
Struct Multidisc Optim (2015) 51:173–182
DOI 10.1007/s00158-014-1125-8

RESEARCH PAPER

Multiobjective optimization using an aggregative
gradient-based method

Kazuhiro Izui · Takayuki Yamada · Shinji Nishiwaki ·
Kazuto Tanaka

Received: 29 March 2013 / Revised: 18 April 2014 / Accepted: 3 June 2014 / Published online: 2 July 2014
© Springer-Verlag Berlin Heidelberg 2014

Abstract A process of compromise that addresses conflict-
ing objective functions such as performance and cost is
often involved in real-world engineering design activities.
If such conflicting relationships among objective functions
exist in a multiobjective design optimization problem, no
single solution can simultaneously minimize all objective
functions, and the solutions of the optimization problem
are obtained as a set of design alternatives called a Pareto
optimal solution set. This paper proposes a new gradient-
based multiobjective optimization method that incorporates
a population-based aggregative strategy for obtaining a
Pareto optimal solution set. In this method, the objective
functions and constraints are evaluated at multiple points in
the objective function space, and design variables at each
point are updated using information aggregatively obtained
from all other points. In the proposed method, a multiob-
jective optimization problem is converted to a single objec-
tive optimization problem using a weighting method, with
weighting coefficients adaptively determined by solving
a linear programming problem. A sequential approximate
optimization-based technique is used to update the design
variables, since it allows effective use of design sensitivities
that can be easily obtained in many engineering optimiza-
tion problems. Several numerical examples, including a
structural optimization problem, are provided to illustrate
the effectiveness and utility of the proposed method.

K. Izui (�) · T. Yamada · S. Nishiwaki
Department of Mechanical Engineering and Science,
Kyoto University, Kyotodaigaku-Katsura C3, Nishikyo-ku,
Kyoto 615-8540, Japan
e-mail: izui@prec.kyoto-u.ac.jp

K. Tanaka
Department of Biomedical Engineering, Doshisha University,
1-3 Tatara-miyakodani, Kyotanabe 610-0394, Japan

Keywords Design optimization · Multiobjective
optimization · Gradient-based optimization · Adaptive
weighting coefficient

1 Introduction

The problem of finding suitable compromises among con-
flicting objective functions such as performance and cost
often arises in real-world engineering design processes.
When such conflicting relationships among objective func-
tions are present in a multiobjective design optimization
problem, no single solution can simultaneously minimize
all objective functions, so the solutions of the optimization
problem are obtained as a Pareto-optimal solution.

One of the very commonly used methods to obtain
Pareto-optimal solutions is scalarization approaches in
which a multiobjective optimization problem is converted
to a single objective optimization problem. A weighting
method (Zadeh 1963; Geoffrion 1968) is the most popular
of such approaches, but the obtained solutions are greatly
affected by the values of predetermined weighting coeffi-
cients, and the need to subsequently adjust these coefficients
is a crucial problem. Goal Programming (Charnes and
Cooper 1977), which uses target values of objective func-
tions, and Physical Programming (Messac 1996), in which
design engineers determine their preferences for objective
functions, can be also classified as scalarization approaches.
Such scalarization approaches provide only a single solution
from a Pareto-optimal solution set, and the obtained solution
is highly dependent on given parameter values.

Obtaining an entire set of Pareto-optimal solutions is
another approach used to tackle the above difficulties in
multiobjective optimization. This approach does not require
predetermined preference parameter settings, and moreover,

mailto:izui@prec.kyoto-u.ac.jp


174 K. Izui et al.

the obtained Pareto-optimal solution set can aid the design
process because it offers designers a clear picture of
the trade-off relationships among the conflicting objective
functions. Various multiobjective optimization methods
have been proposed to obtain Pareto-optimal solution sets.
In particular, multiobjective optimization methods based
on metaheuristic techniques such as genetic algorithms
(Goldberg 1989; Tamaki et al. 1996; Deb et al. 2002), and
particle swarm optimization (Coello et al. 2004; Reyes-
Sierra and Coello 2006; Kotinis 2011; Zhao and Suganthan
2011; Mahmoodabadi et al. 2012), have been extensively
studied and used (Nourbakhsh et al. 2011; Montazeri-Gh
et al. 2012; Sharma et al. 2014) in many applications .

