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Abstract This paper addresses truss topology optimiza-
tion taking into account robustness to uncertainty in the
truss geometry. Specifically, the locations of nodes are
assumed not to be known precisely and the compliance in
the worst case is attempted to be minimized. We formulate
a semidefinite programming problem that serves as a safe
approximation of this robust optimization problem. That
is, any feasible solution of the presented semidefinite pro-
gramming problem satisfies the constraints of the original
robust optimization problem. Since a semidefinite program-
ming problem can be solved efficiently with a primal-dual
interior-point method, we can find a robust truss design
efficiently with the proposed semidefinite programming
approach. A notable property of the proposed approach is
that the obtained truss is guaranteed to be stable. Numeri-
cal experiments are performed to illustrate that the optimal
truss topology depends on the magnitude of uncertainty.
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1 Introduction

Real-world structures inevitably encounter various uncer-
tainties stemming from manufacturing variability, aging,
degradation, limitation of knowledge of environments, etc.
Reality can deviate from the design-base models and data.
The concept of robustness to uncertainty is, therefore, cen-
tral in structural design. This paper addresses truss topology
optimization considering robustness to uncertainty in the
geometry of a truss.

If reliable statistical property of uncertainty is available,
then probabilistic reliability analysis can be performed. In
such a case, reliability-based optimization can be employed
in structural design; see, e.g., Beyer and Sendhoff (2007),
Schuéller (2006), Schuéller and Jensen (2008) and Zang
et al. (2005). In contrast, a possibilistic model of uncertainty
might be applicable to problems without reliable stochas-
tic information, because it requires only bounds for the
input data to define the uncertainty and hence is often less
information-intensive. In this paper we adopt a possibilis-
tic model, rather than probabilistic one, to represent the
uncertainty in the locations of nodes of a truss. The truss
topology optimization problem, which attempts to mini-
mize the maximum value of the compliance, is then treated
within the framework of robust optimization (Ben-Tal and
Nemirovski 1998; El Ghaoui et al. 1998), also called worst-
case approach, bounded-but-unknown approach, or robust
design optimization in structural optimization; see Ben-
Tal et al. (2009) for comprehensive exposition of robust
optimization.

Many studies have been done on robust optimization
of structures under the assumption that uncertainty exists
only in external loads. Early works include, among oth-
ers, Elishakoff et al. (1994), Ganzerli and Pantelides (2000),
Lombardi (1998) and Pantelides and Ganzerli (1998). The
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seminal work of Ben-Tal and Nemirovski (1997) considered
the compliance minimization of a truss under uncertainty
in the static external load. Specifically, the external load is
assumed to take any value in a given ellipsoid centered at
the origin. Then the maximal value of compliance (called
the principal compliance by some authors (Cherkaev and
Cherkaev 2003)) is minimized. Ben-Tal and Nemirovski
(1997) showed that this robust optimization problem can be
formulated as a semidefinite programming (SDP) problem.
Under the same situation, the robust compliance optimiza-
tion of a continuum was recast by (Takezawa et al. 2011)
as a minimization problem of the maximum eigenvalue of
a standard eigenvalue problem, provided that the stiffness
matrix is nonsingular. Earlier, it was shown that the same
robust optimization problem can be reformulated as a min-
imization problem of the maximum eigenvalue of a gener-
alized eigenvalue problem; see Cherkaev (2003, 2008) and
Brittain et al. (2012). The latter formulation was extended to
the case where the center of the ellipsoid, that represents the
uncertainty in the external load, is not necessarily at the ori-
gin (de Gournay et al. 2008). With this non-homogeneous
model of uncertainty, it was shown that the robust compli-
ance optimization of a truss can also be recast as an SDP
problem; see Calafiore and Dabbene (2008) and Ben-Tal et
al. (2009, section 8.2.2.2). Another extension of the SDP
formulation for robust truss optimization is making use of
some binary variables to address variation of truss topol-
ogy in the course of optimization (Yonekura and Kanno
2010). Concerning structural performances other than com-
pliance, a nonlinear SDP approach (Kanno and Takewaki
2006) and a mixed-integer linear programming approach
(Kanno and Guo 2010) were proposed for robust truss opti-
mization under load uncertainties. Here, a nonlinear SDP
problem refers to an optimization problem of the form

Minimize b'x (la)

X
subject to  G(x) > O, (1b)
h(x) =0, (le)

where x € R” is a variable vector to be optimized, b € R"
is a constant vector, G : R" — S" and h : R" —» R/
are sufficiently smooth, S" denotes the set of n x n real
symmetric matrices and G (x) > O means that matrix G (x)
is positive semidefinite. If A is linear and G is given by

m
Gx)=C—) xiA
i=1

with constant matrices Ay, ..., Ay, C € §", then problem
(1) reduces to an SDP problem (which is also called a linear
SDP problem by some authors to clarify the distinction from
nonlinear SDP problems). We refer the reader to Anjos and
Lasserre (2012) and Wolkowicz et al. (2000) for fundamen-
tals of SDP; particularly for nonlinear SDP problems, see,

@ Springer

e.g., Jarre (2000), Kanzow et al. (2005), Noll et al. (2004),
Shapiro (1997) and Yamashita and Yabe (2012).

Compared with uncertainty in loads, studies addressing
other sources of uncertainties in robust structural optimiza-
tion have been rather limited. Concerning truss optimiza-
tion, Guo et al. (2009) considered uncertainty in stiffness
(or uncertainties in member cross-sectional areas) and for-
mulated a nonlinear SDP problem that provides us with a
safe approximation of the robust optimal solution. Besides
the uncertainty in member cross-sectional areas, Guo et al.
(2011) considered uncertainty in length of each member and
formulated a nonlinear SDP problem as a safe approxima-
tion of the robust optimization problem. Also, the dynamic
response under uncertain driving loads were handled in
Guo et al. (2011). These nonlinear SDP formulations are
considered extensions of the SDP formulation for comput-
ing a conservative bound for response of a structural system
that possess various uncertainties (Kanno and Takewaki
2008, 2009).

Very recently increasing attention has been drawn to
topology optimization of a continuum considering geomet-
ric uncertainties. In most of those studies, probabilistic
approaches are adopted to address deviation of the geom-
etry of the boundary of a continuum. Sigmund (2009) and
Wang et al. (2011) proposed a robust topology optimiza-
tion method considering uniform manufacturing errors. An
application of such an uncertainty model is in representing
errors in etching for MEMS (micro-electro-mechanical sys-
tems). This method takes into account errors stemming from
uniform over-etching and uniform under-etching. Then the
robust optimization problem is formulated according to the
worst-case approach, where only three cases, i.e., the nom-
inal, over-etched and under-etched cases, are considered.
Schevenels et al. (2011) extended this method to the case
where non-uniform manufacturing errors are considered in
a probabilistic manner. The statistical moments of struc-
tural response were then estimated by Monte Carlo simu-
lations. Since Monte Carlo simulation is time-consuming,
the alternative methods were proposed by using stochastic
perturbation (Lazarov et al. 2012b) and stochastic collo-
cation (Lazarov et al. 2012a). Geometrical uncertainties
have also been handled within the framework of level-
set methods for topology optimization. Chen and Chen
(2011) modeled the geometric uncertainty by combing the
level-set equations with a random field of normal pertur-
bation of the boundary. The statistical moments of struc-
tural response are then obtained by using the Karhunen—
Loeve expansion and the multivariate Gauss quadrature.
As non-probabilistic approaches, Jang et al. (2012) con-
sidered uniform etching uncertainties within the frame-
work of a level-set method. Also, Guo et al. (2013) mod-
eled non-uniform uncertainty of the boundary geometry
introducing a perturbation of a level-set function, where



An SDP for robust truss topology optimization under uncertainty in locations of nodes 441

change in the structural volume due to the boundary
perturbation is assumed to be bounded. Then the worst-
case optimization problem was dealt with using the first-
order approximation of structural performance, under the
assumption that perturbation of the boundary is sufficiently
small.

