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Abstract Time-variant reliability is often evaluated by
Rice’s formula combined with the First Order Reliability
Method (FORM). To improve the accuracy and efficiency
of the Rice/FORM method, this work develops a new simu-
lation method with the first order approximation and series
expansions. The approximation maps the general stochastic
process of the response into a Gaussian process, whose sam-
ples are then generated by the Expansion Optimal Linear
Estimation if the response is stationary or by the Orthogo-
nal Series Expansion if the response is non-stationary. As
the computational cost largely comes from estimating the
covariance of the response at expansion points, a cheaper
surrogate model of the covariance is built and allows for
significant reduction in computational cost. In addition to
its superior accuracy and efficiency over the Rice/FORM
method, the proposed method can also produce the failure
rate and probability of failure with respect to time for a
given period of time within only one reliability analysis.

Keywords Reliability · Approximation · Stochastic
process

1 Introduction

Reliability is the ability that a system or component fulfills
its intended function under given circumstances over a spec-
ified time period (Choi et al. 2007). It is usually measured
by the probability of such ability. If a limit-state function,
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which indicates the state of success or failure, is avail-
able, the reliability can be estimated computationally. If the
limit-state function is dependent on time, so is the reliability.

In the past decades, various time-variant reliability anal-
ysis methodologies were developed. Even though many
progresses have been made, maintaining the accuracy and
efficiency of reliability analysis is still a challenge and is
still an on-going research topic. Examples of the recent
work include the nested extreme response surface approach
(Wang and Wang 2012b), the composite limit state approach
(Singh et al. 2010), the importance sampling approach
(Singh et al. 2011a), and other residual life prediction meth-
ods based on testing data (Hu et al. 2012), prognostics and
health management (Youn et al. 2011), and degradation
knowledge (Gebraeel et al. 2009).

Amongst existing methods, the most dominating method
is the upcrossing rate method that is based on Rice’s for-
mula (Rice 1944, 1945). Upcrossing is an event that a
limit-state function passes (upcrosses) its failure threshold
from the safety region. For a given period of time, there
might be many upcrossings. Rice’s formula assumes that all
the upcrossings are independent. With this assumption, the
upcrossing rate can be obtained for a limit-state function
that follows Guassian process. The upcrossing rate is the
rate of change in the probability of upcrossing with respect
to time. The combined First Order Reliability Method
(FORM) and Rice’s formula (Rice/FORM) (Hu and Du
2012; Hagen and Tvedt 1991) has been widely used because
FORM can transform a time-variant limit-state function into
a Gaussian process; as a result, the upcrossing rate is avail-
able with Rice’s formula. Knowing the upcrossing rate, we
can easily calculate the time-variant reliability.

Using the first order approximation, the Rice/FORM
method can efficiently estimate time-variant reliability.
But its accuracy is not satisfactory when upcrossings are
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strongly dependent, especially when the reliability is low or
the probability of failure is high, or when there are many
dependent upcrossings. The estimated probability of failure
is always higher than the accurate value, and the result is
therefore conservative.

It is possible to improve the accuracy of the Rice/FORM
method by removing Rice’s formula or the independent
upcrossing assumption. After the limit-state function is
approximated at its limit state, the response becomes a
general Gaussian process. (The approximated limit-state
function may not be a Gaussian process, and it is a Gaussian
process only at the limit state.) It is a challenging task to cal-
culate the probability that the limit-state function upcrosses
its limit state at the first time, which is the time-variant prob-
ability of failure. Even today, there is no explicit formula for
the time-variant probability of failure for a general Gaus-
sian process (Lovric 2011). There are approximations to the
time-variant probability of failure for the general Gaussian
process, but the approximations are only good when the
limit state is very large or approaches infinity (Lovric 2011).

In this work we propose a simulation method to esti-
mate the time-variant probability of failure. The stochastic
process of the response is mapped into an equivalent Gaus-
sian stochastic process by integrating FORM with stochastic
process characterization methods. Sampling is then per-
formed on the equivalent stochastic process to estimate
the time-dependent probability of failure. Since the pro-
posed sampling method is developed based on FORM, we
call it the First Order Simulation Approach (FOSA). Spe-
cially, FOSA is built upon series expansion methods that
include the Expansion Optimal Linear Estimation (EOLE)
and the Orthogonal Series Expansion (OSE). Both of the
methods have been developed to approximate a random
field (Sudret and Kiureghian 2000) and have been used to
simulate Gaussian processes.

The contributions and significance of this work include
the following aspects: (1) This work develops a numerical
procedure that integrates FORM and series expansion meth-
ods so that it can handle general time-variant limit-state
functions with random variables, non-stationary stochastic
processes, and time. (2) This work explores an efficient
way to approximate the time-dependent functions of the
reliability index function and auto-covariance function of
the expanded stochastic process obtained from FORM by
employing the Kriging regression method. Both of the
functions call FORM repeatedly. Reducing the time of eval-
uating the two functions is the key to the improvement of
the efficiency. (3) The new method predicts not only the
reliability defined in a period of time [0, T ] , but also the
reliability function and failure rate function with respect to
all the time intervals [0, τ ] (τ < T ) within [0, T ] using
only one reliability analysis. The reliability or failure rate
function is vital to life-cycle cost optimization (Singh et al.

2010; Hu and Du 2013c), maintenance scheduling (Wang
et al. 2013), and warranty decision making.

The remainder of this paper is organized as follows. In
Section 2, we review the basics of time-variant reliabil-
ity analysis and its major methodologies. The new method,
FOSA, is discussed in Section 3. It is then applied to two
examples in Section 4. Conclusions are given in Section 5.

2 Review of time-variant reliability analysis

In this section, we review the definition of time-variant
reliability and several commonly used reliability methods.

2.1 Time-variant reliability

A general limit-state function is given by G(t) =
g(X, Y(t), t), where X = [X1, X2, · · · , Xn] is a vector
of random variables, Y(t) = [Y1(t), Y2(t), · · · , Ym(t)] is
a vector of stochastic processes, and t is the time. A failure
occurs if

G(t) = g(X, Y(t), t) > e (1)

in which e is a failure threshold. The time-variant proba-
bility of failure over a time interval [0, T ] is defined by

pf (0, T ) = Pr {G(t) = g(X, Y(t), t) > e, ∃t ∈ [0, T ]}
(2)

where ∃ stands for “there exists”.
As shown in Fig. 1, the first-passage failure occurs when

G(t) passes its threshold e for the first time. The event that
G(t) passes its threshold is called an upcrossing. Figure 1
also indicates that there may be a number of crossings for a
given period of time.

