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Abstract The paper presents a new method for the fully
automated decomposition of the optimization problem.
The decomposition is performed on the space of the
optimization input arguments. The method is firstly tested
on the optimization of the mathematical functions. After-
wards, the decomposition method is used to optimize the
geometry of a guide vane blade of a reversible water tur-
bine. The objectives of the optimization are the maximal
efficiency of the whole turbine and the minimal volume
of a single blade with the condition that the blade remains
undamaged during the normal operation of the turbine. The
fluid analysis is performed with the use of the finite volume
method, while the structural analysis is performed either
with the finite element method or with the meshless method.
The comparison of the two structural analysis methods
shows that they have a different result sensitivity about the
mesh distortion. A comparison of optima, obtained on the
basis of both structural analysis methods, is made in order
to assess the impact of the mesh distortion on results of the
design optimization.
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1 Introduction

The optimization of water turbines is an interesting and
heavily studied area for many researchers (Lewis et al.
2012; Patel et al. 2013), since a relatively small increase
in the turbine’s performance can produce big revenues. The
real-world tests are very expensive and time-consuming,
meaning that in most cases the optimizations are done with
the computational fluid dynamics (CFD) methods. But even
if the CFD methods are used during the optimization, the
direct optimization approaches, such as the Newton method
or the steepest gradient method (Nocedal et al. 2000), would
take a couple of months to find the optimum. The core of the
problem is the long computational time of a single CFD cal-
culation, possible multi-modality, discontinuity, noisiness or
ill-definition of the fitness function and a large number of
fitness function evaluations. A different type of optimiza-
tion methods, namely the Evolutionary algorithms (EA),
were proposed (Schmitt 2001) in order to lower the needed
number of objective function evaluations.

The EA have been proven to be powerful global opti-
mizers in many real-world optimizations in (Hornby et al.
2006) and in (Stanković et al. 2006). However, without the
fitness function approximation (Won et al. 2003), the EA
needs quite a large number of the fitness function evalua-
tions (NFE). The fitness function approximation can reduce
the NFE to a factor of at least five and is performed with
the surrogate models (SM). The SM can be a different type
of approximation or interpolation method or a very simpli-
fied computational model with a small computational cost.
While the use of the SM reduces the NFE significantly, an
additional problem arises in connection to the fidelity of the
incorporated SM (Jin 2005). If the SM has low fidelity, it
is very likely that the EA will converge to the false opti-
mum. The approximation with the artificial neural networks
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(ANN) (Hornik et al. 1989) is prone to such an effect if
not trained correctly. Different techniques are suggested in
order to improve the accuracy of the SM and therefore the
result of the EA optimization. The design of experiments
(Myers et al. 2009) for defining the initial data of the SM
construction is just one of such techniques. Another tech-
nique is the model management of evolution control. In this
case the original fitness function is used to evaluate the
optima from the optimization of the SM and to update the
SM with the real fitness value of the optima. The evolution
control can be either fixed (Bull 1999; Jin et al. 2002), where
found optima of the SM are evaluated with the original
fitness function based on the predefined rule, or adaptive,
where found optima of the SM are evaluated based on the
fidelity of the SM (Afonin 2011).

A new approach to lower the NFE is presented in this
paper and used in the optimization of the guide vane
blade. An optimization problem is decomposed into several
smaller optimization problems based on the measurement of
the separability of the input arguments. Such an approach
lowers the NFE of the optimization and increases the fidelity
of the SM. The overall computational time of the optimiza-
tion is lowered due to the smaller NFE.

As aforementioned, the new approach is used to optimize
a guide vane blade of a reversible water turbine, which can
operate as a turbine or as a pump. The addressed problem
is the insufficient strength of the guide vane blade. Some
cracks appeared near the blade’s pin. The objective of the
optimization is to find such blade geometry that will bear the
maximal pressure loads and the maximal pressure fluctua-
tions, while at the same time the volume of the blade will be
minimized and the hydraulic efficiency of the whole turbine
will not be impaired.