This paper is inspired by the work of Guest and Igusa
(2008), in which the robust truss topology optimization
under uncertainty in the truss geometry was dealt with
in a probabilistic manner. There, the locations of nodes
were assumed to be uncorrelated random variables and the
expected value of the compliance was attempted to be min-
imized. Under the assumption that perturbation of node
locations is sufficiently small, it was shown that the problem
under consideration can be recast in the form of the opti-
mization problem under load uncertainties using the notion
of equivalent random forces.! In contrast, the present work
addresses the compliance optimization of a truss with non-
probabilistic uncertainty in the locations of nodes. Provided
that node locations can take any value in a given ellipsoid,
we attempt to minimize the worst value of the compliance
of a truss, where design variables are the member cross-
sectional areas. As pointed out by Guest and Igusa (2008),
the robust compliance optimization with uncertain node
locations is more difficult problem than that with uncertain
external loads. In this paper we formulate an SDP problem
that serves as a safe approximation of the original robust
optimization problem, in the sense that the optimal solu-
tion of the SDP problem is feasible for the original robust
optimization problem. Throughout the paper we assume
small deformation and linear elasticity. Deviation of a node
location from its nominal value can however be arbitrarily
large. SDP is a class of convex optimization and the opti-
mal solution of an SDP problem can be computed efficiently
by using a primal-dual interior-point method (Anjos and
Lasserre 2012; Wolkowicz et al. 2000). This is considered
an advantage of the SDP approach developed in this paper
over existing nonlinear SDP approaches to robust structural
optimization, because nonlinear SDP problems formulated
in Guo et al. (2009, 2011) and Kanno and Takewaki (2006)
are nonconvex optimization problems and thereby quite dif-
ficult to be solved. As pointed out by Guest and Igusa
(2008), uncertainties in nodal locations can possibly have
significant effects in truss topology optimization, because
the optimal truss obtained by the standard compliance opti-
mization without taking into account uncertainties is often
unstable. Indeed, we can show, under mild assumptions,
that the optimal solution of the presented SDP problem is a
stable truss.

Further extensions of this method can be found in, e.g., Asadpoure
etal. (2011) and Jalalpour et al. (2011).

The paper is organized as follows. Section 2 reviews an
SDP formulation of the standard compliance optimization
of a truss. We also present an explicit form of the stiffness
matrix as a function of the node locations. Section 3 presents
an SDP problem which serves as a safe approximation of
the robust truss optimization under uncertainty in the loca-
tions of nodes. Section 4 explores two important properties
of the presented SDP problem: The first is zeroing, i.e., the
SDP problem coincides with the standard compliance opti-
mization when the magnitude of uncertainty is set to zero
and the second is stability of the truss obtained by solving
the proposed SDP problem. Section 5 performs numerical
experiments. Conclusions are drawn in Section 6. Appendix
collects technical prerequisites.

A few words regarding notation. We use S” to denote
the set of n x n real symmetric matrices. For matrices X,
Y € 8", notation X > Y means that matrix X — Y is pos-
itive semidefinite. Particularly, notation X > O means that
X is positive semidefinite. We use I, to denote the n x n
identity matrix. For a block matrix, we often omit to write
zero blocks. For instance, we write

A _|[AOO

Bl[C| |OBC|’
The £,-norm (1 < p < o00) of vector x € R" is defined
by

n 1/p

x;|P ifl < p < oo,

”x”p: (lg]l l| ) =p
max{|xq|, ..., [x,|} if p = o0.

For matrix M € R™*" the operator norm of M induced by
the Euclidean norm is defined by

| Mx|l>
Ml = max ———.
x#0  [lx]l2
Note that || M|, is equal to the maximum singular value of
M.

2 Fundamentals of compliance optimization

This section summarizes fundamentals of the standard com-
pliance optimization of a truss structure, where issues of
uncertainty are not taken into account. Attention is focused
on the SDP formulation due to Ben-Tal and Nemirovski
(1997). This formulation serves as a basis of our robust
optimization approach that will be developed in Section 3.
Section 2.1 introduces our notation for truss topology opti-
mization. The stiffness matrix is expressed as a function
of the node locations. This expression is extremely useful
in the latter sections for development and analysis of our
robust optimization approach. Section 2.2 recalls the SDP
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formulation of the conventional minimization problem of
the compliance of a truss under the volume constraint.

2.1 Explicit formulation of stiffness matrix in terms
of locations of nodes

Following the conventional ground structure approach, con-
sider a truss consisting of many candidate members con-
nected by nodes. Throughout the paper we assume small
deformation and linear elasticity. Let d denote the dimen-
sion of space, i.e., d = 2 for a planar truss and d = 3 for
a spatial truss. We use V and £ C V x V to denote the set
of nodes and the set of members of the truss, respectively,
where |V| = n and |£] = m. Note that V includes some
supports. If we adopt terminology of the graph theory, V
and &£ correspond to the set of vertices and the set of edges,
respectively, of a given graph G = (V, £). Fornode v € V,
we denote by x(") € R its location in the space. We use
a; > 0 to denote the cross-sectional area of member i € &£
and write a = (ay, ..., ay)' € R™. Given G = (V, £) and
x™ (Vv € V), we attempt to optimize a.

Let p denote the number of degrees of freedom of dis-
placements. Define g by ¢ = dn = d|V|. Since V includes
supports, we have that p < ¢g. Let V = {vy, v, ..., v,}.
Define x € R? by

x W)

x=|: ,
x(Vn)

which is a vector consisting of the location vectors of nodes.
In Section 3 and the subsequent sections we shall suppose
that x is not known precisely. We use /;(x) to denote the
undeformed length of member i € &£ and write I(x) =
(1(x), ... Ip(x) T e R™.

Since we will suppose that the locations of supports as
well as the locations of free nodes are uncertain, expres-
sion of the stiffness matrix will become rather cuambersome.
For clarity of exposition, we use the following two different
coordinate systems. The first one, denoted C, is the conven-
tional global coordinate system of the displacements. The
dimension of C is hence equal to the number of degrees of
freedom, p. In coordinate system C, we use u € RP? to
denote the vector of nodal displacements. The second one,
denoted C, is the coordinate system in which all the nodes
are supposed to be free nodes. The dimension of C is hence
equal to g, i.e., the size of vector x. We use &z € R? to denote
the vector of nodal displacements in coordinate system C.

Let T € RP*9 denote the transformation matrix from
coordinate system C to coordinate system C. Note that the
set of nodes, V), is partitioned into three subsets, the set
of pin supports, the set of roller supports and the set of
free nodes. We use Vix < V to denote the set of pin
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supports. Without loss of generality we may suppose that

Viix = {(Vig1s .- vy and V\ Vix = {v1, ..., 03} (2 < n).
Then matrix T is of the form
701)
T2)
T =
(Vﬁ)
T 2)

Here, T isad x d orthogonal matrix if node v; is free,
while it is a rectangular matrix with full row rank if node v;
is a roller support. Then the transformation is written as

u="Tu,
and its inverse is

i="T"u. 3)

Example 1 Consider the truss shown in Fig. 1a. The truss
lies in a plane, i.e., d = 2 and consists of m = 2 members
connected to n = 3 nodes and hence ¢ = 6. Node vy is a
roller support, v; is a free node and v3 is a pin support, i.e.,
Viix = {v3} and 77 = 2. The number of degrees of freedom
of displacements is p = 3. Coordinate systems C and ¢
can be defined, for instance, as depicted in Figs. 1a and b,
respectively. The transformation matrix, T € R3*®, from C
to C is given by
cos 6 sin6]0 0[0 0
T=1| 0 0 [10[00

0 010100

Thus 7V is a 1 x 2 rectangular matrix and 7("?) isa 2 x 2
orthogonal matrix.

In the following the stiffness matrix in the small defor-
mation theory is formulated as an explicit function of the
locations of nodes, x. We begin with the compatibility
relation in coordinate system C. Consider member i =
(vj,n) € &, which connects node v; and node vi. We
use e; to denote the elongation of this member. Observe
that the directional cosine from node vy towards node v; is
given by x /) — x0) /I (x). Define Iv)i (x) € RY as a block-
partitioned vector such that the block corresponding to node
v; and vy are equal to the directional cosines of x ") — x (")
and x0) — xO)), respectively, and all the other blocks are
zero vectors. Namely, Bi (x) € RY is of the form

“
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Fig. 1 Definitions of the two
coordinate systems. a
Coordinate system C; and b

coordinate system C Au3
V) >l/£2
V3 0
Y
X
(a)

and then the compatibility relation between e; and # is given
by

e; = bi(x) . Q)

We define the stiffness matrix respect to coordinate sys-
tem C as usual. By performing coordinate transformation
(3), (5) is reduced to

ei = (Thi(x) u. 6)
Let s; denote the axial force of member i. Since linear
elasticity is assumed, the constitutive law is given by
Ea;
=——¢,
li(x)
where E is the Young modulus. From (6) and (7), the stiff-

ness matrix of the truss, denoted K (a; x) € S?, is written
as

K(a: x) = ; szap (Tiz,- (x)) (Tbi (x))T. ®)

(N

Si

Finally, we reduce lv),' (x) in (8) to a form useful in the
subsequent discussions. Define J; € S (i € £) as

Id —Id v
Ji =
—Id ]d — Vi ’
i) i)
Vj Vi (9)

i.e., it is a constant block matrix such that only the blocks
related to nodes v; and vy are nonzero matrices. Then b; (x)
defined by (4) can be expressed as

. 1
b; = —Jix. 10
(x) s x (10)
Substitution of (10) into (8) yields
Eai T
K(a;x) = ;li(xp (TJix)(TJix)". a1

We will use this form in the subsequent sections.

