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Abstract A method for the multiobjective optimization
of local-scale material topology is presented. The topol-
ogy optimization scheme is based on a constructive solid
geometry-like representation, in which convex polygons—
defined as the convex hull of arbitrary-length lists of
points—are combined using an overlapping function. This
data structure is tree-shaped and so genetic programming
is used as the optimizer. The forward problem is solved
with a multiscale finite element method with automatic
cohesive zone insertion to model damage. As a multiscale
method, loads and boundary conditions are applied and
objective functions measured at a global scale, while the
local scale material structure is optimized. The global scale
geometry is assumed fixed. Pareto optimal designs are gen-
erated, representing optimal tradeoffs between conflicting
goals: quasi-static displacement and dynamic strain energy.
Results demonstrate the efficacy of the proposed algorithm.

Keywords Topology optimization - Pareto optimization -
Genetic programming - Energy absorbing material

1 Introduction

Materials designed to absorb energy have applications in
numerous areas: crashworthiness (Mozumder et al. 2012;
Guo et al. 2011; Huang et al. 2007; Anghileri et al. 2005),
head protection (Rueda et al. 2009), impact resistance (Qiao
et al. 2008), and blast resistance (Main and Gazonas 2008;

R. A. Wildman (2<) - G. A. Gazonas

U.S. Army Research Laboratory,

Attn: RDRL-WMM-B, Aberdeen Proving Ground,
MD, 21005, USA

e-mail: raymond.a.wildman.civ@mail.mil

Qi et al. 2013). There are several ways to design an energy
absorbing material or system of materials, for example,
one could layer several different materials in a one dimen-
sional sense, while optimizing for material placement and
thickness. Another approach is to design the geometry or
topology of a bi-material system or truss structure in two
dimensions or three dimensions. In this work, we take the
latter approach, and focus on designing energy absorbing
materials at a local scale in a multiscale finite element
(FEM) setting.

Our approach to designing materials will be to optimize
the topology of a material at a local scale in two dimen-
sions, while applying loads and boundary conditions and
computing objectives at the global scale. A heterogeneous
representative volume element (RVE) (strictly two materi-
als in our case) will represent the local scale, and the global
scale will be assumed to be statistically homogenous with
material properties derived from a homogenization of the
representative volume element (RVE). At the local scale,
boundary conditions will be spatially homogenous using
linear displacements, while at the global scale, a material
sample will be fixed at one edge, with different loading con-
ditions applied depending on whether we are considering
static displacement or dynamic energy absorption. The dif-
ferent loading configurations are used to simulate possible
scenarios in which such a material would be used, either
as a structural element or an energy absorbing material for
blast-like loading. As will be discussed in more detail later,
these two loading conditions will be used as two separate
goals in a multi-objective optimization problem. There are
several options for optimizing such a configuration, the first
choice being between a simple geometry or shape optimiza-
tion method or a topology optimization method. A shape
optimization method assumes a specific topology (i.e. each
design is homeomorphic in that they must have the same
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number of shapes and holes), and parameterizes that shape
with some type of function expansion, the simplest being
a linear interpolation between a given number of vertices.
An optimization method, either local, derivative-based or
global heuristic, can then be used to solve for the defining
parameters of the shape. An example of this approach can be
found for the design of energy absorbing tubular structures
in Chiandussi and Avalle (2002).

Shape optimization is overly restrictive, however, as one
must fix the topology a priori. A popular method for topol-
ogy optimization is known as the solid isotropic material
with penalization (SIMP) method, introduced by Bendsge
(Duysinx and Bendsoe 1998; Bendsoe and Sigmund 2003).
This method uses a square grid of unknowns (pixels), where
each unknown is continuous value representing a graded
material. A local optimization method is used to determine
the optimal value of graded material at each pixel. Though
a structure consisting of graded material is the result, meth-
ods exist to regularize the final result to a single material.
Level-set methods have also been used to optimize topol-
ogy (Sethian and Wiegmann 2000), which use contours
of a higher dimensional function to represent topology in
the plane. Finally, evolutionary methods have also been
designed for topology optimization (Xie and Steven 1993,
1997).

To optimize topology, we use a constructive solid geom-
etry (CSG) representation (Requicha and Voelker 1977),
which uses Boolean operations to combine shape primitives.
While typical implementations of CSG use canonical shapes
such as rectangles and circles, we use convex polygons rep-
resented as the convex hull of an arbitrary length list of
points. This encoding can represent any physically realiz-
able (orientable) topology as a set of line segments. Though
line segments are used, their length is not restricted, so
arbitrarily small line segments can be used to approximate
curves. Genetic programming (GP), a variant of genetic
algorithms (GA) that uses a tree-based chromosome, will
be used and is a natural fit for this topology representa-
tion as CSG can be readily expressed as a tree structure.
This approach has been used in several applications includ-
ing RF microwave inverse scattering (Wildman and Weile
2007, 2010), gravitational anomaly inversion (Wildman and
Gazonas 2009), and phononic bandgap material design
(Wildman and Gazonas 2011).