Metaheuristic-based multiobjective optimization tech-
niques use an aggregative searching strategy in which many
points in the design space are simultaneously evaluated to
obtain points that are used in the next iteration. An aggrega-
tive strategy is advantageous for global searches and can
provide a Pareto-optimal solution set in a single optimiza-
tion calculation. However, constraints cannot be explicitly
handled in such methods, and the algorithms or objec-
tive functions must be modified to implement constraint
handling (Cai and Wang 2006; Qu and Suganthan 2011;
Cagnina et al. 2011). Furthermore, metaheuristic-based
methods are inefficient when searching for fine-tuned solu-
tions once a nearly global optimum is found, since the
algorithms do not include design sensitivities. Metaheuristic
techniques are also not well-suited for handling large-scale
problems, that have many design variables, such as topology
and shape optimization problems even in single objective
optimization problems, although some extended schemes
have been proposed (Wang and Tai 2005; Wang et al. 2006).

The use of gradient-based methods in multiobjective
optimization problems has been discussed (Fliege and
Svaiter 2000; Fliege et al. 2009; Qu et al. 2011) and the
convergence properties of multiobjective optimization
algorithms for unconstrained problems have been investi-
gated. The normal boundary intersection method (Das and
Dennis 1998), the normal constraint method (Messac et al.
2003), and the adaptive weighted-sum method (Kim and
De Weck 2005) are methods where additional constraints
are included in original optimization problems, to convert
a multiobjective optimization problem to several single
objective optimization problems and obtain Pareto optimal
solutions. These methods can employ gradient-based opti-
mization techniques that can be applied to constrained
problems, and they can utilize design sensitivities in the
optimization process.

The design sensitivity is the gradient of objective func-
tions, or constraints, with respect to the design variables.
Using design sensitivities in the optimization process is
advantageous in large-scale constrained problems, since
accurate design sensitivities can often be easily obtained in

many engineering design optimization problems (Choi and
Kim 2004) via semi-analytical computations, by conducting
sensitivity analysis prior to the optimization process. This
is routinely implemented when dealing with topology and
shape optimization problems. In particular, the adjoint
method is an effective technique for obtaining equations
used to calculate design sensitivities. Once these equations
for calculating the sensitivities are obtained through the sen-
sitivity analysis, the computationally costly finite-difference
method does not have to be used to carry out gradient calcu-
lations. However, these gradient-based methods may obtain
local optima in multi-modal problems, which is typical of
gradient-based methods because the obtained solutions are
highly dependent on the selection of starting points. There-
fore, a number of widely distributed starting points are
required to obtain global Pareto-optimal solutions.

Therefore, this paper proposes a new gradient-based
multiobjective optimization method that employs an
aggregative strategy. In this method, the objective functions
and constraints are evaluated at multiple points and the
design variables at each point are updated using information
aggregatively obtained from all other points in the objective
function space.

2 Fundamental concept of the aggregative
gradient-based multiobjective optimization method

Multiobjective optimization involves the simultaneous opti-
mization of two or more conflicting objectives; a typical
nonlinear multiobjective optimization problem can be
written as

minimize f(x) = [f1(x), f2(x), . . . , fm(x)]T (1)

subject to:

g(x) ≤ 0 (2)

xL ≤ x ≤ xU (3)

x = [x1, x2, . . . , xn]T, (4)

where objective function vector f is a function of design
variable vector x, and g is an inequality constraint vector.
xL and xU respectively denote the lower and upper bound
of the design variables. Note that any equality constraint
can be represented using a combination of inequality con-
straints. Therefore, equality constraints are simply ignored
in the above formulation.

Figure 1 shows the conceptual scheme of the proposed
method for a bi-objective optimization problem. In this
scheme, objective functions and constraints at multiple
points are simultaneously evaluated during an iteration, and
every point is updated in an appropriate direction using
a gradient-based search. For example, the black points



Multiobjective optimization using an aggregative gradient-based method 175

f1

f2

Update direction

A

B

C

D

E

F G

Fig. 1 Aggregative multiobjective optimization scheme of the pro-
posed method

denoted A, B, ..., G in Fig. 1 indicate the positions of
evaluated points in the objective function space, and the
arrows indicate their update directions. To efficiently obtain
a Pareto-optimal solution set, each point is moved toward
the Pareto frontier point that is closest to its current posi-
tion in the objective function space. That is, since point A
has the smallest value of f2 among all evaluated points, the
gradient-based search result should move this point in the
direction indicated by the arrow, to further minimize f2. On
the other hand, f1 should be minimized for point D. Fur-
thermore, for points B and C, both f1 and f2 should be
minimized, to obtain Pareto solutions that represent com-
promises. Similarly, points E, F, and G should each move
toward the corresponding closest Pareto frontier point, in the
directions indicated by the white arrows in Fig. 1.

