −0.126
0.6 0.162 −0.174 −0.362 0.140 −0.060 −0.174 0.122 −0.202 −0.297
0.8 0.002 −0.214 −0.523 0.140 −0.072 −0.173 0.115 −0.227 −0.307
1 0.290 −0.180 −0.218 0.207 −0.076 −0.095 0.172 −0.237 −0.249
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