The approach presented here can be compared with cur-
rent methods in two ways: geometry representation and
optimization method. Our approach offers an alternative to
the SIMP and level set methods in that it ultimately uses
a set of line segments to approximate a topology rather
than a grid (SIMP) or smooth curves (level-set). As will
be described below, multiple materials are also easily rep-
resented in this approach. Further, as automatic meshing is
used, the discretization of the topology as represented in
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the optimization method is uncoupled from the discretiza-
tion used in the forward solver. SIMP and level-set methods
typically use a local optimization method that requires gra-
dient information. The genetic programming method used
here does not require the computation of gradients and
it is well-suited for multi-objective problems as it is a
population-based method. The topology representation used
here can also be adapted to a local search methodology, as
described in Wildman and Gazonas (2009).

Previously, microstructural (or microscale) topology
optimization has been performed for different goals: max-
imum stiffness of a periodic material (Huang et al. 2013),
prescribed macroscale constitutive parameters (Sigmund
1995, 1994; Zohdi 2002; Mei and Wang 2004), and ex-
tremal microstructural properties (Allaire and Kohn 1993;
Sigmund 2000). In this paper, we focus on balancing struc-
tural stability with energy absorption in a multiobjective
setting. Typical engineering problems involve balancing
conflicting goals, using the present example, if we wish to
design an energy absorbing material and incorporate it into
an overall structure, that material may not be structurally
sound and could be unusable in our final design. We could
place constraints on the optimization problem, such as a
mass constraint, though this approach may leave out impor-
tant information that could be garnered from the Pareto
front, or set of multiobjective designs (Cohon 1978; Cohon
and Marks 1975; Steuer 1989). The goal of Pareto optimiza-
tion is to deliver a set of designs, rather than one single
design, that represent the optimal trade-offs between two or
more conflicting goals. This set of designs is Pareto opti-
mal in that no other design simultaneously outperforms it in
all goals. (The Pareto front can be defined as the boundary
between the infeasible region of designs, and the dominated
region.) Each design in the Pareto optimal set (Pareto front)
can only outperform another design in the Pareto optimal set
by at most one goal less than the total being optimized (or
one goal in a two-goal problem, two in a three-goal problem,
etc.).

While an individual design on the Pareto front may be
determined using constraints on one or more goals, the
shape of the Pareto front can provide information as well.
For example, the front’s shape may indicate areas of dimin-
ishing returns, whereby minuscule improvement in one goal
only comes at the severe detriment of another. Here, we
will optimize for two goals: a quasi-static loading problem
representing a material’s structural qualities, and a dynamic
loading problem to measure energy absorption. These goals
are conflicting because a structural material will be massive
and stiff, while an energy absorbing material tends to be soft
and compliant.

Three objectives, though only ever two simultaneously,
will be considered in a multi-objective setting: Static dis-
placement under uniaxial load, dynamic energy absorption
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under hydrostatic, blast-like loading, and total mass. Each
goal is defined and measured at the global scale, with
no objectives considered at the local scale. The forward
solver for the static and dynamic problems is a multiscale
FEM code, with a global scale representing a sample of
the material and the local scale representing a heteroge-
neous, repeatable (though not necessarily periodic) RVE,
consisting of one or more brittle, elastic materials and void.
This method is described in Souza et al. (2008), and com-
mercially available as MultiMech (MultiMech Research &
Development 2012). In our approach, the global scale is a
fixed, unchanging structure, on which the loads and bound-
ary conditions will be applied. A single design for the local
scale will be used (i.e. the global scale will be homoge-
neous), and it will be assumed to be made of up to two
materials or a single material with a void. Damage can also
be modeled in the form of automatically inserted cohesive
zones. In both the dynamic and quasi-static case, cohe-
sive zones can be inserted at the local scale, representing
micro-cracking and damage. In the quasi-static case, these
micro-cracks can coalesce into macroscale damage, being
inserted at the global scale with an extended finite element
method (XFEM) (Chessa et al. 2002). We will consider the
different models in turn, showing the difference in results
when incorporating damage in the form of cohesive zones.

In summary, we will use a constructive solid geometry-
based topology representation in conjunction with genetic
programming to optimize the local structure of a material.
Loads are applied and objectives measured at the global
scale in a multiscale FEM setting. A multiobjective design
approach is used, with one goal being a material’s static,
structural response, and a second being its dynamic, energy
absorbing capability. The remainder of this paper is orga-
nized as follows: Section 2 details the topology representa-
tion and GP optimization method. Section 3 then discusses
the multiscale finite element method used as the forward
problem to model energy absorbing materials. Section 4
then presents results of the optimization, and Section 5
discusses our conclusions.

2 Optimization method

The optimization of geometry/topology is complicated by
the difficulty in representing topology numerically. Here,
we use a combinatorial approach based on constructive
solid geometry applied to convex polygon primitives. This
representation forms a tree data structure, with Boolean
operations as function nodes (operators) and convex poly-
gons as terminal nodes (operands), and is most naturally
optimized with genetic programming (GP). In this section,
we detail the topological data structure (Subsection 2.1) and
the optimization method (Subsection 2.2).