However, the true Pareto frontier is unknown prior
to optimization calculations. Therefore, in this paper, the
design variables are updated using a weighting method, and
the search direction for each point is modified at every
iteration by adaptively adjusting the weighting coefficients,
based on each point’s position relative to the other points in
the objective function space.

3 Adaptive weighting coefficients

In the proposed method, weighing coefficients are
determined using a Data Envelopment Analysis (DEA)
technique. DEA is a tool originally used in the field
of economics to evaluate the relative performance of
decision-making units (DMUs) in multi-input and
multi-output environments (Charnes et al. 1978). In this
implementation, the performance values of a DMU for
multiple criteria are converted, by solving a linear program-
ming problem, to a single value, termed the efficiency

value, which is then used to evaluate relative perfor-
mance among multiple DMUs. An important feature of the
DEA technique is that it can provide optimal weighting
coefficients when the efficiency is calculated. In the pro-
posed method, DEA is conducted for each point to obtain
appropriate weighting coefficients.

In the case that all objective functions are to be mini-
mized, the efficiency of the M-th point, θM , is calculated by
solving the following linear programming problem.

minimize θM =
m∑

i=1

wM
i f M

i w.r.t. wM
i (5)

subject to:

m∑

i=1

wM
i f k

i ≥ 1 (for k = 1, 2, ..., K) (6)

wM
i ≥ 0 (for i = 1, 2, ..., m), (7)

where K is the total number of points, f k
i is the k-th

point’s i-th objective function value, and wM
i represents the

weighting coefficients. If the M-th point is a non-dominated
point among K points, θM becomes 1, and for dominated
points, θM becomes larger than 1.

The weighting coefficients calculated by the DEA act to
minimize θM , which is converted to a single objective
function by the weighting method. Therefore, if the M-th
point has a smaller value of f M

1 and a larger value of f M
2

than the other points in a bi-objective problem, the above
linear programming problem returns a larger wM

1 value
and a smaller wM

2 value, which increases the importance
of the first objective function. The use of such calculated
weighting coefficients when the design variables are
subsequently updated is the main idea of the proposed
method. The detailed procedure of the proposed multi-
objective optimization method is explained in the following
section.

4 Procedures

The aggregative gradient-based multiobjective optimization
procedure is now described in detail. Figure 2 shows the
flowchart of the procedure.

– Step 1: Initialization
Generate initial design variables with random values for
K points.

– Step 2: Evaluate objective functions
Evaluate objective functions for all K points.

– Step 3: Calculate weighting coefficients
Solve the linear programming problem shown in (5)
through (7) for all points and obtain adaptive weighting
coefficients wM

i . M is then set to 1.



176 K. Izui et al.

– Step 4: Calculate design sensitivities
Evaluate sensitivities of the objective functions and
constraint functions for the M-th point.

– Step 5: Update design variables
Update the design variables of the M-th point, mini-
mizing the weighted sum of the objective functions
using weighting coefficients wM

i . A Sequential Linear
Programming (SLP)-based updating scheme is used in
Step 5 since it can stably handle a large number of
design variables using well-established linear progra-
ming solvers. That is, the single objective optimization
problem, converted from the multiobjective optimiza-
tion problem through the use of adaptive weighting
coefficients, is linearly approximated. In this step, the
following approximated linear programming problem is
solved to update the design variables of the point.

minimize f M =
m∑

i=1

wM
i

n∑

j=1

∂fi

(
xM

)

∂xj

xj w.r.t. xj

(8)

subject to:

gs

(
xM

)
+

n∑

j=1

∂gs

(
xM

)

∂xj

(
xj − xM

j

)
≤ 0

(for s = 1, 2, ..., t) (9)

x̃L ≤ x ≤ x̃U , (10)

where f M is the weighted sum of the objective func-
tions obtained in Step 3, and xM is the design variable
vector of the M-th point before updating. x̃L and x̃U are
respectively the lower and upper bound for this linear
programming problem considering the moving limit
of the design variables. If M = K , the procedure
then advances to Step 6 (Check termination condition),
otherwise M = M + 1 and the procedure returns to
Step 4.