23]
v, 7 Ail

(b)

Note that coordinate system C is never used in the
remainder of the paper. The global coordinate system is
always taken as C.

2.2 Semidefinite programming formulation
for conventional compliance optimization

This section briefly recalls the conventional compliance
optimization of trusses, without considering uncertainties
and its SDP formulation in literature.

The compliance is a measure of flexibility of a structure.
For given load f, member cross-sectional areas a and nodal
coordinates x, the compliance of the truss is defined by

n(a;x)=sup{2fTu—uTK(a;x)u:ueR”]. (12)

We write x = X to clarify that, in this section, x is
supposed to be known without uncertainties. In the lat-
ter sections, X will be interpreted as the nominal value,
or the best estimate, of x. The minimization problem of
compliance under the volume constraint is then formulated
as

Minimize w (13a)
a,w

subjectto  w > m(a; X) (13b)

1(%)"a <V, (13¢)

a >0, (13d)

where V,, > 0 is a specified upper bound for the structural
volume. Note that @ € R™ and w € R are variables to be
optimized. Constraint (13c) is satisfied with equality at the
optimal solution of problem (13).

It is known that problem (13) can be recast as an SDP
problem. More specifically, constraint (13b) can be written
as a linear matrix inequality in terms of @ and w. This fact
corresponds to a special case of Lemma 2.2 of Ben-Tal and
Nemirovski (1997), where the robust compliance constraint
under load uncertainty was treated. Below we briefly restate
this result for a fixed load. This SDP formulation serves as a
basis of our SDP formulation for robust optimization devel-
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oped in Section 3. From definition (12) of the compliance,
we can see that constraint (13b) reads

wzsup[2fTu—uTKu:u ERP],

which is equivalently rewritten as
w>2f"u—u"Ku (YueRP).

This inequality is written of the quadratic form

2 B[]0 vmes

(14)
By applying Lemma 8 in Appendix, (14) is equivalently
rewritten as

o

In short, (13b) is equivalent to (15).

As a consequence of the discussion above, the truss
optimization problem in (13) can be rewritten equivalently
as

s5)

(TO) : Minimize w (16a)
a,w
.
subject to [W f — } =0,
f|K(a;%) (16b)
1(#)a <V, (16¢)
a>0. (16d)

In this problem, the objective function in (16a) is a linear
function of w. Also, constraints (16¢) and (16d) are lin-
ear inequality constraints on a. Since X is fixed, we can
see from (11) that the stiffness matrix depends linearly
on ai,...,da,. Hence, constraint (16b) is a linear matrix
inequality in terms of @ and w. Therefore, problem (16) is an
SDP problem.

3 Robust optimization and its safe approximation

This section explores a robust optimization method of
a truss subjected to uncertainties in locations of nodes.
Section 3.1 defines the robust truss optimization problem. In
Section 3.2 we propose an SDP problem that serves as a safe
approximation of this robust truss optimization problem.

3.1 Robust optimization under uncertainty in locations
of nodes

Since structures in the real world inevitably encounter var-
ious uncertainties in geometry caused by manufacturing
errors, aging, deterioration, etc., robustness to geometri-
cal uncertainties should be taken into account in structural
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design. This section defines a deterministic (i.e., non-
statistical) model of uncertainty in x and formulates a
robust optimization problem of a truss subjected to the
uncertainty. This problem is considered a robust counter-
part of the compliance minimization problem formulated in
Section 2.2.

Uncertainty in the locations of nodes, x, is modeled as
follows. Let ¥ € RY denote the nominal value, or the best
estimate, of x. Suppose that x can possibly take any value
in a compact convex set as

xed, X ={x+AL:[¢ll2=r} a7

Here, » > 0 is a given constant, { € R/ is a vector of uncer-
tain variables that can take any value in the closed ball with
radius r, i.e.,

tez. Z=[ceR |t =r],
and A € R?*/ is a constant matrix satisfying
IAll2 = 1. 18)

Matrix A has a block structure corresponding to nodes
Vi, ..., Vy as

AOD
A= : (19)

where A®) e R?*! (Vv € V). For instance, by putting A =
1, we suppose that the locations of all nodes are uncertain.
As another example, if the location of node v; is supposed
to be known without uncertainty, then we put A®) = 0.
Constant r > 0 is called the uncertainty parameter, which
expresses the level of uncertainty in the following sense
(Ben-Haim 2006):

i) Xp={x}and
(i) r < r’ implies X, C X.

That is, (i) only the nominal case is considered at r = 0
and (ii) the range of possible scenarios of nodal locations
increases as r increases.

Recall that the conventional topology optimization prob-
lem has been formulated as (TO) in (16). In the fol-
lowing we formulate a robust counterpart of (TO), when
x undergoes the uncertainty in (17). Note that, in (TO),
constraints (16b) and (16¢) involve x. Both constraints
can be converted to robust constraints. However, com-
pared with the compliance constraint in (16b), the vol-
ume constraint in (16¢) is considered a soft constraint,
because the structural performance is related only to the
compliance constraint. For this reason, throughout the
paper we evaluate the structural volume at the nominal
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member lengths and, thence, constraint (16¢) is not con-
verted to a robust constraint. Only constraint (16b) is
required to be satisfied all possible x’s. Then the robust
topology optimization problem is formulated as

(RTO) :
Minimize w (20a)
. w fr
subject to {f K(a;ic+A§)] =0
(v¢e2,), (20b)
1(®)a < W, (20¢)
a>0. (20d)

Here, a € R™ and w € R are variables to be optimized.

In dealing with problem (20), a key is treatment of the
stiffness matrix, K (a; x), in constraint (20b). Recall that
K (a; x) is given by (11), where x is now supposed to follow
the uncertainty model in (17), i.e., x = X + A¢. Substitution
of this equation into (11) yields

K@@+ Ag) =Y aiwi(©)(bi + Cio)bi + Ci5)T. @21)
ie€

where k; : R — R, b; € R? and C; € RP*! are defined by

Ki = T 2 22
= G Aoy 22)

b, =TJx, (23)
C;, =TJ;A. 24)

Particularly, at the nominal value, (21) is reduced to

K(a: %) = Z aiki (0)b;b;". (25)

ie€
The difficulty of problem (20) stems from the high nonlin-
earity of the formulation in (21).

3.2 Safe approximation of robust optimization

The robust topology optimization problem (20) formulated
in Section 3.1 is not tractable computationally, because
it has infinitely many positive-semidefinite constraints in
(20b). This motivates us to construct an optimization prob-
lem that serves as a safe approximation of problem (20)
and can be solved easily. This section formulates an SDP
problem, the optimal solution of which is guaranteed to sat-
isfy all the constraints of the original robust optimization
problem (20).

We first consider a lower bound for «;(¢) defined by
(22), when ¢ is running through Z,.. As seen in (21), «; (&)
appears in the stiffness matrix as a coefficient. The follow-
ing lemma, providing us with a lower bound, prepares our
SDP formulation discussed in Theorem 1.

Lemma 1 Define k; € R by

K £ (26)
Ki = ————.
(l; +2r)3

Then we obtain 0 < k; < min{x;(£) : ¢ € Z,}.

Proof Since E > 0, l~l > 0 and r > 0 by definitions, it is
clear that ¥; > 0. With reference to (22) and (26), we see
that the assertion of this lemma is obtained by showing

L+ AL) <L +2r (V¢ € Z). (27)

Recall that the location vector of node v € V is given by
0 = §) 4 A0

Hence, concerning the length of member i = (v, ;) € &,
we obtain

li(x + Al)

= G 448 — @ + AW )|)

< &9 — My + [ACDg |l + 1AM |l

<@+ A2l 2 + 1A 2012 l2.,

where the triangularity inequality and Lemma 6 (in

Appendix) have been used. Furthermore, for any v € V), we
have that

max{[|AP21I¢]l2 : ¢ € 2} = 1AV |lor (28)
and
AP, <1 (29)

due to assumption (18). By using (28) and (29), we obtain

LAY 101 12 + 1AM [ l1E 112

< (IAYD |l + 1AM )r <2r (V¢ € Z,),

and hence (27) holds. O

We construct a safe approximation of the robust opti-
mization problem by making use of value x; in Lemma 1.
By using b; given by (23), define B; € RP*™ (Vi € &) by

Bi=1[ 1bil 1. (30)
1

1
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i.e., it is a constant block matrix such that the ith column is
equal to b; and the other columns are zero vectors. Consider
the following optimization problem:

(ARTO) :
Minimize w (31a)
a,w,A
—rBlT
subject to wlfT |+ Z aiK;
f i€€ | —rB;| |bib]
diag(4)
+
-Y rncc!
ic€ (31b)
1(®)a < Vi, (31¢)
a>0, (31d)
A>0. (3le)

This is an SDP problem in variablesa € R, w € Rand A €
R™, because constraint (31b) is a linear matrix inequality in
terms of these variables.