2.1 Topology representation

Our approach to topology optimization is based on a CSG
representation (Requicha and Voelker 1977), in which com-
plex topologies are generated by combining shape primi-
tives using Boolean operations. Over the past decade, this
type of approach has been used for several applications,
including optimization of truss joints (Hamza and Saitou
2004), optimization of statically loaded beams (Ahmed
et al. 2013), optimization of phononic bandgap structures
(Wildman and Gazonas 2011), gravitational inversion
(Wildman and Gazonas 2009), and imaging (Wildman and
Weile 2007, 2008, 2010; Yamagiwa et al. 2010). Our
approach differs in that the shape primitives are based on
convex polygons or polyhedra, rather than canonical shapes
such as rectangles and ellipses (or cubes, spheres, and cylin-
ders in 3D). Subsection 2.1.1 discusses the use of convex
polygons as shape primitives, and subsequently Subsection
2.1.2 discusses generating more complex topologies.

2.1.1 Shape primitives

Typically, CSG methods use a canonical set of shape prim-
itives to generate a desired topology. While, as shown in
previous work, this approach can be effective, we use a
more flexible representation that can result in smaller tree
sizes. Here, shape primitives are convex polygons repre-
sented by the convex hull of arbitrary-length lists of points.
The convex hull can be defined as the intersection of all
half-planes that contain the points, or more colloquially, as
the shape that results from stretching an elastic membrane
around the points. Figure 1 gives an example of the convex
hull (dashed line) of a set of randomly generated points in
the plane (black dots). The total number of points allowed in
each convex polygon is not restricted, so that curved shapes

~~._____-0'

Fig. 1 An example of the convex hull of a set of random points
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can be well-approximated by small line segments, while
retaining the ability to match sharp corners where necessary.
In CSG methods with canonical shape primitives, each
shape may have a few defining parameters such as cen-
ter location, bounding box size, or rotation. These may or
may not be compatible between varying shapes making
hybridization or crossover difficult with a GA approach.
Here, each shape is described as a list of points, and though
its length is arbitrary, we can easily perform crossover
as the data has identical meaning across chromosomes.
While this convex hull approach is capable of generating a
wide variety of shapes, it is incomplete as it is incapable
of generating concave shapes and varying topologies; the
methodology for deriving concave shapes from convex hulls
using Boolean operations is described in Subsection 2.1.2.

2.1.2 Constructive geometry

The convex shape primitives described in the previous
subsection can be combined to generate more complex
geometries and topologies in a variety of ways. Boolean
operations can be used in applications with a single mate-
rial, such as the microwave imaging of perfect conductors
(Wildman and Weile 2007). For problems with more than
one material, an overlapping scheme can be used, in which
each convex polygon also contains material properties and
a priority value designating which operand is placed on top
(Wildman and Weile 2010). Here, we will use a scheme
similar to the overlapping scheme of (Wildman and Weile
2010), but somewhat simplified by removing priority values
from the terminal nodes.

The construction scheme used here is rather simple:
Given a binary tree with terminal nodes containing point
lists and material properties, at each function node, always
place the topology from the left operand on top of the topol-
ogy from the right operand. This is somewhat equivalent
to using only union functions, but assigning each termi-
nal node a sign (essentially the material properties), so that
subtraction can be generated with two oppositely signed
operands (equivalent to differing material properties). While
simple, this approach will generate any physically realizable
topology including shapes with holes and multiple disjoint
shapes. Consider a few examples, each assuming a two
material system embedded in an infinite medium consisting
of one of those materials.

First, a concave shape can be generated by overlapping
two convex shapes of the same material, essentially result-
ing in the union of the two shapes. Figure 2 shows a three
node binary tree representing the overlap of the convex
polygon C; on convex polygon C,. The two (randomly gen-
erated) polygons are shown in Fig. 3, with C; represented
as the solid line resulting from the convex hull of the points
marked as circles, and C, being the dashed line resulting
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Fig. 2 A three node binary tree

from the points shown as squares. The result of applying the
tree of Fig. 2 to the convex polygons of Fig. 3 is shown in
Fig. 4. Disjoint topologies can be generated if C; and C»
do not overlap, thus generating two convex polygons in the
plane.

Next, a topology with a hole can be generated if a shape
contained entirely within another and of a different mate-
rial is overlapped. Say C is contained within shape C, and
is made of the same material as the background medium,
as shown in Fig. 5. Generating polygons from the convex
hulls and overlapping using the tree shown in Fig. 2, the
topology in Fig. 6 is generated. These three basic operations
described can then be combined with more complex tree
structures, generating more complex topologies.