– Step 6: Check termination condition
If the termination condition is satisfied, the procedure
ends, otherwise it returns to Step 2.

Note that in the above procedure, two linear program-
ming problems are solved for each point during a single
iteration: 1) to determine weighting coefficient values, and
2) to update the design variables. The weighting coefficients
for each point are therefore adaptively updated at every
iteration. We note that although our method utilizes the con-
cept of a weighting method, it does not require setting the
weighting coefficients to predetermined values. The pro-
posed method employs multiple starting points and some
points are generated near Pareto frontier while some other
points generated near local optima. Furthermore, appro-
priate weighting coefficient values are given to points which
are close to the Pareto frontier so that global optima can

Initialization

Evaluate objective functions

Calculate weighting coefficients

Update design variables

Calculate design sensitivities

Terminate?

Start

End

M < K
M = K

Fig. 2 Flowchart

be reached. This method, therefore, has a high likelihood to
avoid local optima and obtain the true Pareto solutions.

5 Numerical examples

The proposed method is now applied to five numerical
examples to demonstrate its performance. In the following
examples in this section, values 5 % larger or smaller than
those of the design variables were used as SLP move limits,
if not mentioned. Computation time is used as a termination
condition. That is to say, when a preassigned computation
time is reached, the optimization process is halted. Equa-
tions to calculate design sensitivities for these examples
can be analytically obtained before starting optimization
processes. Sensitivities at each point were calculated using
such equations, in the same manner employed in many
conventional structural optimization methods.

In some of the the following examples, results of the pro-
posed method are compared with those of a multiobjective
genetic algorithm (MOGA). In the following calculation, a
genetic algorithm code implemented based on the principles
of Non-dominated Sorting Genetic Algorithm-II (NSGA-II)
(Deb et al. 2002) was used for the MOGA calculation. In
this calculation, each design variable is encoded using a
real-coding scheme, and simulated binary crossover (SBX)
and polynomial mutation were employed. The crossover
and mutation rates were set to 1.0 and 1/l, respectively,
where l is the number of design variables. The distribution



Multiobjective optimization using an aggregative gradient-based method 177

indexes for crossover and mutation were set to 10 and 20,
respectively. MOGA was conducted for the same computa-
tion time as that used for the proposed method. The various
solutions are compared in figures, and the quantitative
metrics for the hypervolume (Zitzler and Thiele 1999) and
diversity (Deb et al. 2002) are also given.

Note that the use of computation time for the comparison
of the optimization efficiency has an implicit limitation,
since computation time significantly depends on how the
particular method is implemented, as well as the complexity
of the calculations carried out. In prior research, the number
of function calls has been frequently been used as a basis for
comparison. However, since the proposed method evaluates
not only objective function values but also design sensi-
tivities, the number of function calls cannot be used for the
comparison. This is why we use the computation time, and
we note that the following examples only provide simple
assessment results from the standpoint of this single aspect.

5.1 Example 1

The first example is a two-objective optimization problem
(Jin et al. 2001), formulated as below.

f1 = 1

n

n∑

i=1

x2
i (11)

f2 = 1

n

n∑

i=1

(xi − 2)2 (12)

0 ≤ xi ≤ 1 (for i = 1, 2, ..., n), (13)

where n is the number of design variables, set here to 10.
K denotes the total number of points and was set to 40 in
this numerical example. The computation time was set to 60
second.

In Fig. 3, the eight-point stars indicate the initial point
distribution in the objective function space. The design vari-
ables of the initial points were generated using a random
uniform distribution function in the range of the upper
and lower side constraint, [0, 1]. The black line segments
attached to the initial point indicators represent weighting
vectors at the first iteration, calculated by solving the linear
programming problem in (5) through (7).

In Fig. 4, the “+” symbols indicate the solution points
obtained after 66 iterations, and are connected by black lines
to the corresponding initial points. This figure illustrates
that the proposed method obtains well-distributed Pareto-
optimal solutions, although our method does not guarantee
this. Note that, in order to conduct optimization for 66 itera-
tions, 66×40 = 2, 640 function calls, and the same number
of design sensitivity calculations, are required.