The widely used methodologies for time variant reliabil-
ity analysis include upcrossing rate methods, other approx-
imation methods without using an upcrossing rate, and
simulation methods. In the subsequent sections, we briefly
review these three categories of methods.

2.2 Upcrossing rate methods

The upcrossing rate v(t) is defined by Zhang and Du (2011)

v(t) = lim
�t→0

Pr{G(t) < 0 ∩ G(t + �t) > 0}
�t

(3)

It is the rate of change in the probability of upcrossing
Pr{G(t) < 0 ∩ G(t + �t) > 0}. The commonly used
approach is the Rice’s formula (Rice 1944, 1945), which has
been further developed in many other studies. The methods
can be roughly divided into two groups: those based on
the independent assumption of upcrossings and those that
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Fig. 1 First-passage failure and
upcrossings

relax the independent assumption by considering dependent
upcrossings.

The methods in the first group assume that upcross-
ings are independent and their occurrence follows a Poisson
distribution. With this assumption,

pf (0, T ) = 1 − R(0) exp

{
−

∫ T

0
v(t)dt

}
(4)

in which R(0) is the initial reliability at the initial time
instant t = 0.

The approximation of v(t) has been extensively studied.
For instance, Lindgren (1984) and Breitung (1984, 1988)
derived the expressions for the asymptotic upcrossing rate
of stationary Gaussian processes. Ditlevsen (1983) gave
bounds of the upcrossing rate for a non-stationary Gaus-
sian process. Hagen and Tvedt (1991, 1992) later proposed
a parallel system approach to solve general time-variant
reliability problems where binomial cumulative distribu-
tions are involved (Hagen and Tvedt 1991, 1992). Based
on Hagen and Tvedt’s work, the PHI2 method was pro-
posed by Sudret (Andrieu-Renaud et al. 2004). This method
transforms dependent responses at two successive time
instants into independent ones by introducing a new ran-
dom variable (Andrieu-Renaud et al. 2004). Later, Zhang
and Du derived equations for upcrossing rates of function
generator mechanisms based on the Frist Order Second
Moment method (Zhang and Du 2011). Du and Hu (2012)
approximated the upcrossing rate based on FORM and
Rice’s formula in the application of hydrokinetic turbine
blades.

The methods in the first group are accurate when there is
only one upcrossing or small number of upcrossings. This
happens when the threshold is at a very high level. When
there are many dependent upcrossings, the methods are not
accurate.

The methods in the second group relax the indepen-
dent upcrossing assumption by accounting for dependent
upcrossings. To consider the fact that the first passage
may be followed by more upcrossings as shown in Fig. 1,
Vanmarcke (1975) modified the Poisson formula accord-
ing to the bandwidth parameter of a stochastic process.

Several empirical formulas have also been suggested to
modify the outcrossing rate according to simulation results
(Dahlberg 1988; Gusev 1996; Preumont 1985). Bernard and
Shipley (1972), and Madsen and Krenk (1984) derived an
integral equation for the first-passage probability density
from different approaches. The integral equation was then
extended to the approximation of the first passage rate of
general problems with random variables and non-stationary
processes (Hu and Du 2013b; Hu et al. 2013). Many other
methods have also been developed with different principles.
For example, the Markov process method was proposed
by considering the correlation between two successive time
instants (Yang and Shinozuka 1971). The methods in the
second group can significantly improve the accuracy, espe-
cially when there are multiple upcrossings (Hu and Du
2013b; Hu et al. 2013). But their computational cost is also
increased. Their implementation is in general not as easy as
those in the first group.

Among the above methods, the most commonly used
method is the Rice/FORM method, which belongs to the
first group. The method combines FORM and Rice’s for-
mula and has many advantages. For example, it is efficient
and easy to use. As discussed above, however, its accuracy
is not good for many applications. The purpose of this work
is to improve its accuracy by eliminating the use of Rice’s
formula.

2.3 Methods without using upcrossing rate

As discussed above, upcrossing rate methods may not be
accurate due to the assumption of independent upcrossings.
Many methods without using an upcrossing rate have been
developed. Based on the fact that the time-variant relia-
bility is determined by the global extreme values of the
response, Chen and Li (2007) proposed an approach for
the evaluation of the extreme value distribution of dynamic
systems based on the probability density evolution method.
Singh and Mourelatos (Singh et al. 2010; Li et al. 2012)
developed a composite limit state method to transform
the time-variant problem into a time-invariant one. It is
accurate for special limit-state functions in the form of
G(t) = g(X, t).
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Surrogate models have also been used to approximate
the extreme values of the limit-state function. For a special
limit-state function G(t) = g(X, t),

pf (0, T ) = Pr {G(t) = g(X, t) > e, ∃t ∈ [0, T ]}
= Pr

{
Gmax = max

t∈[0,T ]
g(X, t) > e

}
(5)

where Gmax is the global maximum response on [0, T ].
After a surrogate model for Gmax is established

(Žilinskas 1992; Wang et al. 2001; Eldred and Burkardt
2009; Sudret 2008; Eldred 2009; Richard et al. 2012), the
time-variant problem is then transformed into a time-
invariant problem. For example, a nested extreme response
surface approach has been developed by Wang and Wang
(2012a) using the Kriging-based method. The surrogate
model methods must rely on effective global optimization
algorithms. Their accuracy and efficiency deteriorate when
there are stochastic processes Y(t) involved in the limit
state function. Another drawback is they can only obtain the
reliability R(0, T ) for a given period of time [0, T ]. The
reliability function R(0, t) for t < T is not available.

2.4 Sampling methods

The most direct method is Monte Carlo simulation (MCS).
It generates a large number of samples for input random
variables and stochastic processes and then evaluates the
limit-state function at the sample points. MCS is com-
putationally expensive, and advanced sampling methods
have been developed for better efficiency. For example,
an adaptive importance sampling method was developed
by Mori and Ellingwood (1993). Reinaldo and Armando
(González-Fernández and Leite Da Silva 2011) proposed a
sequential cross-entropy MCS method. Hu and Du (2013a)
presented a sampling approach to the extreme value distri-
bution for problems with only one stochastic process. An
importance sampling method was also developed by Singh
and Mourelatos (Singh et al. 2011a).

In sum, the Rice/FORM method is efficient and easy to
implement, but its accuracy is poor for problems with strong
dependent upcrossings. On the other hand, MCS is accurate
but not efficient. In this work, we take advantages of both the
Rice/FORM method and MCS by integrating them seam-
lessly through the use of series expansions. This improves
both the accuracy and efficiency of the Rice/FORM method.