The computational geometric operations used to evaluate
a CSG tree are available in the Computational Geome-
try Algorithms Library (CGAL) (CGAL 2007) as Boolean
operations on Nef polyhedra (Bieri 1995). A Nef poly-
hedron is a polygon or polyhedron that is generated by
Boolean operations on half-spaces, which may be open or
closed; i.e. they may or may not be inclusive of the defining
boundary of the half-space. Nef polyhedra may then have

Fig. 3 Two randomly generated sets of points and their convex hulls
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Fig. 4 A concave polygon result generated by applying the tree
operation in Fig. 2 to the convex polygons in Fig. 3

infinite extents and be open or closed on their boundaries.
While there is no specific “overlap” function in CGAL,
we can generate one using Boolean operations. Consider a
binary overlap function, with Nef polyhedra as operands in
general. The first step in computing an overlap function is
to compute a boundary inclusive “union mask” of the right
operand. This union mask is simply the union of all under-
lying operands, ignoring material properties and including
the defining boundaries of the topology. Next, we subtract
the union mask from the left operand with its boundary
excluded. Finally, the union of the result of the subtraction
operation and the right operand (with boundary excluded)
is computed to generate the final topology. Essentially, our
binary overlap operator, must include the boundary inclu-
sive union mask as a third parameter, which is updated at
each node and passed up the tree during computation.

Fig. 5 Two randomly generated sets of points and their convex hulls

Fig. 6 A hole topology result generated by applying the tree operation
in Fig. 2 to the convex polygons in Fig. 5

2.2 Genetic programming

Genetic programming (Koza 1999) is a variation of a GA,
whereby the chromosome structure is tree-shaped, rather
than linear with fixed length (Goldberg 1987). It is func-
tionally equivalent to a standard GA because it uses the
same three genetic operators—selection, crossover, and
mutation—applied iteratively to a population of chromo-
somes. Because the chromosome is tree shaped, crossover is
the same in spirit, though issues such as tree bloat (Banzhaf
et al. 1999) preclude a naive implementation. Due to the
flexibility in the chromosome, mutation has several more
options than in standard GA. The following subsections dis-
cuss the implementation of our topology scheme in GP in
more detail.

2.2.1 Chromosome structure

The chromosome in a GA is a data structure that encodes a
potential solution to the optimization problem. In a standard
GA with a fixed-length, linear chromosome, the position on
the chromosome of each “gene” or value in the chromosome
has a specific meaning. In other words, if our optimization
problem were to find the optimal rectangular solid for a
given forward problem, we could parameterize the shape as
shown in Table 1, where 4 is the height of the unrotated rect-
angle, w is its width, 6 is a rotation angle, and x¢ and yg are
its center location.

Table 1 A chromosome with five genes representing a parameteriza-
tion of a rectangle

81 82 83 84 85

h w % X0 Y0
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Each gene has a specific meaning pertaining to some
aspect of the rectangle and of course hybridizing g;, the
height with g3, the rotation angle, would be meaningless.

In GP, chromosomes are more flexible, and as such, spe-
cific data or functions may have to be labeled. For example,
if we use a more general binary tree that includes differ-
ent operations, we would have to label each function node
with its function: union, subtraction, etc. As with a standard
GA, hybridizing genes with different meanings may not aid
in optimization. In order to keep crossover meaningful, we
attempt to simplify the data structure as much as possible,
so that each function node is identical (i.e. overlap the shape
on the left), and each terminal node contains a list of points
and material properties. Material properties can either be
arbitrary with a given range, or chosen from a database. A
complete chromosome is then described by two data struc-
tures, a tree giving the constructive geometry, and point
lists and material properties for each terminal node of the
tree. Table 2 gives an example of the data structure of two
terminal nodes that might correspond to the tree shown in
Fig. 2.

2.2.2 Selection

GAs have many options for selection. Typical single objec-
tive methods include tournament selection, roulette wheel
selection, or truncation selection (Goldberg 1987). In this
work, we will use selection appropriate for multiobjective
problems. GAs are amenable to multiobjective problems
because they use a population of potential solutions. Rather
than a single solution, we seek a set of solutions corre-
sponding to the optimal tradeoffs between two conflicting
objectives. Consequently, to convert a standard GA to a mul-
tiobjective GA, the only change necessary is to the selection
operator. The most popular multiobjective selection method
is known as non-dominated sorting (Srinivas and Deb 1994,

Table 2 Example data structure of a chromosome with two terminal
nodes

Ci G

Mat ID Mat ID

k 1

x y X y

X0 Yo uo Vo

Xy yi uj v

b ) 2 uz v2

x3 y3 u3 v3
Ug V4
us Vs
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Deb et al. 2002), in which the population is ranked based on
its performance relative to the current Pareto front.

Non-dominated sorting proceeds as follows: First, the
Pareto front is determined by finding all non-dominated
chromosomes. The set of dominated chromosomes (for
minimization) Y can be defined as

v = vy Avio yf < a3)at <), M

where y = [y1, y2, ...] is a goal vector or vector of objective
function values. The non-dominated set is then just the com-
plement of the dominated set. In other words, the dominated
set is simply the set of chromosomes with objective function
values that are clearly worse than at least one other chromo-
some in the population; for each dominated chromosome,
there exists another with all objectives less than or equal,
and at least one objective strictly less. The chromosomes in
the non-dominated set cannot be compared within their set
as each will have at least one better performing goal.