Figure 5 shows a comparison of the non-dominated solu-
tions obtained for this problem when using two different

0 0.2 0.4 0.6 0.8 1
1

1.5

2

2.5

3

3.5

4
f2

f1

Fig. 3 Distribution of initial points and their weighting vectors in
Example 1

methods: the proposed method, and MOGA, with the same
termination criterion of computational time used in both
cases. In the MOGA calculation, the population size was set
to 40 and computation was conducted for 465 generations.
This figure shows all non-dominated solutions obtained
during the optimization process, whereas Fig. 4 only shows
the position of all points at the very last iteration. Table 1
provides the hypervolume and diversity metric values for
both methods. Figure 5 and Table 1 show that the solution
distribution obtained by the proposed method is almost
equivalent to that of the MOGA. However, the proposed
methodfs solutions are slightly better than those of the
MOGA, since the proposed method can conduct local
searches near the Pareto frontier.

0 0.2 0.4 0.6 0.8 1
1

1.5

2

2.5

3

3.5

4
f2

f1

Fig. 4 Obtained solutions in Example 1



178 K. Izui et al.

0 0.2 0.4 0.6 0.8 1
1

1.5

2

2.5

3

3.5

4

MOGA

Proposed method

f2

f1

Fig. 5 Comparison with MOGA

Figure 6 shows the position of points at the final iteration
of the optimization process when different numbers of K

but the same termination criterion are used. This figure
illustrates that the proposed method works well for different
numbers of starting points, but a larger number of points is
preferable for obtaining closely distributed solutions.

5.2 Example 2

Next, the proposed method was applied to a test function
(Preuss et al. 2006). The problem is stated as follows.

f1 = x4
1 + x4

2 − x2
1 + x2

2 − 10x1x2 + 0.25x1 + 20 (14)

f2 = (x1 − 1)2 + x2
2 (15)

− 2 ≤ x1, x2 ≤ 2 (16)

In this calculation, the computation time was set to
15 seconds, and the optimization process was conducted
until the calculation reached the 26th iteration. Therefore,
40 × 26 = 1, 040 function calls and the same number of
design sensitivity calculations were conducted.

Figure 7 shows the results for this problem, where K

was set to 40. The eight-point stars again indicate the initial
points and the “+” symbols represent the obtained solutions.
The circled “+” marks indicate dominated solutions that re-
present local optima for this problem. This result illustrates

Table 1 Comparison of two optimization methods in Example 1

Proposed method MOGA

Hypervolume 0.7209 0.7142

Diversity 0.7745 0.8484

0 0.2 0.4 0.6 0.8 1
1

1.5

2

2.5

3

3.5

4

K = 40 

K = 20 

K = 10 f2

f1

Fig. 6 Effect of the number of starting points

that the proposed method provided true Pareto-optimal
solutions, although several points are stacked at local
optima. The proposed method succeeded in avoiding local
optima in this example because it utilizes multiple starting
points, and appropriate weighting coefficient values are
given to points close to the Pareto frontier, so that global
optima can be reached.

Figure 8 and Table 2 show a comparison of the
non-dominated solutions obtained using the proposed
method and MOGA, in which a population size of 40 was
used and computation was conducted for 182 generations.
MOGA is suitable for this kind of problem since it has only
two variables and includes a large discontinuity in the Pareto
frontier line of the objective function space. However, the
proposed method also provided good solutions.

Figure 9 shows the effect of selecting the number of
starting points, and this figure also illustrates that good
solutions are successfully obtained regardless of the number
of starting points.

0 20 40 60 80
0

2

4

6

8

10f2

f1

Fig. 7 Obtained solutions in Example 2



Multiobjective optimization using an aggregative gradient-based method 179

5 10 15 20 25
0

2

4

6

8

10

MOGA

Proposed method

f2

f1

Fig. 8 Comparison with MOGA in Example 2

5.3 Example 3

Next, the proposed method is applied to a three-objective
optimization problem (Laumanns et al. 2002). The problem
formulation is as follows.

f1 = 3 − (1 + x3) cos(x1π/2) cos(x2π/2) (17)

f2 = 3 − (1 + x3) cos(x1π/2) sin(x2π/2) (18)

f3 = 3 − (1 + x3) cos(x1π/2) sin(x1π/2) (19)

0 ≤ x1, x2, x3 ≤ 1 (20)

In this problem, the number of starting points K was set
to 60, the moving limit for the SLP search was set to 0.1,
and the computation time was set to 15 second.