Problem (31) provides us with a conservative approx-
imation of the optimal solution of (RTO) in (20).
This key issue is formally proved in the following
theorem.

Theorem 1 (ARTO) in (31) is a safe approximation of
(RTO) in (20), in the sense that if (a,w,L) € R™ x
R x R™ is feasible for (ARTO) then (a, w) is feasible for
(RTO).

Proof We shall show that (a,w) is feasible for (20b) if there
exists A € R™ satisfying (31b) and (31e).

For simple presentation, we use the following notation.
Define 2(a; ¢) € SP*! by

2= [t ]

so that constraint (20b) can be written as
2(a;¢) >0 (V¢ e Z). (33)

For each i € &, define b; € RPF!, B, € RP+Dxm and
é,‘ (S R(p+1)><l by

~ 0

b[ = [b—] s (343)

. [oT]

B, = F , (34b)

. [oT

C; = F , (34¢)
1
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where b;, B; and C; have been defined by (23), (30), (24),
respectively. By using these vectors and matrices, define
20 €SP and 2;(¢) € SPT (i € £) by

.
2= | }

’ {fO (35)
Qi) = (bi + Cio)bi + Cio)". (36)

With reference to (21), we see that £2(a; ¢) in (32) can be
written as

2(@:8) =20+ aixi ()i (2).
ie€

(37)

With the preparation above we derive a sufficient con-
dition for constraint (20b), i.e., for (33). By definition of a
positive semidefinite matrix, (33) is equivalently rewritten
as

ET2(a;0)E>0 (V¢ € 2, VE e RPT,

This condition is also equivalent to

rrgn{sTQ(a; 0E:LeZ} =0 (VEeRM, (38)
Substitution of (37) into (38) yields
min 17208 + ) aiki(§)F 20§ 1 ¢ € Zr} >0
ie€
(V& e RPTH, (39)

Condition (39) holds if
§1208+ ) aimin{i(©)F 28 ¢ €2} 20

ie

(V€ € RPTY) (40)

is satisfied. Thus we see that (40) is a sufficient condition
for (20b).

We next deal with the minimization problems included in
(40). For fixed & € RP*! we obtain

minfx; (§)& ' 2;()& : ¢ € Z,)
> min{x; (§) : & € Z, ) min{E " 2:(0)E : ¢ € Z,)

> & min{é ' 2;(0)& : ¢ € 2}, (41)
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where the last inequality follows from Lemma 1. Substitu-
tion of (36), i.e., the definition of £2;, into (41) yields

Gmin {672,081 ¢ € 2|

= i min {£7 (i + Cio) by + Cio) T8 1 ¢ € zr}

— & Thib, £
+#%; min [2§Té,-;l3,»§ FETCerTCTE e z,]

> i (87hib; & + 2bigImin {(CT6) ¢ ¢ € 2,
+min{gTéi;;TélT.§ re Z,})

> i (§Thib, & — 2r1b, £11C]¢12)

=i (ETM,-T:: —2r max [b £ < il < ||é,-Ts||z}).

“2)

Here, the second inequality follows from Lemma 5 (in
Appendix) and

min [§7¢,5¢7¢ 8¢ e 2,
- min{(cTé‘iTE)z e Zr} —0,

while the last equality follows from Lemma 4 (in
Appendix). It follows from (41) and (42) that (40) holds if

£7 020k
+Zaz’<l ('S b b E_zrmax{b &n; 1 nil < ”CTE”2})
ie€

>0 (V& e RIT (43)

is satisfied, i.e., (43) is a sufficient condition for (40). Con-
dition (43) is equal to the condition that, for variables & €
RP*! and y € R™, the implication

il < 1€ &ll2 (Vi € €)
. A AT AT
= &2k + ) aiki (§7hib; & —2rnib; £) = 0644)
=
holds. Note that both sides of implication (44) are expressed

as quadratic inequalities in terms of & and 7. Indeed, by
using constant matrices E; ; € S™ (i € £) defined by

~—

(45)

we can rewrite (44) as

1 a3
- WAl

T AT

n v —IB;
+ |1 "
[é} P Y aik l—rB,- bib,

(Vie€)

(46)

Implication (46) clearly consists of quadratic inequalities
of & and 7. Then by applying Lemma 9 (in Appendix) we
see that (46) holds if there exist nonnegative real numbers
Am satisfying

(47)

By substituting the definitions of Bi, l§l~ and éi (in (34)) and
that of £2¢ (in (35)) into (47), this sufficient condition for
(46) is written as

A >0:
—rB;
wlfT |+ Z a;K;
f icé —rBi| | b/
E;;
+Y A = 0.
i T
IS _CiC,‘ (48)

We thus conclude that condition (48), which corresponds
to constraints (31b) and (31e), is a sufficient condition for
constraint (20b). O

Theorem 1 asserts that the optimal solution of (ARTO)
(in (31)) is feasible for the original robust optimization prob-
lem, (RTO) in (20). Thus (ARTO) serves as a conservative
approximation of (RTO). It is difficult to deal with (RTO)
computationally, because (RTO) has infinitely many con-
straints in (20b). In contrast, (ARTO) is a conventional SDP
problem and it can be solved efficiently with a primal-dual
interior-point method. Since we do no resort to any approx-
imation for formulating the stiffness matrix with uncertain
node locations, conservativeness of the obtained solution
is guaranteed for arbitrary large r, as shown in Theorem
1. Instead, the optimality of the obtained solution is not
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guaranteed, i.e., the optimal solution of (ARTO) is not
optimal for (RTO) in general.

Remark 1 The size of (ARTO) in (31) is larger than the
size of (TO) in (16). The number of variables is increased
from m + 1 to 2m 4 1. The size of matrix subjected
to the positive-semidefinite constraint is increased from
(p+Dx(p+1Dto(p+m+1)x (p+m-+1). However,
all the coefficient matrices in (31b) are sparse matrices.

Remark 2 In the proof of Theorem 1 we have shown that
(43) is a sufficient condition for constraint (20b). In this
process, we use the fact that (40) is a sufficient condition
for (39). Unlike (39), minimization in (40) is performed for
each i € £. This means that, in (40), effect of uncertainty
on each member is considered independently. This over-
estimates the effect of uncertainty, because the location of
one node generally affects all members connected to that
node. In other words, in (40) we consider an incompati-
ble situation such that two members connected by a node
in the nominal scenario are supposed not necessarily to be
connected in the worst scenario. For this reason, it might
probably happen that the optimal solution of (ARTO) is too
conservative, compared with the optimal solution of (RTO).
In Section 5.3, we shall use a small numerical example to
investigate tightness of approximation of (ARTO).

4 Two properties of the proposed formulation

This section explores favorable properties of (ARTO), prov-
ing two theorems. The first, Theorem 2, establishes that,
when r = 0, (ARTO) coincides with the standard compli-
ance optimization, i.e., (TO) in (16). In this sense (ARTO)
can be considered a natural extension of (TO). The second,
Theorem 3, establishes, under fairly general conditions, that
the truss obtained as the optimal solution of (ARTO) is sta-
ble. This might be considered a significant advantage of the
proposed formulation, because the optimal solution of (TO)
is often unstable and an unstable truss has no robustness
against uncertainties in external forces as well as locations
of nodes.

4.1 Nominal case

This section discusses a particular case, » = 0, which means
that no uncertainty is supposed.

When r = 0, we can show that problem (31), which
serves as a conservative approximation of the robust truss
optimization problem, coincides with the nominal truss
optimization problem, i.e., problem (16). More precisely,
at r = 0, these two problems share the same optimal
value and the optimal truss design of one problem is also
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optimal for the other problem. In this sense, the pro-
posed formulation, (31), is considered a natural extension
of the nominal optimization problem, (16). This equiva-
lence follows straightforwardly from Theorem 2 presented
below.

Theorem 2 Suppose r = 0. If a € R™ and . € R™ satisfy
(31b) and (31e), then a satisfies (16b). Conversely, if a €
R™ satisfies (16b), then there exists A € R™ such that a and
A satisfy (31b) and (31e).