With the definition of non-domination in hand, we can
now assign a single objective function value to each chro-
mosome, beginning by ranking each in terms of relative
distance to the Pareto front. The first non-dominated set
of chromosomes is given a rank of one, and temporarily
removed from the population. The non-dominated chromo-
somes of the remaining set are determined and assigned of
rank two. After removal, this process is repeated until each
chromosome in the population has a rank. An example of
this procedure is shown in Fig. 7, with two goals being
minimized and four total ranks.

A chromosome’s rank gives a measure of a chromo-
some’s relative distance to the Pareto front, however, it can
be insufficient as an objective function value for selection as
it will not encourage movement along the front. After all, we
want a set of designs that well-represents the Pareto front.
To encourage a diverse front, we add a sharing value that
penalizes chromosomes that are close to each other in goal

0.9r
—©-Rank |
0.8F —»—Rank 2
—+—Rank 3
—¥—Rank 4

0 02 0.4 0.6 0.8 1
X/

Fig. 7 An example of goal vectors assigned with Pareto ranks
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space. Each chromosome i with goal vector x; is assigned a
sharing value by first finding all other chromosomes within
aradius r in goal space. The sharing value for chromosome
i is then given by

o~ Ixi =]
si=N -y L @
j=1

where x; is the goal vector of chromosome j within sharing
radius r of chromosome i and N; is the number of chromo-
somes within the sharing radius. This approach is described
in more detail in Weile et al. (1996).

Finally, a single objective function value that will be
maximized can be assigned to each chromosome using its
Pareto rank and sharing value. First, all rank one chromo-
somes are given an objective function value of fl.l = 1/s;.
Next, the minimum objective function value of the rank one
chromosomes is used as the starting value for the rank two
chromosomes, i.e. now, for rank two, fi2 = ¢1/si, where
¢1 = min; fil. This process is repeated for rank three and
so on. After all chromosomes are assigned an objective
function value, standard roulette wheel selection is used.

2.2.3 Crossover

After selection, a new population is generated with an aver-
age fitness better than the previous generation. Crossover is
then used to combine traits of those surviving chromosomes
to hopefully generate even better performing chromosomes.
In a standard GA, crossover is typically performed by first
randomly choosing two chromosomes from the new popula-
tion. A gene, say g3 in Table 1, and hybridized in some way.
The genes following (g4 and g5) are then swapped between
the two chromosomes.

In GP, crossover is performed in a similar way: Two
nodes in a tree are chosen at random and hybridized if
applicable, and their subtrees are swapped. Given that our
function nodes are identical, there is no hybridization to
be done, however, if two terminal nodes are chosen, their
point lists and material properties can be hybridized. As
the point lists are of arbitrary length, they can grow with-
out bound in some situations. This is related to the issue
of tree bloat (Banzhaf et al. 1999), in which tree sizes
grow without bound as protection against harmful muta-
tions and crossover. Larger trees (or point lists) can contain
more redundant information, so that crossovers and muta-
tions with the potential to harm performance are minimized.
This can lead to population stagnation, so it is undesirable.
For point lists, we then use a two point crossover, ensuring
that the number of points exchanged between two termi-
nal nodes is equal so that each point list remains the same
length. An example of this process is shown in Table 3: The
double-horizontal lines and text in bold in the point lists

131

Table 3 Example of crossover between two terminal nodes
C D
Mat ID Mat ID
k l
X y X y
X0 Yo uo Vo
uy Y1 X1 »1
uz V2 X2 ¥2
us V3 X3 y3
X4 Y4 Uz v4

us V5

show the two crossover points, and the coordinates x;, y;
and u;, v; will be swapped between nodes C and D. The
crossover points are chosen at random. Additionally, the
points at the crossover locations are hybridized, i.e. mixed
together by choosing a number ¢ from a uniform random
distribution between 0 and 1 as

p* =mp+U-1)q
q =tq+1-1)p, 3)

where p and q are the points at the crossover locations.
Finally, because we are using a database of material prop-
erties, we do not hybridize materials, although this is not
a restriction, as randomly generated constitutive parameters
may benefit from hybridization.

To combat tree bloat, we use a crossover probability
based on geometric similarity. Typically, the crossover prob-
ability is a constant around 80 %, and subtrees are chosen
at random between two random chromosomes. Our imple-
mentation sets a crossover probability by first selecting a
chromosome for crossover. A mate is chosen out of a pool of
random chromosomes, the size of which is an input parame-
ter, typically chosen as ten. Each chromosome in the mating
pool is assigned a probability by randomly choosing a given
number of subtrees (again, usually chosen to be at most ten)
in each and comparing their decoded geometries as

— M 4)
pe A (C U Cz) ’
where A (C1) indicates the area of the topology generated
from subtree C; and s is a biasing exponent typically cho-
sen as 2.5. Consequently, if C; does not overlap C», then p,
is zero, and if C1 = C» then p, is one. Now, p. is computed
for a given number of randomly chosen subtrees of a mat-
ing pair, and the maximum is saved. After the maximum p,
is found for each mate in the pool, a mate is chosen at ran-
dom using a weighted roulette wheel with the weights given
as the crossover probabilities. In other words, we choose
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a random mate from the pool, favoring mates with higher
crossover probabilities. Crossover is then performed using
the chosen mating pair and subtrees with the maximum p..