Figure 10 shows all the non-dominated solutions
obtained during the optimization process for 28 iterations.
This figure illustrates that the proposed method can effec-
tively provide well-distributed solutions.

5.4 Example 4

For the fourth example, the 105-bar truss design optimiza-
tion problem shown in Fig. 11 was solved. In this problem,
K was set to 20, and the computation time was set to 1,500
seconds. In this example, a 1.0 × 105 N force in the −Y

direction was applied at node A, at the lower right-hand
edge of the structure. The design variables were the
cross-sectional area of each truss element, with an upper and
lower constraint of [1.0 × 10−3, 1.0 × 10−6 ]. The objective

Table 2 Comparison of two optimization methods in Example 2

Proposed method MOGA

Hypervolume 0.8770 0.8828

Diversity 0.5771 0.6286

5 10 15 20 25
0

2

4

6

8

10

K = 40 

K = 20 

K = 10 
f2

f1

Fig. 9 Effect of the number of starting points in Example 2

functions in this problem were the displacement at node A,
denoted dA, and the total volume of the structure, V , and
both were to be minimized under compressive and tensile
stress constraints. The Young’s modulus for each truss
element and the allowable stress, σa , was set to 210 GPa
and 270 MPa, respectively. This problem was formulated as
follows.

f1 = V (21)

f2 = dA (22)

subject to:

1.0 × 10−6 ≤ xj ≤ 1.0 × 10−3 (23)

−σa ≤ σj ≤ σa (24)

(j = 1, 2, . . . , 105) ,

where σj is the stress at the j -th truss member.
Figure 12 shows a comparison of the non-dominated

solutions obtained for this problem when using two different
methods, i.e., the proposed method and the MOGA. In this
MOGA calculation, the population size was set to 100.
This figure illustrates that the proposed method obtained

1

2

3 1
1.5

2
2.5

3

2

2.5

3

f2

f1

f3

Fig. 10 Non-dominated solutions in Example 3



180 K. Izui et al.

F
1 m 1 m 1 m 1 m

1 m

1 m

X

Y

A

Fig. 11 Configuration of 105-bar truss problem in Example 4

better solutions than those of the MOGA with NSGA-II
method, and that the non-dominated solutions were widely
distributed. Figure 13 shows the low f2 range of the
non-dominated solutions for this problem, to clearly illus-
trate the distribution of the solutions obtained by the MOGA
method.

As shown in these figures, the MOGA method did not
provide a wide range of solutions, and the objective function
values were slightly poorer compared with those of the
proposed method, especially in the range where the total
volume f1 was low, although many useful solutions were
obtained in the range where f1 was large. On the other hand,
the proposed method obtained better solutions in the lower
total volume range because stress constraints are explicitly
handled, which enhances the searching efficiency in this
range.

Table 3 presents comparative data for the proposed and
MOGA methods. The number of iterations used in the pro-
posed method was significantly smaller than that in the
MOGA method, in which the term ”generation” is used
rather than iteration. The proposed method uses a smaller
number of iterations than the MOGA because two linear
programming problems must be solved for each point,

0 0.05 0.1 0.15 0.2 0.25
0

5

10

15

20

25

MOGA

Proposed method

f2

f1 [m3]

[x 10-3 m]

Fig. 12 Non-dominated solutions obtained in Example 4

0 0.05 0.1 0.15
0

0.5

1

1.5

2

2.5

3

3.5

MOGA

Proposed method

f2

f1 [m3]

[x 10-3 m]

Fig. 13 Non-dominated solutions in Example 4 (magnified)

during every iteration, and sensitivity calculations are more
computationally costly than plain function calls.

5.5 Example 5

In this last example, the proposed method is used to
solve the topology optimization problem illustrated in
Fig. 14, which is called Messerschmitt-Bölkow-Blohm
(MBB) beam problem. The objective functions are the mean
compliance and total volume, and both are minimized. The
density method is used in this problem and the design
domain is discretized into 60×40 elements. This problem is
therefore a large-scale problem with 2,400 design variables,
and the range of each design variable was set to [0, 1]. We
note that a metaheuristics-based multiobjective optimization
method could not be applied to such a large-scale problem.