Two different continua are treated in the optimization
problem. The first is the fluid (water) and the second is the
solid body (steel blade). Numerical analysis methods are
incorporated in order to obtain the fitness function value
during the optimization. The fluid problem is treated with
the CFD and the solid body problem is treated with two
different structural analysis methods, namely, the finite ele-
ment method (FEM) (Zienkiewicz et al. 2005) and the
meshless method (MM) (Liu 2010). The FEM has been
used for many different optimization problems as reported
in (Amoiralis et al. 2008; Rajan et al. 2004; Toropov et al.
1993; Wang and Liu 2012), while the MM is not commonly
used. There are several different MM formulations and just
a few were successfully applied for the optimization prob-
lems. The use of the reproducing kernel particle method
(RPKM) (Chen et al. 2001) as the fitness function evaluator
was reported in (Grindeanu et al. 1999) and the moving-
least squares (MLS) (Atluri et al. 2004) was used as the
fitness function evaluator in (Kim et al. 2002). The MM for-
mulation used in this paper is the weak form radial point

interpolation method (RPIM) formulation (Wang and Liu
2002).

Both FEM and MM use some sort of mesh during the
computation. The mesh is the basis of the FEM where the
problem’s region is discretized with the finite elements. On
the other hand, the mesh in the MM is a background mesh,
used only at the numerical integration of the Galerkin weak
form formulation. The key difference between the FEM and
the MM is the effect of the mesh on the method’s results.
If the mesh is of poor quality, the error of the FEM can be
significant and thus the results can be deceptive or wrong.
This is not the case if the MM is used. This effect can greatly
impair the optimization results if obtained meshes during
the optimization are of poor quality and the FEM is used for
the structural analysis. The optimization of the guide vane
blade is performed with the FEM and separately with the
MM in order to assess the effect of the structural analysis
method on the optimization results.

The decomposition of the optimization problem is pre-
sented and tested on mathematical functions in Section 2.
Used numerical methods in the optimization of the guide
vane blade are discussed in Section 3 and a brief comparison
of the structural analysis methods is presented in Subsec-
tion 3.1. The guide vane blade optimization problem and
its results are depicted in Section 4 and Subsection 4.1,
respectively. Finally, the conclusion, open questions and the
promising research topics are covered in Section 5.

2 Method for the decomposition of the optimization
problem

The decomposition of the optimization problem is to be per-
formed on the input arguments of the objective function and
consequently on the input arguments of the fitness function.
The decomposition divides the space of input arguments
of the dimension n into the multiple spaces of smaller
dimensions ni < n and is based on the value of the separa-
bility measurement si,j of the two input arguments i and j ,
defined by

si,j = ∣
∣f (x(+i,+j))− f (x+i)− f (x+j )+ f (x)

∣
∣

+ ∣
∣f (x(−i,+j))− f (x−i)− f (x+j )+ f (x)

∣
∣

+ ∣
∣f (x(+i,−j))− f (x+i)− f (x−j )+ f (x)

∣
∣

+ ∣
∣f (x(−i,−j))− f (x−i)− f (x−j )+ f (x)

∣
∣.

(1)

In the (1) f (·) presents the function of multiple arguments
x (dimension of x is greater than 2) and subscripts near the
arguments present the change of value of the subscripted
argument. The si,j is defined only for different arguments,
meaning i �= j . Figure 1 graphically explains the meaning
of the subscripts near the arguments.
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Fig. 1 Position of the points x+i , x−i , x+j , x−j , x(+i,+j), x(−i,+j),
x(−i,−j) and x(+i,−j) around the point x in the xi , xj plane. hi is the
change of i-th argument and hj is the change of j -th argument

Fig. 2 Algorithm of the Optimization Strategy construction. Mind
that f is the index of the current input argument and s in the index of
the next input argument, while i and j are indices of arbitrary argument

optimization problems are currently not known and are
above the scope of this research. The proposed method is
applicable for those problems, where the function used for
the decomposition of the original optimization problem is
known.

The problem arises when one argument is not separable
from two other arguments and is contained in two different
OpTs. In this case, the optimization process on the second
OpT could impair the found optimum of the first OpT. The
solution to this problem is a few repetitions of the OpS
creation and optimization through the new OpS.