While this scheme is somewhat convoluted, it is designed
to match similar pairs of subtrees, but with some random-
ness. Matching similar subtrees helps ensure population
convergence and randomness aids diversity. Striking a bal-
ance between the two is important in the design of a GA, so
that it can cover a large search space and resolve fine details
simultaneously. These issues are not present with a fixed
length chromosome representation as we know a priori the
function of each gene in a chromosome, thus ensuring that
crossover is meaningful.

2.2.4 Mutation

The final genetic operator, mutation, is used to inject new
genetic information into a population, preventing prema-
ture convergence or stagnation. In our implementation, the
flexibility in the chromosome allows for a large number
of options for mutation. We can, on one hand, manipulate
solely the encoded chromosome (tree structure with point
lists at the terminal nodes) and on the other hand, adjust the
decoded topology. The mutation rates for the examples in
Section 4 are constant throughout, so they are listed here.

First, single points from terminal node point lists are
deleted with a given probability. This rate can be set some-
what high (for mutation rates) as terminal nodes tend to
grow in length for reasons discussed earlier. Here we use
a point deletion rate of 2 % per point. There is a mini-
mum length for terminal nodes of three, as three points are
required for a 2D simplex. We also duplicate points in a ter-
minal node with a 0.5 % rate per point. New points are first
duplicated then shifted by a random amount according to
a Gaussian distribution with standard deviation of 10 % of
the largest dimension of the design bounds (20 mm in all
examples from Section 4).

Points are also added by splitting existing convex hull
segments. First, a terminal node is decoded by taking its
convex hull. Next, for each line segment in the hull, we ran-
domly insert a new point at a random location between 10 %
and 90 % of its length. This mutation is performed with a
rate of 0.5 % per segment.

In a mutation most analogous to a standard GA, points
are shifted by a random amount. The shift amount is chosen
from a Gaussian distribution with zero mean and standard
deviation of 10 % of the region size (as above for point
duplication), and the mutation rate is 1 % per point.

One issue with the above point mutation method is that
a non-coding point (a point not on a convex hull) can
be moved to another non-coding position, meaning that
ultimately the mutation had no effect on the decoded topol-
ogy. A convex hull aware point mutation was designed to
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remedy this situation. Given a point p inside a convex
hull, the closest segment on the hull is found. Two vec-
tors are formed pointing from the point inside the hull, to
the two points q; and q, defining the closest segment. The
point inside the hull is then moved inside the parallelogram
formed by the addition of these vectors as

p'=ri(qi—p) +r2(q2—p)+p. (5)

where r| and r, are two random values from a uniform dis-
tribution between 0 and 1. This mutation then has a 50 %
probability of altering the convex hull and is used with an
overall rate of 1 % per point.

Points are also deleted by pruning non-coding points that
are inside a point set’s convex hull. As an extreme example,
a point list may contain hundreds of points, but only three
actually on the convex hull that defines its decoded shape.
These redundant points can be harmful to a population’s
progress, and so they can be pruned. Points to be pruned are
chosen by first computing the convex hull of the point list
and scaling it by a random amount between 0.4 and 0.8. All
points within this scaled convex polygon are removed from
the point list. This mutation is performed at a rate of 5 %
per terminal node.

We can also apply affine transformations to the terminal
node point lists, effectively altering the overall geometry.
Here, we separately apply scaling, rotation, or translation
mutations with a rate of 1 % per terminal node. If a node is
chosen for affine transformation, scaling, rotation, or trans-
lation is chosen at random with equal probability. Each
transformation has its defining parameter chosen from a
Gaussian distribution: Scaling uses a mean value of 1 and
a standard deviation of 0.1, rotation uses a mean of 0 and
standard deviation of 7/10, and translation uses a mean of
zero and standard deviation of 10 % of the region size for
both coordinates.

Material properties can also be mutated. Here we use a
database of materials and so, with a given probability of
1 % per terminal node, we simply choose a new material at
random from the database.

Finally, we can alter the tree structure of a chromosome.
The first type of tree mutation is standard in GP, subtree
deletion and regrowth. In this mutation, a subtree is deleted
and replaced with a randomly generated subtree with a given
probability. This type of mutation can be destructive so it
is applied with a low probability of 0.5 % to each node in
a tree. Another way of altering the tree structure is to split
terminal nodes into a function node with two new terminal
nodes. There are a few ways of accomplishing this, first,
we can simply split a terminal node’s point list at an arbi-
trary point and separate it into two new nodes. Next, we can
separate points internal to a list’s convex hull, much like
the pruning operation described above. Here, we again scale
down the convex hull of a point list, and separate points
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Table 4 Summary of mutation rates

Type Rate Unit

Point deletion 2 % Point

Point duplication 0.5 % Point
Segment splitting 0.5 % Segment
Point translation 1 % Point