3 First order simulation approach (FOSA)

In this section, we first give the general principle of FOSA
and then discuss its detailed steps. We assume that all the
random variables in X and all the stochastic processes in
Y(t) are independent.

3.1 Overview of FOSA

The purpose of this work is to improve both efficiency
and accuracy of the first order time-dependent reliability
method. Instead of computing outcrossing rates at many
time instants on [0, T ] after G(t) is linearized at the Most
Probable Points (MPPs), FOSA simulates the linearized
process of G(t) on [0, T ]. The simulation takes place on
the output side (G(t)), instead of on the input side (X and
Y(t)). This helps improve the accuracy because of the elim-
ination of the independent upcrossing assumption. More
specifically, by using FORM, FOSA maps G(t) into an
equivalent Gaussian process H(t), which is then simulated
without evaluating the original limit-state function G(t).
High efficiency is achieved by the efficient construction of
the covariance matrix and mean value of H(t) on [0, T ].
This allows for the minimal number of FORM analyses or
MPP searches, thereby resulting in higher efficiency.

Simulating a stochastic process usually requires charac-
terizing or expanding the process. The methods for charac-
terizing a stochastic process can be roughly divided into two
types (Grigoriu 2003; Itoh 2007). The first type simulates
a stochastic process with only one sample trajectory using
the time series modeling. The methods employ the Auto-
Regressive (AR) model, the Moving Average (MA) model,
the Auto-Regressive Moving Average (ARMA) model, and
the Auto-Regressive Integrated Moving Average (ARIMA)
model (Crato and Ray 1996; Newbold et al. 1994). These
methods play a vital role in weather forecast, financial
risk assessment, and flood risk prediction. In engineering,
the AR model has been used to model the road height
stochastic process (Li et al. 2012; Singh et al. 2011b). The
second type includes the spectral representation methods
(Bergman et al. 1997). Amongst them, the Karhunen-Loeve
(KL) method (Ghanem and Spanos 1991) is widely used.
It requires calculating an integral to obtain the eigenvalue
and eigenfunction for the expansions. The analytical solu-
tion of the integral is only available for simple cases.
Most of the time, the finite-element analysis (Ghanem and
Spanos 1991) and mesh free method (Rahman and Xu 2005)
need to be employed. Later, as an extension of KL
method, the Orthogonal Series Expansion (OSE) (Zhang
and Ellingwood 1994) and the Expansion Optimal Lin-
ear Estimation (EOLE) (Sudret and Der Kiureghian 2002)
methods were developed. This work uses the EOLE and
OSE methods, which are reviewed in Appendixes A and B,
respectively.

Since it is impossible for us to simulate the general
response G(t) directly, we need to convert it into an equiva-
lent Gaussian stochastic process H(t), such that

Pr {G(t) = g(X, Y(t), t) > e, ∃t ∈ [0, T ]}
≈ Pr {H(t) > 0, ∃t ∈ [0, T ]} (6)
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Fig. 2 Brief procedure of FOSA

For a given G(t), there exist many Gaussian processes
that can satisfy the probability equivalency in (6). Iden-
tifying an equivalent Gaussian processes is difficult. One
possible way is employing FORM at every time instant
on [0, T ] as FORM is capable of transforming a non-
Gaussian random variable into a standard Gaussian random
variable. Performing FORM or MPP search at every time
instant, however, is computationally expensive. In this work,
we explore an efficient way to reduce the number of MPP
searches.

The equivalent Gaussian process H(t) associated with
FORM is given by Andrieu-Renaud et al. (2004)

H(t) = −β(t) + L(t) (7)

where L(t) is a standard Gaussian process; −β(t) is the
mean of H(t), and β(t) is also the reliability index at t .

FOSA characterizes (expands) H(t). For this purpose,
the EOLE and OSE methods are employed. Once the sta-
tistical characteristics of H(t) are available from EOLE
and OSE, MCS is implemented to estimate the time-
variant reliability. Figure 2 shows a brief procedure of
FOSA.

In the subsequent sections, we explain details of FOSA
for stationary and non-stationary responses. How do we dis-
tinguish whether a given problem is stationary or not? If the
limit-state function is not an explicit function of time and
there are not non-stationary processes in its input variables,
the problem belongs to a stationary case; otherwise, it is a
non-stationary case. We focus on non-stationary responses
as they are more complicated and more general.

3.2 Stationary H(t)

If time t is not explicitly involved and the input stochastic
processes Y(t) are stationary, the limit-state function has the
following format:

G(t) = g(X, Y(t)) = g(T (UX), T (UY(t))) (8)

where T (·) stands for the transformation operator from UX
to X, or from UY(t) to UY(t).

G(t) is then a stationary process, and so is H(t). The
mean function −β(t) of H(t) is time independent, and (8)
is rewritten as

H(t) = −β + L(t) (9)

Since L(t) is a standard stationary Gaussian process, the
auto-correlation function or auto-covariance function of
L(t) is given by Hu and Du (2012)

ρL(t, τ ) = αXαT
X + αYC(t, τ )αT

Y (10)

in which αX = u∗
X

/
β, αY = u∗

Y

/
β , and β = ‖u∗‖, where

u∗ = [u∗
X, u∗

Y] the MPP obtained from FORM, and C(t, τ )

is given by

C(t, τ ) =

⎡
⎢⎢⎢⎣

ρ1(t, τ ) 0 · · · 0
0 ρ2(t, τ ) · · · 0
...

...
. . .

...

0 0 · · · ρm(t, τ )

⎤
⎥⎥⎥⎦ (11)

where ρi(t, τ ), in which i = 1, 2, · · · , m, are the auto-
correlation coefficient functions of UYi

(t).
Since αX, αY, and β are constant for all time instants, β

and the auto-correlation function of L(t) can be fully deter-
mined with only one MPP search. We then employ EOLE
(reviewed in Appendix A) to expand H(t) by

H(t) ≈ −β +
p∑

i=1

Zi√
ηi

ϕT
i ρL(t) (12)

where Zi are independent standard Gaussian random vari-
ables, ηi and ϕT

i are eigenvalues and eigenvectors of the
covariance matrix of L(t) at p time instants, p is the
expansion order, and ρL(t) = [ρL(t, t1), ρL(t, t2), . . . ,

ρL(t, tp)]T gives the correlations between t and the p time
instants. Details are available in Appendix A. For the error
analysis of EOLE, please refer to Sudret and Der Kiureghian
(2002).