Proof We begin by considering constraint (31b) at r = 0.
Recall that &; in (31b) is defined by (26). With reference to
definition (22) of k;, we see that k; = «;(0) holds at r = 0.
Therefore, when » = 0, constraint (31b) reads

wlfT ]+ Z a;%;(0)
f ic&
diag(1)

b;b;

-Y xnac!
€€ (49)

Since the left-hand side of (49) is a block-diagonal matrix,
(49) is equivalent to

diag(1) > O, (50a)
w fT
[f } +,~§’g ai%i{0) [ bibiT]
AR
gs etes (50b)

Note that (50a) is equivalent to (31e). On the other hand,
(16b) is rewritten as follows. Substitution of (25) into (16b)
results in

[%ﬁ} +i§€ aik;(0) [%] z0. (51

As a consequence, the assertion of this theorem is obtained
by showing that (51) is satisfied if and only if there exists A
satisfying (50b) and (31e).

Suppose that a satisfies (51). Then (50b) and (31e) are
satisfied with A = 0. This shows the “only if” part. The
converse is shown as follows. Suppose that @ and A satisfy
(50b) and (31e). Then we have that

[ B0 o] = 2 Heer =

This implies that a satisfies (51). O
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4.2 Stability of optimal truss

This section shows that the truss obtained by solving
(ARTO) (in (31)) is stable (i.e., kinematically determinate).
See, e.g., Kuznetsov (1988), Pellegrino (1993), Pellegrino
and Calladine (1986) and Tarnai (2001) for the notion of
kinematical determinacy.

Stability of the optimal truss is formally defined as fol-
lows. Let (@, w,A) € R™ x R x R™ denote the optimal
solution of (ARTO). Define &,x € € by

Eopp =1{i € £ :a; > 0},

i.e., Ept is the set of members that exist at the optimal
solution. Define Vope € V as the set of nodes that are
connected to a member belonging to Epe. In other words,
ifi = (vj, ) € Eopt, then vj, vp € Vopr. Then graph
Gopt = (Vopt, Eopt) corresponds to the topology of the opti-
mal truss, a. We say that the optimal truss, a, is stable if any
displacement vector u = (u") | v € V) solving

K@ xu=0

satisfies u") = 0 (Vv € Vopt). Note that the stability
is evaluated when the nodes exist at their nominal loca-
tions. Stability does not mean that K (a; x) has full rank, if
some nodes are removed at @. We may consider a stiffness
matrix only with the rows and columns corresponding to the
degrees of freedom of the nodes belonging to Vop. Then
stability of the optimal truss means that this newly-defined
stiffness matrix has full rank (equivalently, it is positive
definite).

To establish the main result stated in Theorem 3, we
need the following assumption, which is unrestrictive from
a practical point of view.

Assumption1 (i) Any node v € Vo is either pin-
supported or free.

(ii)y For any member i = (v, vx) € &, matrix AWD —
A has full row rank, i.e., rank (A(”-i) — A(”k)) =d.

@iy r>0.

Remark 3 Assumption 1 (i) means that the optimal truss
does not have any roller support. This is, certainly, satisfied
if the ground structure has no roller support.

Remark 4 Assumption 1 (ii) means that, for i = (v;, vx) €
&, the location of node v; can vary independently of the
location of node v. For instance, if we choose A = [, in
(17), then this assumption is satisfied. Note that locations of
pin supports are also considered uncertain.

Remark 5 Assumption 1 (iii) is natural because r = 0
means that no uncertainty is considered.

The following two lemmas prepare for the main result
stated in Theorem 3.

Lemma 2 Suppose r > 0. Let (a,w, ):) € R" x R x R"
denote the optimal solution of (ARTO) in (31). Then A; >
0 (Vl (S gopt).

Proof Since any principal submatrix of a positive semidefi-
nite matrix is positive semidefinite, constraint (31b) implies
A
—aik;rb;

—d,-fc,-rb,-T
Y (@kbb, —4CCl)| =0 (Vi€E).
icg (52)

Suppose, for contradiction, that there exists member i€ Eopt
satisfying A; = 0. Then (52) reads

0 | —a;k;rb!
icek
which implies
‘;;Z;rb;. =0. (53)

In contrast, from the assumption of this lemma we have that
Ez; # 0 and r # 0. Furthermore, for any i € £, we see that
b; # 0 and K; # O from their definitions in (23) and (26).
Therefore, a;K;rb; # 0, which contradicts (53). O

Lemma 3 If Assumption 1 is satisfied, then any connected
component of graph Gopr = (Vopt, Eopt) has at least one
Support.

Proof Suppose, for contradiction, that Gop has a connected
component that has no support.

If no external load is applied to this connected compo-
nent, then all the members in this connected component can
be removed without changing the compliance of the total
structure. This means that an optimal solution cannot have
such a connected component. Hence, in the following, we
suppose that some external forces are applied to the con-
nected component. Note that no reaction is applied to the
connected component, because we are assuming for contra-
diction that the connected component has no support. The
proof proceeds by considering two cases.

(a) Suppose that the external forces applied to the con-
nected component are not in static equilibrium when
x = Xx. Then the forces cause rigid-body motion in
a direction of the unbalanced force. Therefore, the
compliance is not bounded above. This contradicts
the argument that Gope = (Vopt, Eopt) is feasible for
(ARTO).

(b) Suppose that the external forces applied to the con-
nected component are in static equilibrium when
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x = X. Choose a node at which an external force is
applied. We use v to denote this node. From Assump-
tion 1 (ii), the location of node v can be perturbed
arbitrary with satisfying x € A}, when the locations
of the other nodes are fixed. Here, the direction of
the external force at node v is not changed. Therefore,
there exists a location of v at which the equilibrium
of moments of external forces will be violated. This
location of the node yields the worst-case compliance,
which is not bounded above. Such a solution is not fea-
sible for (ARTO) and this contradicts the assumption
of this lemma.

Thus contradiction arises in each case and hence any con-
nected component of Gopt has at least one support. O

We are now in position to state the main result of this
section.

Theorem 3 If Assumption 1 is satisfied, then the truss
obtained as the optimal solution of (ARTO) in (31) is
stable.

Proof From (25), the stiffness matrix of the optimal solu-
tion with the nominal nodal locations, i.e.,x = X and ¢ = 0,
is given by

Z ﬁ,’l(i (O)blb;r

ie€

Hence, the assertion of this theorem can be obtained by
showing that any u solving

ZEI,‘K,‘ (O)bibiTu =0 (54)
ie€
satisfies u™ = 0 (Vv € Vopt)-

It follows from Lemma 1 and constraint (31b) of (ARTO)
that the stiffness matrix satisfies

> aiki(O)bib] = Y aikibib] =y 1 CiCl (55)
ie€ ie€ =
On the other hand, (54) implies

u' (Z aik; (0)b,-b,T> u=0. (56)

ie€
By using (55), we see that (56) implies

uT (Z 2:C; C,T) u=>y % (clTu)T (clTu) =0. (57)

ief ie€
It follows from Lemma 2 that (57) implies
Clu=0 (Vi e&p). (58)

In the following we show that any u solving (58) satisfies
u’ =0 (Yv € Vop). Choose a connected component of G
arbitrarily. Lemma 3 asserts that this connected component
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has a support. Let v denote this support. Choose member
i=@)e Eopt- From Assumption 1 (i), node v’ is either
a support or a free node. If node v’ is a support, then @; = 0
holds at the optimal solution and hence i & Eopt- Therefore,
node v is a free node. From (24) (see, also, (2), (9) and (19)),
matrix C; € RP*! is of the form

(59)

i.e., it is a block matrix such that only the block related
to node v’ is a nonzero matrix. Here, T"") € R?*4 ig an
orthogonal matrix. From (59), equation CZT u = 0in (58) is
written as

T — A = 0. (60)
It follows from Assumption 1 (ii) and the orthogonal prop-

erty of T) that TV)(AM) — AM) has full row rank.
Therefore, (60) implies

u =0. ©61)
We next choose member i’ = (v, ") € Ep such that node

V" € Vopt is a free node. Then matrix C;r € RP*! is of the
form

Therefore, equation C i—',—u = 0in (58) is reduced to

70 ( AW _ A(u”)) 1™ 470" ( A0 _ AW)) u")

=70 (400 = 40)ut" =0, (62)

where (61) has been used. From Assumption 1 (ii) we see
that 7" (A(””) - A("/)> has full row rank, because 7"

is an orthogonal matrix. Therefore, (62) implies u) = 0.
By repeating this procedure, we can show that u"") = 0
should be satisfied at any node w contained in the connected
component.