There are two expected benefits of the optimization
decomposition, namely, the smaller NFE and the increase
of the fidelity of the SM. The first benefit is expected based
on the fact that the NFE is smaller if the number of input
arguments of the optimizing function is small. If the number
of input arguments is high, then the NFE during the opti-
mization is also high. The maximal number of arguments in
one OpT is two and therefore small, consequently the NFE
should be small during the optimization of one OpT. It is
expected that the sums of the NFEs of all optimizations in
one OpS should be smaller than the NFE of the optimization
of the original (whole) function. The second benefit is quite
obvious since the fidelity of the SM is dependent on the

In order to define the decomposition of the input space,
one has to calculate the si,j for each pair (i, j). Based on
these values, the input space is decomposed into the list
with the pairs of arguments or single arguments. This list is
called the Optimization Strategy (OpS) and its elements are
called the Optimization Tuple (OpT). The OpS is created
in such a way that the arguments with the largest absolute
value of |si,j | are optimized first, while the arguments with
the smallest separability or even separable arguments are
optimized at the end of the OpS. Figure 2 depicts a detailed
procedure of the OpS construction. The arguments xi and
xj are separable, if it holds si,j = 0, and could be opti-
mised in two different OpTs (e.g. if the fitness function is
f (x1, x2) = x2

1 + x2
2 , then the optimizations could be per-

formed individually for each of the arguments x1 and x2).
Each argument of the input space must appear at least once
in the OpS and maximal twice. The optimization is per-
formed on each OpT in the OpS after the OpS has been
created. The optimization of single OpT is performed only
on the input arguments, contained in the OpT. If the OpT =
{x3, x5} and the input arguments are x = {x1, x2, x3, x4, x5},
the optimization is performed only on arguments x3 and
x5, meaning that during the optimization only those two
arguments are allowed to change, while others remain the
same.

The OpS construction requires n2 evaluations and is
thus computationally very expensive to construct for cases,
where the fitness function has a large computational cost.
In these cases, an additional function can be used in order
to construct the OpS. It is obvious, that the additional func-
tion should adequately decompose the problem and should
not have an impact on the solution itself. Computationally
expensive fitness functions are different numerical simu-
lations, such as the finite element method, finite volume
method, etc. If the fitness function contains some sort of
mesh, we propose to define the additional function as the
mesh volume. The additional function definitions for other
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Fig. 3 Algorithm of the optimization procedure with included decom-
position of the optimization problem

Table 1 Results of the optimization of the spherical function with and
without decomposition method (Won et al. 2003) (column Dec.)

n Dec. fo,best fo NFE

5
Yes 7.3241−16 3.7278−13 1657

No 1.2483−59 4.2542−56 21450

10
Yes 2.9035−14 3.6971−13 2949

No 1.1548−37 1.6114−35 77567

20
Yes 8.3896−14 1.5634−12 5441.1

No 3.3851−22 2.9952−21 110467

arguments. The tested n were 5, 10 and 20. Each optimiza-
tion was repeated 10 times. Three different SM were used,
namely the radial basis function interpolation (Wendland
1997), inverse distance weighting interpolation (Shepard
1968) and approximation with the artificial neural net-
works (Hornik et al. 1989). The search intervals were xi ∈
[−10, 5] for all arguments and for all test cases. The func-
tions were optimized with the decomposition method and
compared to the results from (Won et al. 2003) which were
obtained without the decomposition method. The observed
results were the average of the found optima (fo), best found
optima (fo,best) and the average NFE (NFE). The results
of the optimizations and their comparisons are gathered in
Table 1 for the spherical function and in Table 2 for the
Rosenbrock function.

The search intervals of the optimizations without the
decomposition were smaller (see (Won et al. 2003) for their
definition) than the search intervals of the optimizations
with the decomposition method in case of functions with 20
input arguments. The method decomposes the optimization
problems properly, meaning that the OpT optimizations are
performed on single input argument in case of the spheri-
cal function and on two sequential arguments (xi, xi+1) in
case of the Rosenbrock’s function. During the optimiza-
tion of the spherical function, the proposed decomposition
method lowers the NFE at least for the factor of 13 and
still the found optima are under the value of 10−10. Observ-
ing only the optima value shows that the results obtained
without the decomposition method are far better than the
results obtained with the decomposition method. But the
results of the decomposition method are good enough for
the mechanical engineers, since the measurement tolerances
are of order 10−6, defined by the ISO standard (International
organization for standardization 2010). This only occurs
at the optimization of spherical function which is strictly
convex function. At the optimization of Rosenbrock func-
tion, the decomposed optimization is worse only in the case
of the averaged results of the five input arguments. In all
other cases of the Rosenbrock function optimization, the
decomposed optimization method produced better results

dimension of the input space (Jin et al. 2002). If the dimen-
sion is large, the fidelity is lowered and vice-versa. Since
the dimension of the SM’s input space in the decomposed
optimization is two at most, the fidelity of the SM is high.