The multiobjective topology optimization is formulated
as follows.

f1 = uTKu (25)

f2 = V (26)

Table 3 Comparison of two optimization methods in Example 4

Proposed

method MOGA

Computational time 1,503.5 [sec] 1,501.2 [sec]

Number of iterations 182 1,231

Number of non-

dominated solutions 840 1,711

Function calls 3,640 123,100

Sensitivity calculation 3,640 -

Hypervolume 0.9889 0.5077

Diversity 1.4821 1.0205



Multiobjective optimization using an aggregative gradient-based method 181

60

40Design domain

f

Fig. 14 Topology optimization problem

subject to:

0 ≤ x ≤ 1 (27)

K + u = f, (28)

where u and f are respectively the displacement and force
vector, K is the stiffness matrix, and V denotes the total
volume.

The mean compliance problem is self-adjoint, and the
design sensitivity can be calculated using the following
equation.

∂f1

∂xi

= −uT ∂K
∂xi

u (29)

where xi is the design variable for i-th element. The sen-
sitivity of the total volume with respect to every design
variable is 1 since the all elements are square and of equal
size in this problem.

In this calculation, the computation time was set to
2000 second, and the optimization process executed 169
iterations; therefore, 60 × 169 = 10, 140 function calls
and the same number of calculation of design sensitivities
were conducted. Figure 15 shows the non-dominated
solutions obtained by the proposed method when K was
set to 60. Four selected points, A–D in this figure, have
corresponding configurations shown in Fig. 16. The illus-
trated configurations demonstrate that the proposed method
can effectively obtain non-dominated solutions for topology

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200

f2

f1

D

C

A

B

Fig. 15 Non-dominated solutions in Example 5

(C)

(A)

(D)

(B)

Fig. 16 Examples of obtained solutions in Example 5

optimization problems that include a large number of design
variables, since design sensitivities are used when updating
the design variables. We note that conventional multi-
objective optimization methods employing metaheuristic
techniques, classified as direct methods since design sensi-
tivities are not used in the optimization process, are almost
always unsuitable for such large-scale problems.

6 Conclusions

This paper proposed a new gradient-based multiobjective
optimization method to obtain Pareto-optimal solutions.
The proposed method uses a weighting method to convert
a multiobjective optimization problem to a single objective
optimization problem, and a linear programming problem is
solved to determine adaptive weighting coefficients for each
point while considering the point’s position relative to all
other points in the objective function space. The converted
single objective optimization problem is linearly approxi-
mated, and the design variables are updated by a linear
programming technique. The proposed method was applied
to five examples, three test functions and two structural
optimization problems, and the results obtained in all exam-
ples demonstrated its effectiveness. The proposed method is
based on the weighting method, which makes it unsuitable
for non-convex problems. In future work, we hope to
extend the proposed method for application to non-convex
problems.

References

Cagnina LC, Esquivel SC, Coello CAC (2011) Solving constrained
optimization problems with a hybrid particle swarm optimization
algorithm. Eng Optim 43(8):843–866



182 K. Izui et al.

Cai Z, Wang Y (2006) A multiobjective optimization-based
evolutionary algorithm for constrained optimization. IEEE Trans
Evol Comput 10(6):658–675

Charnes A, Cooper WW (1977) Goal programming and multiple
objective optimizations: Part 1. Eur J Oper Res 1(1):39–
54

Charnes A, Cooper WW, Rhodes E (1978) Measuring the efficiency
of decision making units. Eur J Oper Res 2(6):429–444

Choi KK, Kim NH (2004) Structural sensitivity analysis and
optimization 1: linear systems. Springer

Coello CAC, Pulido GT, Lechuga MS (2004) Handling multiple
objectives with particle swarm optimization. IEEE Trans Evol
Comput 8(3):256–279

Das I, Dennis JE (1998) Normal-boundary intersection: A new
method for generating the Pareto surface in nonlinear multicriteria
optimization problems. SIAM J Optim 8(3):631–657

Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and
elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans
Evol Comput 6(2):182–197