The discussion above is valid for any connected compo-
nent of Gop. Therefore, we can conclude that any solution
of (58) satisfies u™”) = 0 (Vv € Vopt)- O

The assumption required in Theorem 3 is not restrictive,
as briefly discussed in Remark 3, Remark 4 and Remark 5.
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(b)

Fig. 2 Example (I). a The ground structure; and b the nominal optimal solution (» = 0)

Since it is well known that standard compliance opti-
mization often yields an unrealistic unstable truss design,
guarantee of stability provided by the presented method is
significant from a practical point of view.

5 Numerical experiments

This section presents various numerical examples. The pro-
posed SDP problem, (ARTO) in (31), is solved to find robust
truss designs. Section 5.1 considers some different uncer-
tainty models and studies difference of optimal solutions.
Section 5.2 discusses a relation between the level of uncer-
tainty, r, and optimal topology. Section 5.3 studies a small
example to estimate the tightness of approximation of the
presented formulation. Section 5.4 collects examples with
larger sizes.

Computation was carried out on a 2.6 GHz Intel Core
i5 processor with 8 GB RAM. SDP problems were solved
with SeDuMi ver. 1.3 (Pélik 2005; Sturm 1999) on MAT-
LAB ver. 7.7. Note that SeDuMi implements a primal-dual
interior-point method for linear programming problems over
symmetric cones.

All the examples consider planar trusses, i.e., d = 2. The
elastic modulus is 200 GPa. The upper bound constraint on
the structural volume becomes active at the optimal solution
of each example.

5.1 Example (I): Effect of difference of uncertainty models

This section studies variation in optimal solutions due to
differences of uncertainty model.

Consider the ground structure shown in Fig. 2a. This
truss consists of m = 38 members connected by n = 5x3 =
15 nodes and hence ¢ = 30. The lengths of all horizontal
member and vertical members are 1 m. The leftmost nodes,
i.e., nodes vy, v» and v3, are pin-supported. The number of
degrees of freedom of displacements is p = 24. A hori-
zontal force of 10 N is applied at the rightmost node in the
middle row, i.e., node v;. The specified upper bound for the
structural volume is V, = 0.05m>.

Figure 2b shows the trivial optimal solution of the
conventional compliance optimization without considering
uncertainty, i.e., r = 0. Four members with uniform cross-
sectional areas are aligned on a straight line. This solution
is certainly unstable.

Fig. 3 Robust optimal solutions
of example (I) with » = 0.05 m.
a Model (i); b model (ii); ¢
model (iii); and d model (iv)

(b)

(d)
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Table 1 Computational results of example (I)

Opt. val. (J) w(a; x) J)
Model (i) 0.37821 0.21630
Model (ii) 0.33787 0.20566
Model (iii) 0.31700 0.19858
Model (iv) 0.24570 0.17116
Nominal 0.16000 0.16000

As for the uncertainty models of node locations, we
consider four cases:

— Model (i): Locations of all the nodes possess uncer-
tainty (! = g = nd = 30).

— Model (ii): Locations of nodes v», v4, vs, vg and vy
possess uncertainty (I = 5d = 10).

— Model (iii): Locations of nodes v4, vs and vg possess
uncertainty (! = 3d = 6).

— Model (iv): Location of node v4 possesses uncertainty
(l=2).

Note that matrix A for model (i) is A = I,. For models (ii),
(iii) and (iv), A € R?*! is of the form

_| 4
A_|:0] (63)

Table 2 The obtained solutions of example (I)

Cross-sectional area (mm?)

Member Model (i) Model (ii) Model (iii) Model (iv)
1 1910.5 1609.7 1425.4 392.4
2 1661.7 1398.0 1229.8 1.8
3 854.2 999.0 723.0 1.1
4 (<0.1) 0.2 0.2 0.5
5 7023.4 7683.2 8312.0 11145.8
6 7469.0 7896.2 8496.6 11244.4
7 7667.0 8443.5 8932.1 11633.3
8 7925.1 8628.5 9350.0 11634.5
9 235.1 224.0 210.5 401.4
10 203.0 104.1 180.5 0.8
11 624.7 542.4 375.5 0.8
12 (<0.1) 000.2 0.1 0.5
13 679.7 448.7 329.3 441.0
14 287.6 299.6 281.7 524.3
15 585.2 3213 436.4 0.8
16 952.4 1024.5 725.0 1.0
17 (<0.1) 000.2 0.1 0.8
18 461.0 245.0 293.8 0.9
19 193.6 345.2 273.9 0.3
20 (<0.1) 0.2 0.1 0.3
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Fig. 4 Example (II). The ground structure

The level of uncertainty is » = 0.05m in all these cases.
With probabilistic uncertainty setting, similar problem was
solved by Guest and Igusa (2008, section 3.6).

5.1.1 Solution under uncertainty in all nodes (model (i))

Figure 3a shows the optimal solution of (ARTO) in (31)
with model (i). The width of each member in this figure is
proportional to its cross-sectional area. The computational
results are listed in Table 1. The results in the nominal case,
r = 0, is also listed in the bottom row of this table. Here,
“Opt. val.” shows the optimal value and 7 (a; X) is the com-
pliance when the nodes are located at the nominal positions,
x.Notethat 1J = 1N - m.

As stated earlier, without considering uncertainty stan-
dard optimization yields an unstable truss design shown in
Fig. 2b. When locations of existing nodes are perturbed in
the vertical direction, this solution cannot equilibrate under
the given external load. Therefore, this solution is not feasi-
ble for our robust optimization problem; thus unrealistically
unstable truss designs are excluded by considering uncer-
tainty in node locations. The same assertion was made by

0.5¢
—~ 04}
=
3
o
=
g 0.3F
=
i
=
S oa o} topologyl
* topology2
A topology3
+ topology4
¢ topologyb
0'10 0.02 0.04 0.06 0.08 0.1

Level of uncertainty, r (m)

Fig. 5 The variation of the optimal value, w, of example (II) with
respect to the level of uncertainty, r
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Fig. 6 The optimal topologies . C
in Fig. 5. a Topology 1; b

topology 2; ¢ topology 3; d

topology 4; and e topology 5

Guest and Igusa (2008) with probabilistic uncertainty set-
ting. The robust optimal solution shown in Fig. 3a is stable,
which agrees with Theorem 3.

5.1.2 Solutions under uncertainty in some nodes (models

(it)(iv))

This section mentions the results with uncertainty models
(ii), (iii) and (iv). Figs. 3b, ¢ and d show the optimal solu-
tions with models (ii), (iii) and (iv), respectively. Table 1
reports the optimal values and the values of compliance with
the nominal locations of the nodes. In each case the compu-
tational time required by SeDuMi is less than 2 seconds. The
member cross-sectional areas of the obtained solutions are
reported in Table 2, where the member indices are defined
in Fig. 2a. The solutions obtained with models (ii) and (iii)
are stable and have the same topology as the solution with
model (1).

In model (iv), the location of only one node is considered
uncertain. The solution obtained with this model is unstable,
where only members around the uncertain node are braced.

[>o

1m

1m °
(a)

This agrees with the result obtained by Guest and Igusa
(2008) with probabilistic uncertainty setting.

5.2 Example (II): Effect of uncertainty magnitude

This section examines how the robust optimal solution
varies when the magnitude of uncertainty, r, is changed.

Consider the initial truss shown in Fig. 4. The truss con-
sists of m = 24 members connected by n = 9 nodes, where
q = dn = 18. The lengths of all horizontal and vertical
members are 1 m. The leftmost nodes are pin-supported.
The number of degrees of freedom of displacements is p =
12. A horizontal force of 10N is applied at the rightmost
node in the middle row. The upper bound for the structural
volume is V, = 0.01m>. Locations of all the nodes are sup-
posed to be uncertain, where matrix A in (17) is A = I,
with [ = q.

Figure 5 shows the variation of the optimal value, w, with
respect to the level of uncertainty, r. The trade-off relation
between the worst compliance and the level of uncertainty
is clearly captured from this curve, called the robustness

(b) (©)

Fig. 7 Example (III). a The 2-bar problem; b the nominal optimal solution; and ¢ the robust optimal solution
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5.7t

5.6f

5.5

5.4r

Compliance (J)

0 (rad)

Fig. 8 The variation of the compliance of example (III) with respect
to the location of the node

curve (Ben-Haim 2006). Namely, the robustness cannot be
improved (i.e., r cannot be larger) when the requirement
of the performance becomes more severe (i.e., w becomes
smaller). As r is increased, the optimal topology changes in
the five types shown in Fig. 5.1.1.

It is observed in Fig. 5.1.1 that, when r is small, thin
braces are used to stabilize the two thick members in the
middle row. As proved in Section 4.1, the optimal solution
at r = 0 in Fig. 5.1.1a coincides with the optimal solution
of (TO). When r is large, the optimal topology becomes a
two-bar truss. As r becomes larger, the number of existing
nodes becomes smaller. Thus the optimal topology depends
on the level of uncertainty.