In order to use the decomposition of the optimization
problem, the OpS must be constructed before the opti-
mization occurs. If one decides to use several iterations of
the optimizations through the whole OpS, the future OpS
should be constructed before the iteration starts. Figure 3
depicts the pseudo-code of the optimization algorithm with
the included decomposition of the problem and optimization
with the use of the SM.

2.1 Numerical test of the decomposition of the
optimization problem

The proposed decomposition of the optimization problem
was tested on a multidimensional spherical function

f (x) =
n∑

i=1

x2
i (2)

with optimum f (0) = 0 and on a multidimensional Rosen-
brock function

f (x) =
n−1
∑

i=1

(xi − 1)2 + 100(x2
i − xi−1)

2 (3)

with optimum f (1) = 0. While the spherical function is
separable for all input arguments, this is not the case with
the Rosenbrock function. The latter is separable just for
some input arguments. The n in (2) and (3) represents the
dimension of the input space or the number of optimization
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Table 2 Results of the optimization of the Rosenbrock’s function with
and without decomposition method (Won et al. 2003) (column Dec.)

n Dec. fo,best fo NFE

5
Yes 1.4329−4 0.4825 3493.5

No 0.0109 0.2703 7201

10
Yes 2.5793−2 1.7469 6571.3

No 0.5435 5.3030 7001

20
Yes 0.8263 7.2406 10397.2

No 14.9216 17.6649 21201

Fig. 4 Algorithm of the optimization procedure with the included
decomposition method and numerical analysis tools (FVM, FEM or
MM). This optimization procedure is used to optimize the guide vane
in Section 4

than the optimization without the decomposition method.
Another great property of the decomposition method is that
the results are not impaired as much with the larger number
of input arguments as in the case of the optimization without
the decomposition method.

The main conclusion of this test is that the optimiza-
tion with the decomposition has similar or better perfor-
mance than the optimization without the decomposition no
matter if the function’s input arguments can be separated
or not.

3 Numerical methods for the fitness value calculation

Three different numerical methods are used in order to
obtain the value of the fitness function of the problem,
defined in Section 4. The structural analysis is a static analy-
sis and is performed with the Finite Element Method (FEM)
(Zienkiewicz et al. 2005) or the Meshless Method (MM)
(Liu 2010). The transient fluid analysis is dealt with the
Finite Volume Method (FVM) (Hirsch 1988). Because the
FVM method is computationally more expensive than the
FEM or MM method, one would like to minimize the neces-
sary number of FVM calculations. The pseudo-code of the
whole optimization procedure used in the optimization in
Section 4 is depicted in Fig. 4.

A program with the decomposed optimization method,
FEM and MM, was developed using the C# language
with the support of the .NET framework, version 3.5, and
the MUMPS solver (Amestoy et al. 2013) for the solv-
ing of the sparse matrices in the FEM and MM. For the
FVM an external solver was used, namely the Numeca
FINETM Turbo, version 8.9-3. The meshes needed for the
numerical methods were created with the mesh deformation
technique, based on the radial basis function interpolation
(de Boer et al. 2007) that was included in the aforemen-
tioned program. For the FVM calculation, meshes were
saved in an external file and then read with the external
solver. The fluid loads on the solid body were interpolated
with the RBF interpolation method. The decomposition

of the input space is performed based on the volume of
the solid region instead of the fitness function. The main
reason for this is the computational cost of the fitness
calculation.