Convex hull mutation 1 % Point

Point pruning 5 % Terminal node
Affine transformation 1 % Terminal node
Material mutation 1 % Terminal node
Delete node 0.5 % Node

Split list 1 % Terminal node
Split hole 1 % Terminal node
Split line 1 % Terminal node
Aggregate lists 6 % Function node

inside the scaled hull and those outside into two new termi-
nal nodes. Finally, we can split a set of points by placing
a line through the polygon and separating all points (geo-
metrically) left of the line into one new list and points right
into another. The line is chosen by passing an infinite line
through two randomly generated points within the list’s con-
vex hull. The intersection points of this line and the convex
hull are computed and inserted into each new terminal node
to ensure that the decoded subtree is similar to the origi-
nal. Each of these splitting mutations are performed with a
rate of 1 % per terminal node. As these mutations can lead
to large tree sizes, subtree point list aggregation is also per-
formed in opposition. In this mutation, a function node is
chosen and all point lists in the terminal nodes within the
subtree are aggregated into a single terminal node. This is
performed at a rate of 6 % per function node.

The types and rates of mutation are summarized in
Table 4. The number and complexity of the mutation oper-
ators is due to the flexibility in the topology representation,
and some work remains in determining the effectiveness and
usefulness of each individual operator.

3 Multiscale forward problem

The goal of this work is to optimize a material’s local-scale
structure. One approach would be to construct a model of
a material by repeating a given RVE over a finite region
and use a very fine mesh; however, this may lead to overly
long execution times due to the fine mesh. Instead, we will
use the concurrent multiscale finite element method Multi-
Mech, which uses RVEs to represent a material at a local
scale (Souza et al. 2008; Souza and Allen 2010, 2013). We
assume that our global scale structure is statistically homo-
geneous, but has inhomogeneous local structure, which will

be optimized. We will consider static loading problems to
address structural stability along with dynamic problems for
energy dissipation.

3.1 Methodology

Typically, a finite element problem will have the material
properties of each element as an input. In a multiscale FEM
problem, the global scale only assumes that the material
properties over an element are statistically homogeneous,
and they are then derived from local scale representative vol-
ume elements (RVEs). Each integration node in the global
mesh has an associated RVE, each of which is itself a
finite element problem, with loads derived from the global
mesh. These RVE problems are quasi-static with spatially
homogenous (linear displacement in this case) boundary
conditions. Material properties are then garnered from the
RVE problems and used to solve the global problem. The
purpose of this work is to then optimize the topology of the
material at the RVE scale, assuming a homogenous set of
RVEs, though the model RVE itself is not homogeneous.
Figure 8 gives an example of a multiscale problem: A global
mesh is shown with points representing integration nodes
of a one-point rule. Each integration node then has an RVE
attached, the geometry of which is shown in the inset. The
global geometry is assumed to have the same RVE geometry
at each element, and the RVE itself is a bi-material system,
with one material shown in black and one in white in this
example; however, this methodology is easily generalized
by allowing RVEs to vary from point to point for solution of
a globally inhomogeneous optimization problem. The RVE
is shown to scale; in this case, it is one tenth the size of the
global mesh.

Each RVE is an independent finite element problem and
so they can be solved simultaneously. MultiMech can take

Fig. 8 An example of a global mesh with embedded RVEs
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advantage of this and parallelize the computation of the indi-
vidual RVE FEM problems. We can also parallelize the GA,
leading to a parallel problem that requires a large number of
compute nodes. Consider a GA running 150 compute nodes
in parallel, if we then want to use 16 nodes for each multi-
scale FEM forward problem, we need 2,400 compute nodes
for this problem.

3.1.1 Damage modeling

Damage is modeled in this FEM code using cohesive zones
(Xu and Needleman 1994, 1996) at the local scale and
XFEM at the gobal scale. At the local scale, cohesive zones
are automatically inserted between elements after the trac-
tion has exceeded a given value. If a number of cohesive
zones coalesce within the RVE, the damage is propagated
up to the global scale. In this case, extended finite elements
(Chessa et al. 2002) are inserted in the global scale finite
element mesh. Currently in MultiMech, XFEM together
with multiscale RVEs are only available for static loading,
so they are not used in the dynamic problem under con-
sideration. One unfortunate side effect of this approach is
that inserting cohesive zones adds elements to the mesh,
increasing the number of unknowns. A design that is badly
damaged can lead to long run times, so it is important to
parallelize both the GA and the forward problem. Finally,
triangular elements are used at the global scale through-
out, rather than the more standard quadrilateral elements,
because the XFEM algorithm in MultiMech is implemented
for triangular elements.