3.3 Non-stationary H(t)

3.3.1 Problem statement

For a general limit-sate function G(t) = g(X, Y(t), t), the
associated H(t) may be a non-stationary Gaussian process.
The two terms of H(t) are both time-dependent: the mean
function −β(t) is a deterministic function of time, and L(t)
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may be a non-stationary standard Gaussian process with the
auto-correlation function given by

ρL(t, τ ) = αX(t)αT
X(τ ) + αY(t)C(t, τ )αT

Y(τ ) (13)

where t, τ ∈ [0, T ].
Equation (13) indicates that the MPP search has to be

performed twice for each pair of time instants on [0, T ]
to obtain ρL(t, τ ). EOLE is not suitable for the non-
stationary problem because it requires MPP searches for all
the pairs of time instants on [0, T ]. This will be extremely
computationally expensive. To this end, we use the OSE
method (Zhang and Ellingwood 1994), which is reviewed in
Appendix B. The critical step of OSE is the computation of
matrix 	 defined by

(	)ij =
T∫

0

T∫
0

ρL(t, τ )hi(t)hj (τ )dtdτ (14)

where hi(t) and hj (τ ) are the i-th order and j -th order
orthogonal functions, respectively. There are many ways to
evaluate the integral in (14), such as the adaptive Simpson’s
rule, the adaptive Gaussian quadrature, and other adaptive
integration methods (Press 2007). The numerical integra-
tion method, however, is not efficient. The integral is two
dimensional and requires many calculations of the integrand
or the auto-correlation function ρL(t, τ ). The calculation
of each ρL(t, τ ) calls the MPP search twice. To reduce
the computational cost, we create a surrogate for ρL(t, τ )

and then evaluate the integrals using the surrogate model.
We also build a surrogate model for β(t). The use of sur-
rogate models makes the expansion of H(t) much more
efficient.

3.3.2 Surrogate models of ρL(t, τ ) and β(t)

In this work, we use the Kriging model or DACE model
(Lophaven et al. 2002) to construct surrogate models for
ρL(t, τ ) and β(t). The Kriging model has been widely

used in various areas (Grogan et al. 2013; Lockwood and
Mavriplis 2013; Raghavan and Breitkopf 2013; Steponaviče
et al. 2014). The Kriging model can provide not only pre-
dictions, but also probabilistic errors (or mean square error)
of the predictions (Lophaven et al. 2002). The advantages
of the Kriging model for the present problem are two folds.
It is accurate for the nonlinear functions ρL(t, τ ) and β(t);
it is also efficient for the two-dimensional function ρL(t, τ )

and one-dimensional function β(t).
For a to-be-predicted function z(x), the Kriging model is

given by

ẑ(x) = f (x) + ε(x) (15)

where f (x) includes polynomial terms with unknown coef-
ficients and ε(x) is the error term, which is assumed to be
a Gaussian stochastic process with mean zero and variance
σ 2 (Lophaven et al. 2002). For our present problem, z(x)

is ρL(t, τ ) or β(t), and x is (t, τ ) or t . Details of the Krig-
ing model are available in Lophaven et al. (2002), and we
herein focus on only the application of Kriging model to the
modeling of ρL(t, τ ) and β(t).

We can maintain high efficiency by carefully consider-
ing the features of β(t) and ρL(t, τ ). Even though ρL(t, τ )

is a two-dimensional function, we do not need to always
generate samples for t and τ separately. We only do so
whenever necessary. We can generate samples for t and also
use them for τ . Thus, we construct surrogate models for β(t)

and ρL(t, τ ) simultaneously because both models share the
common input variable t and the MPP search result at t can
be used for both models.

An algorithm is developed for the Kinging models. It
is efficient because the number of MPP searches is mini-
mal. The algorithm is plotted in Fig. 3 and explained in the
following flowchart where MPP searches are highlighted
(Table 1).

The algorithm uses the fact that ρL(t, τ ) = 1 when
t = τ . For any instant t = τ , we have ρL(t, τ ) = 1

Fig. 3 Flowchart of cons-
tructing surrogate models
of ρL(t, τ ) and β(t)
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Table 1 Numerical procedure
for constructing surrogate
models of ρL(t, τ ) and β(t)

Step Description

Step 1 Generate evenly distributed initial time instants t = [ti ] i=1, ··· , h on [0, T ].
Step 2 (a).MPP searches at t, and obtain α = [αX(ti ), αY(ti )]i=1, , ··· , h, and β = [β(ti )]i=1, ··· , h

(b). Calculate ρL(ti , tj ) and ρL(tj , ti ) using (13) if i 
= j ; otherwise,

ρL(tj , ti ) = 1. Obtain tt = [ti , tj ] i, j=1, ··· , h and ρ = [ρL(ti , tj )]i, j=1, ··· , h.

Step 3 Construct initial Kriging models ρ̂L(t, τ ) with tt and ρ and β̂(t) with t and β.

Step 4 (a) Find the maximum mean square errors (εmax) of ρ̂L(t, τ ) and β̂(t) using

[(tρ, τρ), εmax
ρ ] = arg max

t, τ∈[0, T ]
MSEρ (t , τ ) and [tβ , εmax

β ] = arg max
t∈[0, T ]

MSEβ (t)

(b) If εmax
ρ > εmax

β , εmax = εmax
ρ , tnew = [tρ , τρ ], else , εmax = εmax

β , tnew = tβ , end if.

Step 5 If εmax > εMSE , break, else, go to next step, end if.

Step 6 MPP searches at tnew

Step 7 t = [t, tnew], β = [β, β(tnew)], and α= [α; α(tnew)], update tt = [ti , tj ] i, j=1, ··· , h

and ρ = [ρL(ti , tj )]i, j=1, ··· , h, where h = length(t).

Step 8 Update β̂(t) with t and β and ρ̂L(t, τ ) with tt and ρ, then go to Step 4.

without calling MPP search again. With the added pairs
of time instants (t, τ ) in Step 4, we obtain more sample
points where ρL(t, t) = 1 and ρL(τ, τ ) = 1. This means
that we have much more sample points at the highest value
ρL(t, τ ) = 1. Thus, this will significantly increase the
accuracy of the surrogate model ρ̂L(t, τ ).

The algorithm calls the MPP search in Steps 2 and 6.
Using a good starting point for the MPP search also helps
reduce the number of function evaluations. Our strategy is
using the MPP of the time instant that is closest to the
current time instant as the starting point.

With ρ̂L(t, τ ) available, the elements of the matrix �

in (14) are computed by numerical integration based on
ρ̂L(t, τ ). Since the numerical integration will not call the
original limit-state function anymore, we can use any of
numerical algorithms by calling ρ̂L(t, τ ) with sufficient
number of times to ensure high accuracy. Next, we dis-
cuss how the stochastic process H(t) is expanded with β̂(t)

and �.