3.1 Comparison of the FEM and the MM analysis

The main reason to incorporate two different structural anal-
ysis methods is the ability to compare their effect on the
optimization results. The formulation of FEM is straight
forward, but still several different elements exist, e.g. 8-
node Brick, 20-node Brick, etc. Additionally, one can use
the different quadrature rules or weighted or reduced inte-
gration (Barlow 1989) in order to improve the accuracy of
the FEM analysis. The situation is more complicated with
the MM formulations. Several different MM formulations
are reported in literature (Atluri et al. 2006; Gu and Liu
2002; Kee et al. 2006; Dolbow and Belytschko 1999) with
the main difference in the discretization of the problem
domain �. In order to give the best comparison between
the optimization with FEM and optimization with MM, the
used FEM element is 8-node Brick element (Zienkiewicz
et al. 2005) and the used MM formulation is a weak form
radial point interpolation method (RPIM) defined in (Liu
et al. 2005). The quadrature rule is of the order of two for
both methods. Chosen formulations are very similar to each
other, and therefore the most suitable for the comparison of
each other.
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Both MM and FEM are used to approximate the solution
of a three-dimensional problem of solid mechanics, defined
by

σij,j + fi = 0 in �, (4)

where σij is a stress tensor, fi is a body force and � is a
body domain, bounded by �. The relations between the dis-
placement field ui and strain field εij are described with
kinematic equations and strains are linked to the stresses
with constitutive equations. The boundary conditions are
given as

σijni = f̂i on the natural boundary �f ,

ui = ûi on the essential boundary �u,
(5)

in which the superposed hat denotes the prescribed bound-
ary values and ni is the unit outward normal to the domain
�. Equations (4) and (5) can be expressed in the weak
form as
∫

�

σij δεij d� −
∫

�

δuifid� −
∫

�f

δui f̂id� = 0. (6)

The above equation can be discretized according to the FEM
or MM. In both cases one obtains

KuN = f, (7)

where K is the stiffness matrix, uN is the vector of node
displacement and f is a load vector. A submatrix of K is
calculated by

Ksub =
∫

�sub
BT EBd�, (8)

where B is the strain displacement matrix and E is the
material matrix. In case of three-dimensional elastic body
problems the strain displacement matrix B is composed of
block matrices

Bsub =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ni,x 0 0
0 Ni,y 0
0 0 Ni,z

Ni,y Ni,x 0
0 Ni,z Ni,y

Ni,z 0 Ni,x

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (9)

where the Ni is a shape function and depends on the used
method, FEM or MM. The way of composing B from the
block matrices Bsub also varies of the used method. Ele-
ments fi of the load vector f corresponding to node i are
calculated by

fi =
∫

�f i

Nif̂id� +
∫

�i

Nifid�. (10)

Since the body forces can be neglected, the right integral in
(10) vanishes. The integration in (8) and (10) is performed
with the Gauss quadrature technique for both methods, FEM
and MM.

Fig. 5 Selection of the nodes (circles) for the shape function construc-
tion and integration area (hatched area) for one Gauss quadrature point
for: (a) FEM and (b) MM with the T2L selection scheme.

In the FEM, the shape function construction and inte-
gration of the (8) and (10) is based on the elements
(Zienkiewicz et al. 2005), as depicted in Fig. 5(a). In case
of the MM, the shape function construction is based on
the choice of the support nodes and the integration of (8)
and (10) can be done based on the background mesh. More
on the selection of the support nodes and on the integra-
tion schemes in the MM can be seen in (Liu 2010). In
the MM, it is possible to define the support nodes based
on the background mesh, which simplifies the computa-
tional implementation of the MM. In this case, the scheme
of choosing the support nodes for the shape function con-
struction from the nodes of background mesh is needed.
The integration region and the support nodes for the shape
function construction of the MM is depicted in Fig. 5(b).

In order to obtain the best possible comparison, the
FEM is based on an 8-node Brick element (Felippa and
Clough 1969) and the MM is based on the hexahedral
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background mesh with the modified T2L-scheme for choos-
ing the support nodes (Kee et al. 2006).

A preliminary comparison of both structural analysis
methods is performed on the cube with the edge of length
a = 50 mm and the compression load p = 10 MPa, as
depicted in Fig. 6(a). The material is elastic Hooke’s mate-
rial with the properties of E = 210000 MPa and ν = 1

3 .
Both methods are compared on two different meshes, one
completely orthogonal mesh and the other a distorted mesh
(depicted in Fig. 6(b)), in order to observe the effect of the
mesh on the results. The number of elements in both meshes
were 10 × 10 × 10 = 1000.