5.3 Example (IIT): Tightness of approximation

As already proved, the presented method provides us
with a safe approximation of the robust optimal solution.

Theoretically, in this paper we do not analyze tightness of
approximation. In other words, we do not know how far the
optimal solution of (ARTO) is from the optimal solution of
(RTO). This section investigates the tightness numerically
using a small example.

Consider the 2-bar truss shown in Fig. 7a. The two left
nodes are pin-supported, i.e., p = 2. The location of the
right free node is supposed to be uncertain, while the loca-
tions of two supports are supposed to be known precisely,
i.e., the number of uncertain parameters is / = 2. Matrix A
is given by (63) and the level of uncertainty is » = 0.01m.
This means that the free node can exist at any points in and
on a circle with radius r as shown in Fig. 7a. A horizontal
force of 100N is applied at the right free node. The upper
bound for the structural volume is V,, = 0.01 m3.

The nominal optimal truss, i.e., the optimal solution of
(TO) in (16), is trivially the one shown in Fig. 7b. The
member cross-sectional areas are (10000, 0) mm? and the
optimal value is 5J. Fig. 7c shows the optimal solution of
(ARTO) in (31). The member cross-sectional areas of this
solution are (9808.07, 135.71)mm? and the optimal value is
5.6587181J.

We next generate many sample points for the locations
of the free node. These samples are equally distributed
points on the two-dimensional circle with radius » shown
in Fig. 7a. The member cross-sectional areas are fixed as
the optimal solution of (ARTO) and the compliance is com-
puted. The curve in Fig. 8 depicts the compliance, where
0 is the angle of the location of node to the horizon-
tal axis. The maximum value of this curve is 5.3110271J,
when we take 1000 samples. Thus the optimal value of
(ARTO), 5.658718 1], overestimates the compliance in the
worst scenario.

Finally, we perform the worst-case minimization using
the generated samples. Namely, we solve the minimization
problem of the maximum compliance among 1000 uni-
formly distributed samples on the two-dimensional circle
shown in Fig. 7a. The optimal solution of this problem
might be expected to be very close to the true optimal

Fig. 9 Example (IV). The Do o o o o —_— Do o o o o o o o o —
ground structures. a The
5 x 5-grid ground structure; Do o o o ¢ R T L
and b the 8 x 5-grid ground Do o o o . =) Do o o o o o o o o g
structure ® ®
Do o o o o Do o o o o o o o o N
Do o o o o Do o o o o o o o o
Do o o o l 4 Do o o o o o o o l L
| 5@1m | | 8@1 m |
\ \ \ \
(a) (b)
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(c) (d

Fig. 10 The solutions for the 5 x 5-grid problem of example (IV).
r=0;br=002m;cr=0.05m;anddr =0.1m

-]

solution of (RTO) in (20). The member cross-sectional areas
of this solution are (9807.18, 136.34) mm? and the optimal
value is 5.311025 J. It is worth noting that this optimal value
is very close to the maximum value of the solid curve in
Fig. 7a. Therefore, we may probably conclude that, in this
particular example, the optimal truss design of (ARTO) is
sufficiently close to the true optimal truss design of (RTO),

Fig. 11 The solutions for the
8 x 5-grid problem of example
(IV).ar =0;br =0.02m; ¢
r=005m;anddr =0.1m

although the optimal value of (ARTO) overestimates the
true compliance in the worst scenario. This is, certainly,
just one example that yields positive result on the quality of
the optimal solution of (ARTO). It is true that the quality
of a solution is not clear when (ARTO) is applied to more
complex examples. However, for a larger problem, verifica-
tion using simple sampling, such as what performed above,
is difficult due to the curse of dimensionality.

5.4 More examples

This section collects numerical experiments with larger
scale optimization problems.

5.4.1 Example (IV)

Consider the two ground structures shown in Fig. 9, where
only the nodes are depicted. Any two nodes are connected
by a member, but overlapping of members is avoided by
removing the longer member when two members overlap.
The truss in Fig. 9a has m = 418 members and p = 60
degrees of freedom of displacements. The one in Fig. 9b
has m = 919 members and p = 96 degrees of free-
dom of displacements. In both structures, the leftmost nodes
are pin-supported. A vertical force of 10N is applied at
the bottom rightmost node. The upper bound for the struc-
tural volume is V, = 0.1 m3. Locations of all nodes are
considered uncertain, i.e.,/ = g. Matrix Ain (17)isA = I,.

The nominal optimal solutions are shown in Figs. 10a and
11a. Figs. 10b, c, d, and 11b, ¢, d show the optimal solu-
tions of (ARTO) in (31) with r = 0.02m, » = 0.05m and
r = 0.1 m. The computational results are listed in Table 3,
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Table 3 Computational results of example (IV)

Problem r (m) Opt. val. (J) w(a;x) (J) Time (s)
5x5 Nominal 0.93389 0.93389 2.9
5x5 0.02 1.07785 0.95640 131.9
5x5 0.05 1.24814 1.05772 97.1
5x5 0.10 1.56272 1.12786 86.1

8 x8 Nominal 3.49556 3.49556 10.2

8 x8 0.02 4.06993 3.54646 1285.2
8 x8 0.05 4.70739 3.96271 863.2

8 x8 0.10 5.78579 4.37983 685.8

where “Time” means the computational time required by
SeDuMi to solve an SDP problem.

The solution of Fig. 10b has all the members that exist in
the solution of Fig. 10a. In other words, the set of existing
members in Fig. 10b is a superset of the set of existing mem-
bers in Fig. 10a. In contrast, the set of existing members in
Fig. 10d is not a superset of that in Fig. 10a. The number
of existing nodes in Fig. 10d is very small due to a large
level of uncertainty in the locations of nodes. The solution in
Fig. 11b has many more members than the nominal solution
in Fig. 11a. This is because the nominal optimal solution
is unstable due to the presence of collinear members and
the robust optimal solution requires many thin members to
achieve stability. The truss topologies in Fig. 11c and d
are much different from the nominal optimal solution in
Fig. 11a. Also, the solutions in Fig. 11c and d have few

nodes, which avoids the effect of large uncertainty in the
locations of nodes as far as possible.

5.4.2 Example (V)

Consider the three ground structures shown in Fig. 12. Any
two nodes are connected by a member, but overlapping of
members is avoided by removing the longer member when
two members overlap. The truss in Fig. 12a consists of
m = 140 members and has p = 36 degrees of freedom
of displacements. The one in Fig. 12b has m = 386 mem-
bers and p = 60 degrees of freedom. The final one, shown
in Fig. 12c, has m = 748 members and p = 84 degrees
of freedom. The leftmost nodes are pin-supported. A ver-
tical force of 10N is applied at the rightmost node in the
middle row. The upper bound for the structural volume is

. = 0.1 m>. The magnitude of uncertainty is r = 0.05 m.
Locations of all nodes are supposed to be uncertain, i.e.,
l=qgand A =1,.

The nominal optimal solutions for these three ground
structures are shown in Figs. 13a, ¢ and e. The optimal
solutions obtained by solving (ARTO) in (31) are shown in
Figs. 13b, d and f. The computational results are listed in
Table 4.

In contrast to the other examples in Section 5, the three
nominal optimal solutions in Fig. 13 are stable. The nom-
inal optimal solution in Fig. 13c is similar to its robust
counterpart in Fig. 13d, but a middle node in the nominal
optimal solution is missing in the robust optimal solution.
Similarly, one node of the nominal optimal solution in

Fig. 12 Example (V). The Do o o o o o o
ground structures. a The 6 x 2-
grid ground structure; b the L g
6 x 4-grid ground structure; and Do o o o o o Do o o o o o o -
¢ the 6 x 6-grid ground structure =) ¢ @r
[> ° ° ° ° ° 6 [> ° ° ° ° ° °
(.
Do o o o o o Do o o o o o o
| 6@1m | | 6@l m |
I 1 I 1
(a) (b)
Do o o o o o o -
Do o o o o o o
Do o o o o o o
=
Do o o o o o o ¢ 5
O
Do o o o o o o
Do o o o o o o
Do o o o o o o €L
| 6@1 m J
I 1
©
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Fig. 13 The solutions of
example (V). aThe 6 x 2
nominal optimal solution; b the
6 x 2 robust optimal solution; ¢
the 6 x 4 nominal optimal

solution; d the 6 x 4 robust
optimal solution; e the 6 x 6
nominal optimal solution; and f
the 6 x 6 robust optimal solution

Fig. 13e is not used in the robust optimal solution shown in
Fig. 13f.