3.3.3 Orthogonal series expansion (OSE) for H(t)

As mentioned previously, we use the OSE method to expand
H(t). Suppose the expansion order is M , and � is then an
M × M matrix. H(t) given in (7) is approximated by

H(t) ≈ −β̂(t) +
M∑
i=1

γihi(t)

= −β̂(t) +
M∑
i=1

√
λiZi

M∑
j=1

P i
j hj (t), t ∈ [0, T ]

(16)

where γi , i = 1, 2, · · · , M , are correlated zero-mean
Gaussian random variables, λi is thei-th eigenvalue of 	,
P i

j is the j -th element of the i-th eigenvector of �, Zi are

independent standard Gaussian random variables, and hj (t)

is the j -th orthogonal function given by

hj (t) =
√

2j + 1

2T
Lej (tr ) (17)

where Lej (·) is the j -th Legendre polynomial (Wan and
Zudilin 2013; Zhang and Gao 2012), and tr is given by

tr = 2
t

T
− 1 (18)

Details about how the correlated variables γi are trans-
formed into independent Zi can be found in Appendix B
and Zhang and Ellingwood (1994). Expanding H(t) with
OSE is now independent from the MPP search. Increas-
ing the order of the expansion, therefore, will not increase
the computational cost. The higher is M , the higher is
the accuracy. Since M does not affect the computational
cost or the number of MPP searches, we can always use
a large value of M . The appropriate value of M may
be problem dependent. For a specific problem, we can
gradually increase the value of M until the result is sta-
bilized or convergence is reached. For the aforementioned
reason, checking convergence will not affect the computa-
tional efficiency. This will be demonstrated in the example
section.

3.4 Reliability analysis

The next step is to use the expanded processes to calcu-
late reliability. We use simulation for this task because the
computational cost is no longer a concern.
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3.4.1 Sampling of H(t)

After H(t) is expanded in terms of the standard Gaussian
random variables as given in (12) and (16), we can eas-
ily obtain the samples of H(t). We first discretize the time
interval [0, T ] into W time instants, t1, t2, · · · , tW . As the
procedures of EOLE and OSE are similar, we only discuss
OSE.

We plug time instants t1, t2, · · · , tW into the M orthog-
onal functions and obtain the following matrix:

hM×W =

⎛
⎜⎜⎜⎝

h1(t1) h2(t1) · · · hM(t1)

h1(t2) h2(t2) · · · hM(t2)
...

...
. . .

...

h1(tW ) h2(tW ) · · · hM(tW )

⎞
⎟⎟⎟⎠

T

W×M

(19)

Plugging t1, t2, · · · , tW into β̂(t), we have

βt = [β(t1), β(t2), · · · , β(tW )]1×W (20)

and

βN×W = IN×1βt (21)

where IN×1 = [1; 1; · · · ; 1]N×1 and N is the number of
samples at each time instant.

After obtaining the eigenvalue and eigenvector of �,
we also obtain the eigenvector matrix PM×M and vector
of eigenvalues λM×1 = [λ1; λ2; · · · ; λM ]. Multiply the
eigenvector matrix with the matrix given in (19), we have

OM×W = PT
M×MhM×W (22)

We then have

LN×W = [
√

λ1Z1,
√

λ2Z2, · · · ,
√

λMZM ]N×MOM×W

(23)

in which Zi = [Z1
i , Z2

i , · · · , ZN
i ]T is a N × 1 vector of

the random samples of Zi , i = 1, 2, · · · , M . With (23), the
samples of H(t) are then generated by

H̃N×W = −βN×W + LN×W (24)

H̃N×W is two dimensional. One dimension, described by
W , is for the discretized time instants. The other dimension,
described by N , is for the samples of the standard Gaussian
variables at each time instant.

We then obtain the following samples in H̃N×W

H̃N×W =

⎛
⎜⎜⎜⎝

H(1, t1) H(1, t2) · · · H(1, tW )

H(2, t1) H(2, t2) · · · H(2, tW )
...

...
. . .

...

H(N, t1) H(N, t2) · · · H(N, tW )

⎞
⎟⎟⎟⎠

N×W

(25)

Next we discuss how to calculate the time-variant reliability
and the failure rate based on the samples.

3.4.2 Reliability and failure rate

After obtaining samples H̃N×W of response H(t), we esti-
mate pf (0, T ). We first define an indicator function
I (i, tj ) as follows:

I (i, tj ) =
⎧⎨
⎩

1, if H(i, tj ) > 0, i = 1, 2, · · · , N;
j = 1, 2, · · · , W ;

0, otherwise

(26)

As discussed in Section 2.1, a failure occurs if the response
passes the threshold for the first time. We then define a first
passage failure indicator I+(i) as follows:

I+(i) =

⎧⎪⎨
⎪⎩

1 if
W∑

j=1
I (i, tj ) > 0

0, otherwise

(27)

pf (0, T ) is then approximated by

pf (0, T ) ≈ 1

N

N∑
j=1

I+(i) (28)

The proposed method can also estimate the failure rate
v1(t) on [0, T ] . The failure rate is an important concept
in reliability engineering and is widely used for cost anal-
ysis, maintenance scheduling, and warranty policy. It is the
derivative of the first time to failure (FTTF) TF (Singh et al.
2010; Hu and Du 2013c; Wang et al. 2013). v1(t) can also
be viewed as the first-time-upcrossing rate. v1(t) is given
by

v1(t) = lim
�t→0

Pr{ t < TF < t + �t | Tf > t}
�t

(29)

To calculate v1(t), we also define an indicator I1(t) as

I1(k, tj ) =
⎧⎨
⎩

1 if I (k, tj ) = 1 and
j−1∑
i=1

I (k, ti) = 0

0, otherwise

(30)

v1(t) is then estimated by

v1(tj ) ≈ 1

N(t2 − t1)

N∑
k=1

I 1(k, tj ) (31)

3.5 Numerical procedure

The numerical procedure of FOSA for stationary and non-
stationary responses are summarized in this section.
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Fig. 4 A two-slider-crank
mechanism

3.5.1 Stationary response

Step 1: Perform the MPP search at t = 0: transform ran-
dom variables X and Y(0) into standard Gaussian
random variables UX and UY(0) and search for the
MPP u∗ at t = 0.

Step 2: Compute the covariance matrix: discretize [0, T ]
into time instants, and compute the covariance or
correlation between each two time instants using
(10).

Step 3: Conduct EOLE expansion: expandH(t) using
(12) based on the eigenvalues and eigenvectors
obtained from the covariance matrix.