The observed result is the value of the maximal von
Mises stress σVM in the body since the fitness function
value in Section 4 depends on it. The analytical solution is
σVM,max = 10 MPa. The results of the preliminary tests and
their errors are gathered in Table 3.

The MM method did not obtain 0.0% error for the orthog-
onal mesh, but the result is much better in case of the
distorted mesh. The error of results obtained with the FEM
and distorted mesh is greater than 25% and as such greater
than the error of the result with the MM and the distorted
mesh which is 11.5%. From the test case it seems, that
the MM results are less sensitive to the mesh distortion as
the FEM results. One can apply different quadrature rule
in order to improve the accuracy of the FEM. The result
of different quadrature rule applied to the FEM method
are presented in parenthesis in Table 3 which resulted in
the similar FEM results to the MM results. Nonetheless, in
order to perform the best possible comparison between the

Fig. 6 3D structural test case for the preliminary comparison of the
structural analysis methods. Front face is compressed with p = 10
MPa and the back face is freely supported in the opposite direction of
the compression, except in one point where is it clamped

MM and the FEM, the quadrature rule of two is used in the
optimization processes.

4 Optimization of the Guide Vane Blade

The optimization of the guide vane blade of the reversible
water turbine is presented in this section. The reversible
water turbine is a turbine that can also act as a pump. The
pumping regime represents the problem, since the pressure
fluctuations can vary from the value of pmin = 700 kPa
to the value of pmax = 1200 kPa resulting in the dynamic
loading of the guide vane blades.

The optimization is performed in such a way that at given
dynamic pressure loads the optimal blade geometry would
have minimal volume and at the same time, the efficiency
of the pump ηp would not be impaired. These objectives can
be expressed mathematically as

Minimize : V (x) =
∫

V

dV, (11)

subjected to : (σV M,max(x)) ≤ σy, (12)

and : (	maxσV M(x)) ≤ 	σy, (13)

and : ηp(x) ≥ ηp,0. (14)

The two corresponding fitness functions with penalty
functions are defined as

min fstruct(x) = min
(

V (x) + fp1(x) + fp2(x)
)

, (15)

max ffluid(x) = max ηp(x), (16)

fp1(x) =
{

0 if σVM,max(x) ≤ σy,
(

σVM,max(x) − σy

)2 if σVM,max(x) > σy.
, (17)

fp2(x) =
{

0 if 	maxσVM(x) ≤ 	σy,
(

	maxσVM(x) − 	σy

)2 if 	maxσVM(x) > 	σy.
.

(18)

The used numerical methods are: FEM, MM and FVM.
The meshes for the FEM and MM contained 19 492 8-
node hexahedral elements, while the FVM mesh contained
7 535 350 finite volumes. A preliminary transient CFD

Table 3 The effect of the mesh orthogonality on the different struc-
tural analysis results

Orthogonal mesh Distorted mesh

σVM,max [Mpa] Error [%] σVM,max [Mpa] Error [%]

FEM 10.00 (10.00) 0.0 (0.00) 12.57 (11.36) 25.73 (13.55)

MM 10.33 3.3 11.15 11.5

*Results in parenthesis are obtained by the quadrature rule of three.
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Table 4 The results for the reference (starting) geometry of the guide
vane blade and the blade material data. The efficiency is normalized to
the reference point

Blade material data

Young moduli E 2.1× 105 MPa

Poisson factor ν 0.3

Yield strength σy 225 MPa

Yield amplitude of a strength 	σy 60 MPa

Results of the reference point

Efficiency ηp,0 100 %

Volume V 0.341 m3

Maximal von Mises stress σV M,max 26.58 MPa

Maximal amplitude of von Mises stress 	maxσV M 3.55 MPa

Table 5 Search intervals for the optimization parameters of the guide
vane blade

Parameter Minimal value Maximal value Starting value

rL 0.02 0.05 0.04028

bP -6.9 -6.0 -7.7403

cP 8.8 9.5 9.8656

dP -6.9 -6.0 -6.3412

cS -0.4 0.5 0.1564

dS -0.8 -0.45 -0.7469

Fig. 7 The blade geometry at
the start of the optimization

calculation of the reference point with two complete rota-
tions of the rotor was made in order to define CFD time
parameters used during the optimization. A pressure fluc-
tuation was noticed in this preliminary calculation, which
needed approximately 2.3 × 10−3 s to change its position
from one blade to its neighbouring blade. The transient
fluid velocity field from the runner/guide vane interface was
recorded in the last 0.11 s in order to use it in the FVM
analysis of the optimization procedure. The latter procedure
was transient with 45 time steps in order to correctly cap-
ture the dynamic pressure loads. A time of one time step is
2.44 × 10−3 s. First 35 time steps were neglected and only
the last ten time steps were observed in the structural anal-
ysis. This approach ensures the elimination of the transient
effect in the CFD calculation and that the pressure fluctu-
ation will move from one blade to its neighbouring blade.