In Jalalpour et al. (2013, section 3.1.1) a reliability-
based topology optimization problem of a similar cantilever
truss was solved, where uncertainties in node locations were
dealt with in a probabilistic manner. It was observed in the
result of Jalalpour et al. (2013) that the number of mem-
bers increases as the probability of failure is decreased. In

Table 4 Computational results of example (V)

Problem r (m) Opt. val. (J) (a; X) (N,m) Time (s)
6x2 Nominal 4.20500 4.20500 0.7
6x2 0.05 7.71288 4.99626 7.1
6 x4 Nominal 1.72980 1.72980 2.1
6 x4 0.05 2.19051 1.75935 72.9
6x6 Nominal 1.08256 1.08255 8.1
6x6 0.05 1.28089 1.09859 370.8

contrast, it is observed in Fig. 13 that the optimal solutions
of (ARTO) has less members than those of (TO).

6 Conclusions

The concept of robustness to uncertainty is central in struc-
tural design. This paper has addressed robust truss opti-
mization considering geometrical uncertainties. We have
formulated the SDP problem that provides us with a safe
approximation of the optimal solution.

Theorem 1 establishes that any feasible solution of the
proposed SDP problem is feasible for the original robust
optimization problem. This assertion holds for arbitrarily
large magnitude of uncertainty. Instead of this guaranteed
safety, the optimal solution of the presented SDP problem
is not optimal for the original robust optimization prob-
lem in general. In the numerical experiment in Section 5.3,
it has been observed that these two optimal solutions are
close enough, although no theoretical result is available for
approximation ratio.
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Two properties of the proposed SDP approximation have
been explored. Theorem 2 shows zeroing of our SDP for-
mulation, i.e., when the magnitude of uncertainty is equal
to zero, the SDP problem truly coincides upper bound
for the structural volume without considering uncertainties.
Theorem 3 establishes, under mild assumptions, that the
optimal solution of the SDP problem is a stable truss.

In the context of compliance optimization of trusses,
guaranteed stability of the obtained solution might be
considered a fairly distinguished feature of the proposed
approach.? It is worth noting, on the other hand, that many
nodes of the initial structure can possibly disappear in the
solution obtained by the proposed approach, as illustrated in
Section 5. Roughly speaking, the truss topology can vary in
the course of optimization of the proposed approach. Stabil-
ity of a truss in compliance optimization is also guaranteed
by considering uncertainty in external loads (Ben-Tal and
Nemirovski 1997), if all the nodes of the ground structure
are subjected to uncertain external forces. In this case, how-
ever, all the nodes in the ground structure remain at the
robust optimal solution. It is not obvious to guess the set of
existing nodes at the robust optimal solution. One remedy
is making use of discrete variables representing existence
of members (Yonekura and Kanno 2010). However, such
a method, based upon mixed-integer programming, is usu-
ally time consuming. In contrast, the method presented in
this paper generates a stable truss by solving a single SDP
problem.

Through the numerical experiments it has been illustrated
that the optimal truss topology depends on the magnitude of
uncertainty, as well as the set of uncertain nodes. Roughly
speaking, when the nominal optimal truss is unstable and the
level of uncertainty is small, the robust optimal truss often
has many thin members that are used to stabilize the nomi-
nal optimal solution. In contrast, as the level of uncertainty
is large, the number of nodes of the robust optimal solution
decreases to avoid the effect of large uncertainty in the loca-
tions. If the nominal optimal truss is stable, then the robust
optimal solution is often similar to the nominal one.

This paper was restricted to the compliance optimiza-
tion of a truss. Other objective functions can be studied
to optimize other structural performance. Also, extension
of the presented method to other types of structures can
be considered. Particularly, robust optimal design of micro
compliant mechanisms (Jang et al. 2012; Schevenels et al.
2011; Sigmund 2009; Wang et al. 2011) could probably be a
promising application. Furthermore, theoretical assessment

21t is possible to guarantee stability of the optimal truss by considering
structural performance other than the compliance; the fundamental fre-
quency of free vibration is an example (Achtziger and Koc¢vara 2007;
Ohsaki et al. 1999).
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of tightness of the proposed SDP approximation remains to
be explored.

Appendix Technical lemmas

This section summarizes technical prerequisites that are
known in literature.

We begin with three lemmas related to vector and matrix
norms. These lemmas are used in Section 3.2. For p satisfy-
ing 1 < p < o0, define p* by

1 1
— 4 — =1,
%

p p

where we use the convention 1/00 = 0. The £ ,«-norm is the
dual norm of the £,-norm. For any x, y € R", we have that

xTy < lxlplylpe (64)

which is known as the Holder inequality (Horn and Johnson
1985; Steele 2004). For any x € R”, there exists y € R”
satisfying (64) with equality and || y|| ,» = 1. We denote this

yby ¥, (x).

Lemmad4 LetR > 5 > 0 be a constant, x € R" and 1 <
p < oc. Then

max{x "y : |yl < s} =sllxll,.

yeR”

Proof Forany x € R" and y € R” satisfying ||y ,x < s, it
follows from the Holder inequality that

xTy < lxll, Iyl <slxl,.

Here, two inequalities are satisfied with equalities at
Y = s¥ ,(x), which concludes the proof. O

Lemma 4 is used in the proof of Theorem 1 in
Section 3.2.

LemmaS5 Letx e R, y e R" and R > r > 0. Then

T, .
max{xy 'z :||zll2 < r} = rlx[llyl.
zeR”

Proof The Cauchy—Schwarz inequality implies
xy'z=y"x2) < Iylallxzlo:

From ||z]|2 < r, we obtain

Ixzll2 < Ix[llzll2 < |x|r.

These inequalities are satisfied with equalities at

ry,(y) if x >0,
—ryo(y) if x <O,

which concludes the proof. O
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Lemma 5 is used in the proof of Theorem 1 in
Section 3.2.
For A € R™", the matrix norm induced by the
Euclidean vector norm is defined by
lAx 2

lcll2

[[All2 = max (65)
x#0

which is equal to the largest singular value of A. From this

definition we immediately obtain the following property.

Lemma 6 Let A € R™*" and x € R". Then

[Ax]l2 < [[All2llx]]2.

Lemma 6 is used to show Lemma 1 in Section 3.2.

In the following we establish Lemma 9, which is used
in Section 3.2 to formulate the conservative approximation
of the robust optimization problem. Two lemmas, Lemma 7
and Lemma 8, prepare for Lemma 9. Firstly, we state the
following fact, which is the obvious part of the well-known
S-lemma; see, e.g., Boyd et al. (1987) and Pélik and Terlaky
(2007).

Lemma 7 Let fy, fi,..., fm
functions. The implication

fix)=20,..., fux) =20 = fo(x)=0

holds if there exist ty, . .

: R" — R be quadratic

(66)
., tm > 0 satisfying
fo) =D 6ifi(x) (vx €R").

i=1

Proof Suppose that (66) does not hold, which means that
there exists * € R” satisfying

fo®) <0, fi(x)=0,..., fn(x) =0.

Then we obtain

fo®) <0< 6 fi®) (i, ... 1y = 0).
i=1

Thus the contraposition of Lemma 7 has been shown. [

The following fact can be found, e.g., in Calafiore and El
Ghaoui (2004).

Lemma 8 Let Q € 8", p € R" and r € R. Then the
following two conditions are equivalent:

T T
(i) [ﬂ [;I’Q:||:i:|20, Vx € R, (67)

(68)

Proof 1t is trivial that (ii) implies (i). We show that (i)
implies (ii) by contradiction. Suppose that (ii) does not hold,
which means that there exists (£, ¥) € R x R” satisfying

AaT T ~
§ rp §
IHE

If £ # 0, then (69) is reduced to

N oA
g6 [rp (1267
! p 0 1 ’
which contradicts with (i). Hence, suppose é = 0. Then (69)

is reduced to

£ 0zx <o.

(69)

T
=

(70)

Let y € R be a parameter and choose x = yX in (i) to
reduce the left-hand side to

(&T ch) ) (pT;e) Y+ 1)

The left-hand side of (71) is a quadratic function of y and
(70) implies that (71) is not bounded below. Therefore, there
exists y such that (71) becomes negative, which contradicts
). O

The following fact is obtained as a straightforward corol-
lary of Lemma 7 and Lemma 8.

Lemma 9 Let fy, fi,...
functions defined by

T ) T
fi(x)=[” [; Zl][i] i=0,1,....m,

where Q; € 8", p, e R, r; e R(i =0,1,...,m). Then
the implication

fix)=20,..., fux) =0 = fo(x)=0
holds if there exist t1, . . .

s fm @ R" — R be quadratic

st = 0 satisfying
0 10 > E ti i li .
i=1 i i

Lemma 9 plays a key role in proving Theorem 1 in
Section 3.2.
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