Fliege J, Drummond LG, Svaiter BF (2009) Newton’s method
for multiobjective optimization. SIAM J Optim 20(2):
602–626

Fliege J, Svaiter BF (2000) Steepest descent methods for multicriteria
optimization. Math Methods Oper Res 51(3):479–494

Geoffrion AM (1968) Proper efficiency and the theory of vector
maximization. J Math Anal Appl 22(3):618–630

Goldberg DE (1989) Genetic algorithms in search, optimization, and
machine learning. Addison-Wesley Professional

Jin Y, Olhofer M, Sendhoff B (2001) Dynamic weighted aggrega-
tion for evolutionary multi-objective optimization: Why does it
work and how. In: Proceedings of the genetic and evolutionary
computation conference (GECCO2001), pp. 1042–1049

Kim IY, De Weck O (2005) Adaptive weighted-sum method for
bi-objective optimization: Pareto front generation. Struct
Multidiscip Optim 29(2):149–158

Kotinis M (2011) Implementing co-evolution and parallelization
in a multi-objective particle swarm optimizer. Eng Optim
43(6):635–656

Laumanns M, Thiele L, Deb K, Zitzler E (2002) Combining
convergence and diversity in evolutionary multi-objective
optimization: evolutionary computation 10(3):1–21

Mahmoodabadi M, Bagheri A, Nariman-zadeh N, Jamali A (2012)
A new optimization algorithm based on a combination of par-
ticle swarm optimization, convergence and divergence operators

for single-objective and multiobjective problems. Eng Optim
44(10):1167–1186

Messac A (1996) Physical programming: effective optimization
for computational design. AIAA j 34(1):149–158

Messac A, Ismail-Yahaya A, Mattson CA (2003) The normalized
normal constraint method for generating the pareto frontier. Struct
Multidiscip Optim 25(2):86–98

Montazeri-Gh M, Jafari S, Ilkhani M (2012) Application of particle
swarm optimization in gas turbine engine fuel controller gain
tuning. Eng Optim 44(2):225–240

Nourbakhsh A, Safikhani H, Derakhshan S (2011) The comparison
of multi-objective particle swarm optimization and NSGA II
algorithm: applications in centrifugal pumps. Eng Optim
43(10):1095–1113

Preuss M, Naujoks B, Rudolph G (2006) Pareto set and EMOA
behavior for simple multimodal multiobjective functions. Parallel
Probl Solving Nat-PPSN IX:513–522

Qu S, Goh M, Chan FT (2011) Quasi-newton methods for solving
multiobjective optimization. Oper Res Lett 39(5):397–399

Qu BY, Suganthan PN (2011) Constrained multi-objective
optimization algorithm with an ensemble of constraint handling
methods. Eng Optim 43(4):403–416

Reyes-Sierra M, Coello CC (2006) Multi-objective particle swarm
optimizers: A survey of the state-of-the-art. Int J Comput Intell
Res 2(3):287–308

Sharma D, Deb K, Kishore N (2014) Customized evolutionary
optimization procedure for generating minimum weight compliant
mechanisms. Eng Optim 46(1):39–60

Tamaki H, Kita H, Kobayashi S (1996) Multi-objective optimization
by genetic algorithms: a review. In: Proceedings of 1996 IEEE
international conference on evolutionary computation

Wang SY, Tai K (2005) Structural topology design optimization
using genetic algorithms with a bit-array representation. Comput
Methods Appl Mech Eng 194(36-38):3749–3770

Wang SY, Tai K, Wang MY (2006) An enhanced genetic algorithm
for structural topology optimization. int J Numer Methods Eng
65(1):18–44

Zadeh L (1963) Optimality and non-scalar-valued performance
criteria. IEEE Trans Autom Control 8(1):59–60

Zhao SZ, Suganthan P (2011) Two-lbests based multiobjective particle
swarm optimizer. Eng Optim 43(1):1–17

Zitzler E, Thiele L (1999) Multiobjective evlolutionary algorithms: A
comparative case study and the strength pareto approach. IEEE
Trans Evol Comput 3(4):257–271


	Multiobjective optimization using an aggregative gradient-based method
	Abstract
	Introduction
	Fundamental concept of the aggregative gradient-based multiobjective optimization method
	Adaptive weighting coefficients
	Procedures
	Numerical examples
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5

	Conclusions
	References