Four different pressure loads on the blade are captured
within this ten time steps:

– Pressure loading with the maximal resulting torque on
the blade,

– Pressure loading with the minimal resulting torque on
the blade,

– Pressure loading with the maximal resulting force on
the blade,

– Pressure loading with the minimal resulting force on the
blade.

These four different loading spectrums are used in the struc-
tural analysis in order to obtain the maximal von Mises
stress σVM,max due to the pressure loading and maximal
amplitude of the von Mises stress 	maxσVM due to the
different loading spectrums.

The results of the analysis for the reference (starting)
point and blade material data are gathered in Table 4.

The results in Table 4 show that the σVM,max and
	maxσVM are small, compared to the maximal allowable
values. Apparently, the aforementioned cracks are not the
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Table 6 Parameter values of the found optima for all four different
optimizations

Parameter xOpti
P1,FEM xOpti

P1,MM xOpti
P2,FEM xOpti

P2,MM

rL 0.02 0.02

bP -6.9 -6.9 -6.9 -6.9

cP 8.8 8.8 8.8 8.8

dP -6.9 -6.9 -6.9 -6.9

cS -0.4 -0.3999 -0.3624 -0.4

dS -0.8 -0.8 -0.8 -0.8

result of the treated fluid loads, but are caused by some other
event or dynamic structure behaviour, which is beyond the
scope of this investigation. From the reference results it is
expected for the blade to get thinner during the optimization
process and the efficiency of the turbine ηp should rise as
a consequence. This is taken into account in the optimiza-
tion procedure, where only the fitness function fstruct(x) is
optimized, as it is expected that the fitness function ffluid(x)

will be fulfilled automatically.
The blade geometry of the reference (starting) point is

depicted in Fig. 7. All dimensions are normalized to the unit
length of the profile chord.

The blade profile is parameterized with the leading and
trailing circles and with the polynomials of the pressure and
the suction sides. The polynomials of the pressure and the
suction sides are

fP(x) = aPx6 + bPx5 + cPx4 + dPx3 + ePx2 + fPx + gP,

(19)

fS(x) = aSx5 + bSx4 + cSx3 + dSx2 + eSx + fS.

The leading and the trailing circles are described with its
radii, namely rL and rT, and the conditions of the static
leading and the static trailing edge (the leading and trailing
edges do not move during the optimization). Two differ-
ent sets of parameterization variables are selected and thus
defining two different optimization problems. The parame-
ters of the first optimization problem are

xP1 = {bP, cP, dP, cS, dS}, (20)

and of the second optimization problem

xP2 = {rL, bP, cP, dP, cS, dS}. (21)

Table 7 Optima values of the found optima for all four different
optimizations

Fitness value f (xOpti
P1,FEM) f (xOpti

P1,MM) f (xOpti
P2,FEM) f (xOpti

P2,MM)

V [m3] 0.2782 0.2782 0.2425 0.2417

σVM,max [MPa] 28.53 11.76 218.46 39.82

	maxσVM [MPa] 3.97 3.29 31.45 7.97

ηp,0 [%] 105.89 106.72 103.03 105.20

Fig. 8 The contour of the optimal blade (solid line) found by the first
set of the optimization parameters xP1 and the MM structural analysis.
The reference geometry is depicted with dashed line

The search intervals and the starting values for the selected
optimization parameters are gathered in Table 5.

The search intervals are defined in such a way to ensure
the regular profiles and meshes for arbitrary value of the
parameters within them. Due to the occurrence of singular
geometries, the search intervals of parameters bP and cP do
not contain the starting value.