Step 4: Generate samples for H(t): obtain the two-
dimensional sampling matrix for H(t) based on
(12).

Table 2 Variables and parameters of Example 1

Variable Mean Standard deviation Distribution

R1 108 mm 0.05 mm Gaussian

R2 211 mm 0.2 mm Gaussian

R3 100 mm 0.05 mm Gaussian

R4 213 mm 0.2 mm Gaussian

θ0 45◦ 0 Deterministic

θ1 60◦ 0 Deterministic

δ0 10◦ 0 Deterministic

ω π rad/s 0 Deterministic

Step 5: Approximate pf (0, T ): estimate pf (0, T ) with
the samples generated in Step 4 using (26) through
(31).

3.5.2 Non-stationary response

Step 1: Create surrogate models for β̂(t) and ρ̂L(t, τ ):
use the algorithm in Section 3.3.2 to build β̂(t)

and ρ̂L(t, τ ) by performing MPP searches at the
sampling points needed by the surrogate models.

Fig. 5 Initial surrogate model of β̂(t)
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Fig. 6 Mean square error (MSE) of initial β̂(t)

Step 2: Solve for matrix �: solve for � with elements
given in (14) based on ρ̂L(t, τ ).

Step 3: Use OSE for H(t): Solve for the eigenvalue and
eigenvector of �, and then expand H(t) using
OSE as given in (16).

Step 4: Generate samples of H(t): obtain the matrix of
samples of H(t) using (19) through (25).

Step 5: Perform reliability analysis: calculate reliability
and failure rates with (26) through (31).

4 Numerical examples

In this section, two examples are used to demonstrate the
effectiveness of FOSA. They are reliability analyses for a
crank-slider mechanism system subjected to manufacturing
imprecision and a beam subjected to stochastic loadings.
There are no stochastic processes in the input variables in
the first example, but the response is a non-stationary pro-
cess because it is a function of time. In the second example,
random variables, stochastic processes, and time all appear
in the limit-state function.

4.1 A mechanism example

A two-slider-crank mechanism is shown in Fig. 4. The link
with lengths R1 and R3 rotates with an angular velocity
of ω = π rad/s. The motion output is the difference
between displacements of two sliders A and B. The mech-
anism is supposed to work with small motion errors during
the period of time [0, T ] = [0, 2] seconds. A failure occurs
when the motion error is larger than e = 0.94 mm. The
motion error is defined as the difference between the desired
motion output and the actual motion output. The time-
variant probability of failure in one motion cycle is to be
determined.

Fig. 7 Initial surrogate model
of ρ̂L(t, τ )
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Fig. 8 Mean square error
(MSE) of initial ρ̂L(t, τ )

τ t

The limit-state function for the mechanism is given by

g(X, Y, t) = �sdesired − �sactual (32)

in which

�sactual = R1 cos(θ − θ0) +
√

R2
2 − R2

1 sin2(θ − θ0)

−R3 cos(θ1 + θ0 − θ − δ0)

−
√

R2
4 − R2

3 sin2(θ1 + θ0 − θ − δ0)

(33)

 t

β

β  t

Fig. 9 Surrogate model of β̂(t)

�sdesired = 108 cos(θ − θ0) +
√

2112 − 1082 sin2(θ − θ0)

−100 cos(θ1 + θ0 − θ − δ0)

−
√

2132 − 1002 sin2(θ1 + θ0 − θ − δ0)

(34)

Table 2 shows the random variables and other
parameters.

 t

Fig. 10 Mean square error (MSE) of β̂(t)
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Fig. 11 Surrogate model of
ρ̂L(t, τ )

τ t

ρ
 t

τ

Since the response of the mechanism is non-stationary,
following the procedure presented in Section 3.5.2, we first
constructed Kriging models β̂(t) and ρ̂L(t, τ ) using the
algorithm given in Section 3.3.2. The convergence criterion
was εMSE = 10−4. MPP searches were performed at seven
evenly distributed initial time instants. Figures 5 and 6 show

the initial surrogate model β̂(t) constructed with the seven
samples {ti , β(ti)}i=1,...,7 and the mean square errors of
β̂(t), respectively. The initial surrogate model ρ̂L(t, τ ) and
its mean square errors are plotted in Figs. 7 and 8. Since the
maximum mean square error was large, we gradually added
more time instants and performed more MPP searches until

Fig. 12 Mean square error
(MSE) of ρ̂L(t, τ )

 t1
 t2
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 M

 p
f

Fig. 13 Convergence study of percentage change with respect to M

convergence. Figures 9, 10, 11 and 12 give the final surro-
gate models β̂(t) and ρ̂L(t, τ ), their mean square errors, as
well as the initial and added sample points.

After the surrogate models of β̂(t) and ρ̂L(t, τ ) are con-
structed, we characterize the equivalent stochastic process
H(t) with the OSE method given in Section 3.3.3. To deter-
mine an appropriate value for the expansion order M , we
performed reliability analysis with different values of M ,
starting from two. As discussed in Section 3.3.3, the expan-
sion of H(t) with OSE is independent of the MPP search.
Performing reliability analysis with different values of M ,
therefore, does not require the evaluation of the original
limit-state function. To check the convergence, we used the
percentage change, which is defined by

�% = pt
f (M) − pt

f (M − 1)

pt
f (M)

× 100% (35)

where pt
f (M) is pf (0, T ) with an order of M .

 t

Fig. 14 pf (0, t) from Rice/FORM, MCS, and FOSA over different
time intervals

Figure 13 shows the percentage change. It indicates that
the percentage change converged at M = 10. This implies
that M ≥ 10 is an appropriate expansion order. We there-
fore use M = 10. We obtained not only pf (0, 2) for time
interval [0, 2] seconds, but also the function of pf (0, t)

for time interval [0, t], where t < 2 seconds. To evalu-
ate the accuracy and efficiency of FOSA, we compared its
results with those from the Rice/FORM method and MCS.
For MCS, the time interval [0, 2] seconds was divided into
60 time instants and 5 × 106 samples were generated at
each time instant. The comparison is given in Table 3 and is
depicted in Fig. 14, which shows high accuracy of FOSA.

From FOSA, we also obtained the first-passage failure
rate at every time instant. The failure rates from FOSA and
MCS are plotted in Fig. 15. Following the figure, Table 4

Table 3 pf (t0, ts ) over different time intervals

[0, t] Rice/FORM FOSA MCS

seconds pf (×10−3) Error (%) pf (×10−3) Error (%) pf (×10−3) 95% CI∗

[0, 0.4] 1.657 11.13 1.532 2.74 1.491 [1.457, 1.525]
[0, 0.8] 2.817 37.64 2.070 1.12 2.047 [2.007, 2.087]
[0, 1.2] 3.551 58.72 2.246 0.40 2.237 [2.196, 2.278]
[0, 1.6] 4.108 79.60 2.302 0.63 2.287 [2.245, 2.329]
[0, 2.0] 5.361 123.49 2.429 1.25 2.399 [2.356, 2.442]

*CI=confidence interval
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 t

Fig. 15 Failure rates from MCS and FOSA

Table 4 Numbers of function evaluations over [0, 2.0] s

FORM/Rice FOSA MCS

Function calls 7540 180 3.0×108

shows the numbers of function evaluations required by the
three methods.

The results show that FOSA improved both the accuracy
and efficiency of the Rice/FORM method significantly for
the mechanism problem.

4.2 A beam under stochastic loads

The problem in Andrieu-Renaud et al. (2004) was modified
for our second example.The problem involves a beam under
two stochastic loads as shown in Fig. 16. The cross section
A-A is rectangular with its initial width a0 and height b0.

The two parameters decrease at a rate of k due to corro-
sion. A random load F acts at the midpoint of the beam.
The beam is also subjected to a constant weight and another
stochastic load q, which is uniformly distributed on the top
surface of the beam.

A failure occurs when the stress exceeds the ultimate
strength. The limit-state function is given by

g(X, Y(t), t) =
(

F(t)L

4
+ q(t)L2

8
+ ρsta0b0L

2

8

)

− 1

4
(a0 − 2kt) (b0 − 2kt)2 σu (36)

where σu is the ultimate strength, ρst is the density, and L is
the length of the beam.

Table 5 provides all the random variables and parameters.
The auto-correlation coefficient functions of the stochastic
process F(t) and q(t) are given by

ρF (t, τ ) = exp
(
−(τ − t)2

)
(37)

and

ρq(t, τ ) = exp(−(2(τ − t)/3)2) (38)

respectively.
We considered two cases. In case one, k = 0 and the

mean μF of F(t) is constant over time. This means that the
width and height do not decrease with time. As the load is
stationary, the response of the beam is also stationary. In
case two, k = 1 × 10−4 m/yr and μF varies with time. In
this case, the stress response of the beam is non-stationary.
μF (t) of F(t) over [0, 15] years is plotted in Fig. 17 and
given by

μF (t) = 2.5(t − 10)2 + 30 cos(t) + 15t + 2500 (39)

Case 1: Stationary response When the response is station-
ary, as discussed in Section 3.2, we used EOLE to calculate
pf (0, T ) over [0, 15] years. We also compared the results
from the Rice/FORM method and MCS. They are provided

Fig. 16 Corroded beam under
stochastic loadings

L/2 
F 

a0 

b0 
kt

kt

L 

q 
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Table 5 Variables and
parameters of Example 2 Variable Mean Standard deviation Distribution Autocorrelation

a0 0.2 0.01m Lognormal N/A

b0 0.04 m 4 × 10−3m Normal N/A

σu 2.4 × 108Pa 2.4 × 107Pa Normal N/A

F(t) Case 1: 3000 N 400 N Gaussian Eq. (37)

Case 2: Eq. (39) 400 N

q(t) 450 N/m 50N/m Gaussian Eq. (38)

L 5 m 0 Deterministic N/A

ρst 78.5 kN/m3 0 Deterministic N/A

k Case 1:0 0 Deterministic N/A

Case 2:1×10−4 m/yr 0 Deterministic N/A

Fig. 17 Mean value of
stochastic force F(t) over the
time interval [0, 15] years

 t

μ
 N

Table 6 pf (t0, ts ) over [0, 15] years

[0, T ] Rice/FORM FOSA MCS

years pf (×10−4) Error (%) pf (×10−4) Error (%) pf (×10−4) 95% CI (×10−4)

[0, 15] 4.6381 93.42 2.3420 2.34 2.3980 [2.2623, 2.5337]
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Table 7 Number of function calls

Rice/FORM FOSA MCS

Function calls 2040 54 3×109

Fig. 18 Percentage of errors with respect to the time step size

 t

β

β  t

Fig. 19 Surrogate model of β̂(t)

in Tables 6 and 7, respectively. The time step size, �t = T
s

,
used for FOSA was 0.1 years.

The results show that FOSA is much more accurate and
efficient than the Rice/FORM method.

Since the accuracy of EOLE may be affected by the time
step size, we studied the effect of the time step size. The
results are plotted in Fig. 18.

Figure 18 shows that a refined step size has a positive
effect on the accuracy. To achieve good accuracy, we could
therefore use a small element size, which will not increase
the computational cost. Sudret (Sudret and Der Kiureghian
2002) has investigated the selection criterion for the step
size. It should be noted that there are some noises in the
Fig. 18. The noises come from MCS. Increasing the num-
ber of samples used in MCS will decrease the noises in the
figure.

Case 2: Non-stationary response For this case, the method
presented in Section 3.3 was employed. Following the pro-
cedure given in Section 3.5, we first constructed surrogate
models for β̂(t) and ρ̂L(t, τ ). MPP searches were per-
formed at 16 initial time instants with ti = 0 + (i − 1)(15 −
0)/15, years, i = 1, 2, · · · , 16. Figures 19, 20, 21,
and Fig. 22 show the constructed surrogate models for β̂(t)

and ρ̂L(t, τ ) and the associated mean square errors of the
surrogate models, respectively.

The figures indicate that the maximum mean square
errors of β̂(t) and ρ̂L(t, τ ) have satisfied the convergence
criterion εMSE = 10−4. We then used the constructed

 t

Fig. 20 Mean square errors of β̂(t)
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Fig. 21 Surrogate model of
ρ̂L(t, τ )

τ
 t

ρ
 t

τ

surrogate models to characterize the equivalent stochas-
tic process H(t). As what we have done in example one,
we also performed convergence study for choosing M .
Figure 23 shows the percentage change with difference val-
ues of M . It illustrates that the percentage change stabilized
at M = 12. Since M does not affect the computational cost,
we used M = 25 for this problem.

Table 8 and Fig. 24 present the comparison between
the three methods. For MCS, the time interval was
divided into 600 time instants and 8 × 106 samples
were generated at each time instant. Table 9 shows the
numbers of function evaluations required by different
methods. Figure 25 shows the failure rates we obtained at
each time instants.