With two different sets of the optimization parameters
and two different methods for the structural analysis there
are four different optimizations defined. All optimizations
incorporate the decomposition of the input space with two
iterations through the OpS and four different SM to approxi-
mate or interpolate the population values. The used SM are:

– multilayered perceptron ANN approximation with three
hidden layers and 10, 7, 9 neurons in them,

– RBF interpolation with CP C2 function and the support
radius of value r = 0.15,

– RBF interpolation with CP C2 function and the support
radius of value r = 0.3,

– IDW interpolation with the power parameter of value
2.0.

4.1 Results of the optimizations

The parameter values of the found optima xOpti and
the optima values f (xOpti) are depicted in Tables 6 and
7, respectively. The subscripts P1 and P2 represent the
parameter set, defined by (20) and (21), respectively, while
the subscripts MM and FEM indicate the used structural
analysis method. The efficiencies are normalized to the ref-
erence value. The contours of the xOpti

P1,MM blade and of the

xOpti
P2,MM blade are depicted in Figs.8 and 9, respectively.

All of the performed optimizations are successful. The
optimization of the first set of the optimization param-
eters xP1 gives worse results than the optimization of

Fig. 9 The contour of the optimal blade (solid line) found by the
second set of the optimization parameters xP2 and the MM structural
analysis. The reference geometry is depicted with dashed line



222

the second set of the optimization parameters xP2. The
main reason for this is the parameterization of the lead-
ing circle, which itself thins the blade a lot more than
the parameterizations of the suction side and the pres-
sure side combined. The optimizations with the MM as
the structural analysis method give better results than with
the FEM. The difference is bigger in case of the sec-
ond set of the optimization parameters, in which the FEM
violated the first penalty function, defined by (17). The
penalty function violation in case of the FEM can appear
due to the poor mesh quality, as shown in the results in
Subsection 3.1.

An interesting conclusion can be made about the effi-
ciency. The efficiency is not directly optimized, only the
volume of the blade is. Nevertheless, the efficiency is better
than the reference point’s efficiency for all found optima.
The biggest rise is achieved with the use of the MM as
the fitness evaluator and the first set of the optimization
parameters. The optimization with the MM produces better
efficiency results for both sets of the optimization param-
eters. The smallest rise of the efficiency is obtained with
the second set of the optimization parameters and the use
of FEM as the fitness evaluator. This is expected, since
the FEM violated the first penalty function during the opti-
mization process. The main conclusion on the efficiency
results is that for some cases it is better to optimize the vol-
ume of the blade than the performance of the blade, since
the structural analysis methods are computationally less
expensive.

5 Conclusions

This paper presents a new method for the decomposition
of the optimization problem. The decomposition is based
on the separability measurement of the function input argu-
ments. The function can be the original fitness function in
case of the mathematical fitness functions or the volume
of the region in case of the fitness functions expressed
with the numerical analysis methods. The decomposition
of the optimization problem is used for the optimization
of two mathematical functions and a real world problem
– the optimization of the guide vane blade. The results of
all performed tests show that the proposed decomposition
method gives similar or better results while lowering the
computational cost of the optimization.

The optimizations of the guide vane of the reversible
water turbine are performed separately using two differ-
ent structural analysis methods, namely the finite element
method and the meshless method. Found optima are com-
pared based on the used method to show the effect of
the used structural analysis method on the found optima.
The obtained optima are better than the reference point

no matter the structural analysis method used or the blade
parameterization. An interesting phenomenon occurred at
the optimization of the turbine efficiency. The efficiency
was not optimized directly, but still the optima have bet-
ter efficiency than the reference point. The efficiency rise
is achieved solely through the minimization of the blade
volume. This phenomenon can be exploited for a simi-
lar optimization problem, since the structural analysis is
computationally less expensive that the computational fluid
dynamics analysis.

Future research will focus on the improvement of the
decomposition method and its implementation into the mul-
tiobjective optimization. Another promising research topic
is the aforementioned efficiency phenomena. For the opti-
mization problems, where multiple fitness functions can be
defined and the optimization result would be the same no
matter the used fitness function, it is more efficient to opti-
mize a fitness function with a lower computational cost. In
such a case, it would be desirable to detect in advance which
fitness function will have the smallest computational cost
of the optimization and will produce sufficient optimization
results at the same time.
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