Fig. 22 Mean square errors of
ρ̂L(t, τ )

τ t
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 M

 p
f

Fig. 23 Convergence study of percentage change of pf with respect
to M

The results show that the accuracy and efficiency of
FOSA are good for a problem that involves non-stationary
stochastic processes, random variables, and time.

5 Conclusions

The Rice/FORM method is widely used for time-variant
reliability analysis, but its accuracy is not good for
many problems. This work improves the accuracy of the
Rice/FORM method based on series expansions and simula-
tions. Different from the traditional simulation method, the
proposed method performs sampling at the response level.
Upon samples of the response, the time-variant probabil-
ity of failure is estimated. During the simulation process,
no upcrossing rate needs to be approximated, no deriva-
tive of response is required, and no independent upcrossing

 t

Fig. 24 Time-dependent probability of failure over time period of [0,
15] years

assumption is made. As a result, the accuracy of the pro-
posed method is higher than the Rice/FORM method. For
problems with stationary responses, the proposed method
is as efficient as the time-independent FORM and much
more efficient than the Rice/FORM method. For the non-
stationary responses, it is much more efficient and accurate
than the Rice/FORM method. Two numerical examples
have illustrated the accuracy and efficiency of the proposed
method.

The Kriging model is employed to construct surrogate
models for the mean and auto-correlation functions of
the equivalent Gaussian stochastic process. As a surrogate
model technique, it may have convergence problems. In
future, we will investigate how to select appropriate surro-
gate model techniques for different problems. We will also
study the application of other surrogate model methods to
the construction of these two functions.

Table 8 pf (t0, ts ) over [0, 15] years

[t0, ts ] Rice’s formula FOSA MCS

pf (×10−4) Error (%) pf (×10−4) Error (%) pf (×10−4) 95% confidence interval (×10−4)

[0, 3] 0.8954 6.28 0.8425 0 0.8425 [0.7789, 0.9061]
[0, 6] 1.8510 14.43 1.6175 0 1.6175 [1.5294, 1.7056]
[0, 9] 3.5859 25.55 2.7788 2.71 2.8563 [2.7392, 2.9733]
[0, 12] 6.8028 23.46 5.2550 4.63 5.5100 [5.3474, 5.6726]
[0, 15] 13.4552 24.61 10.7388 0.54 10.7975 [10.5699, 11.0251]
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Table 9 Number of function calls

FORM/Rice FOSA MCS

Function calls 5424 444 4.8×109

 t

Fig. 25 Failure rates over [0, 15] years

As the new method is based on FORM, it also shares the
same disadvantages of FORM. For example, the accuracy
may not be good if the limit-state function is highly non-
linear with respect to random and process input variables
in the transformed space. Another error source is from the
use of the Kriging models for the mean and auto-correlation
functions of the equivalent Gaussian process obtained from
FORM. The series expansions for the equivalent Gaus-
sian process also produces some error. The last two errors,
however, can be easily reduced with more sample points
and expansion terms. The most significant error is from
FORM. Thus, an important future research task should be to
extend the proposed method to the Second Order Reliabil-
ity Method (SORM) for higher accuracy. Other future work
may include applying the proposed method to reliability-
based design optimization and developing more efficient
sampling methods to further improve the efficiency.
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Appendix A: Expansion optimal linear estimation
(EOLE)

EOLE (Sudret and Der Kiureghian 2002) is used to gen-
erate samples for a Gaussian stochastic process Y (t) on
[0, T ], which is divided into sintervals with a step size

�t = T
s

. The s time instants are ti = (i − 1)�t , where
i = 1, 2, · · · , s. The covariance matrix � is given by

� =

⎛
⎜⎜⎜⎝

cY (t1, t1) cY (t1, t2) · · · cY (t1, ts)

cY (t2, t1) cY (t2, t2) · · · cY (t2, ts)
...

...
. . .

...

cY (ts, t1) cY (ts, t2) · · · cY (ts, ts)

⎞
⎟⎟⎟⎠

s×s

(A1)

where cY (ti , tj ) is the covariance of Y (t) at ti and tj .
Let the eigenvalues and eigenvectors of � be ηi and

ϕi, i = 1, 2, · · · , s, respectively. Then Y (t) is approx-
imated by the following series expansion (Sudret and Der
Kiureghian 2002):

Y (t) ≈ μY (t) + σY (t)

p∑
i=1

Zi√
ηi

ϕT
i ρY (t) (A2)

in which Zi (i = 1, 2, · · · , p ≤ s) are inde-
pendent standard Gaussian random variables, ρY (t) =
[ρY (t, t1), ρY (t, t2), . . . , ρY (t, tp)]T , and μY (t) and
σY (t) are the mean and standard deviation of Y (t), respec-
tively; p is the number of terms, and p ≤ s. When p = s,
no truncation is made, and the error is minimum.

The accuracy of EOLE is affected by the size of the finite
element mesh �t , and the selection of the size depends on
the correlation length of the stochastic process (Sudret and
Der Kiureghian 2002). The shorter is the mesh length, the
more accurate are the results.

Appendix B: Orthogonal series expansion (OSE)

Different from EOLE, OSE does not need finite element
meshes. Its accuracy is therefore not affected by the mesh
size. OSE approximates a Gaussian process Y (t) as Zhang
and Ellingwood (1994)

Y (t) = μ(t) +
M∑
i=1

γihi(t) (B1)

in which � = [γ1, γ2, . . . , γM ] is a vector of correlated
zero-mean Gaussian random variables, and hi(t), i =
1, 2, · · · , M , are orthogonal functions.

The correlated random variables γi are then transformed
into independent standard Gaussian random variables with
the following steps.

Construct an M × M square matrix � by

(�)ij =
∫ T

0

∫ T

0
CYY (t, τ )hi(t)hj (τ )dtdτ (B2)

where CYY (t, τ ) is the auto-covariance of Y (t).
Then obtain the eigenvectors of �. Use

� = PλP−1 = ��T (B3)
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where λ is a diagonal matrix with its diagonal elements
being eigenvalues of �, P is a M × M square matrix whose
i-th column is the i-th eigenvector of �, and � is a lower
triangular matrix.

Then � = [γ1, γ2, . . . , γM ] is transformed into
independent standard Gaussian random variables Z =
[Z1, Z2, . . . , ZM ] through

� = �Z (B4)

For the orthogonal functions,∫
hi(t)hj (t)dt =

{
1, if i = j

0, otherwise
(B5)

The Legendre polynomials may be chosen as the orthog-
onal functions. When the eigenfunctions and covariance
functions are approximated using the same orthogonal func-
tions, OSE can be regarded as an approximation to the K−L

expansion (Zhang and Ellingwood 1994).
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