3.1.2 Meshing

FEM necessitates the use of a mesh for each design.
The global scale can be meshed once and used for each
forward evaluation, but each new chromosome must be
meshed before it can be used as an RVE. As described in
Subsection 2.1.2, the topology is decoded using Boolean
operations on Nef polyhedra using CGAL (CGAL 2007),
which must be performed with exact arithmetic using ratio-
nal numbers. We use the meshing algorithm from CGAL,
though some care must be taken: CGAL’s meshing utili-
ties use inexact arithmetic with floating point numbers, so
there can be slight errors on the order of machine preci-
sion in converting from exact to inexact numbers. CGAL’s
meshing algorithm uses a constrained Delaunay triangula-
tion, requiring the input of constraints. After decoding a
topology, constraints are simply the edges and vertices of
the resulting polygons; however, if a vertex should lie on
an edge in a “T”-like junction in the exact representation,
but ends up slightly off due to roundoff error during the
floating point conversion, the meshing algorithm may crash.
Figure 9 gives an example of this issue. The vertex in the
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Fig. 9 An example of a difficult meshing case

—

center belongs to one polygon and the flat edge on the
bottom belongs to a second polygon. The meshing algo-
rithm will attempt to place very small triangles in this area,
in an attempt to maintain triangles that are close to equi-
lateral. As the vertex approaches the edge, the number of
triangles grows, and at some point the meshing algorithm
will crash.

This situation is most easily handled on the exact side
through some pre-processing. We iterate over all vertices
and all edges and check if a vertex is “close” to an edge, but
is not one of its defining vertices (i.e. a T-junction). “Close”
is defined here with an input parameter, which is compared
to the length of the vector connecting the vertex and its
orthogonal projection onto the edge. If this length is less that
the input parameter (used here as 0.01 mm), then the vertex
is replaced with its orthogonal projection. In this represen-
tation the vertex is now exactly lying on the edge, and so the
segment will be replaced with two segments connecting at
that vertex during decoding.

As we are using a stochastic optimization method, diffi-
cult to mesh designs frequently crop up. There are situations
that may lead to meshes with excessively large numbers of
triangles, and so these are best discarded as designs that
cannot be evaluated to save execution time.

Figure 10 gives a flow chart that summarizes the over-
all algorithm. The main GA loop is shown in the center,
consisting of evaluation, selection, crossover, and muta-
tion. Each stage has an exploded view on the right or left
describing those steps in detail.

3.2 Problem setup

We will optimize for two types of loading in a multiob-
jective setting: Quasi-static and dynamic. The goal of the
quasi-static loading problem is to develop a material for
structural stability, so we will minimize displacement under
a given vertical load. The goal of the dynamic loading prob-
lem is to design a material that will absorb energy, so we
will maximize strain energy. The two types of problems are
described in the subsequent subsections.

3.2.1 Static loading
The quasi-static problem is configured as shown in Fig. 11.

We apply a vertical displacement to a 200 mm-by-200 mm
block of material that has fixed displacement in both the x
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and y directions along the y = 0 edge. The size of the RVE
is 20 mm-by-20 mm and the problem is plane stress. We
apply a load in the —¥ direction with a value of 2 Pa along
the top edge of the structure. The goal of the optimization
problem is to minimize the displacement along the load-
ing area, so the objective function is simply the sum of the
displacement along the top edge:

D= / u(x, T)dx, (6)
r

200 mm

Y

N

Fig. 11 Static loading problem

where u is the displacement, T is the time at the final time
step, and I" is the boundary where loading is applied at the
global scale. Without the inclusion of damage, the prob-
lem is linear so the magnitude of the load is not important
because it will be normalized in the objective function. With
damage, we use total time of 0.1 s with 200 steps in a quasi-
static solver. Another goal used in the static loading case
will be total mass of a local scale RVE:

m = / p(x)dA, (N
Q)

where €2) represents the local scale region, and p is the
density.

3.2.2 Dynamic loading

The setup of the dynamic problem (shown in Fig. 12) is
similar to that of the static problem, though we apply a hor-
izontal load along the x = 0 and x = 200mm edges as well

and with a pressure-time history shown in Fig. 13. Here,
we use a time step size of 1 us over a total of 300 us. The
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Fig. 12 Dynamic loading problem

objective function is the strain energy at the global scale,
summed over the entire run time, as

1 T
gl / / oij (%, 1) €i; (x, 1) dAdt, ®)
2Jo Ja,

where o is the stress tensor, € is the strain tensor, 2 is
the global scale region, and Einstein summation is assumed.
This objective will be maximized as we seek a design
that absorbs energy. It represents a conflicting goal with
the static loading problem, and so we must solve in a
Pareto-optimal sense.

4 Results

In this section, results of the optimization are presented.
Several design cases are presented, each with the same
material system, (a dense, stiff linear elastic material and
void), though with varying damage models. To summarize,
first, in Subsection 4.1, a baseline linear elastic model at
the local scale with no damage modeling is given. Next, in
Subsection 4.2, we consider the same linear elastic material,

600

500,

400,

300

Pressure (MPa)

200,

100

0 50 100 150 200 250 300
Time (us)

Fig. 13 Pressure load for the dynamic problem
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but allow damage in the form of cohesive zone inser-
tion at the local scale only. Finally, in Subsection 4.3, the
same local scale model (linear elastic with cohesive zone
insertion) is used, but global scale damage is considered
using XFEM and a multiscale localization method described
below. In each case, we will use two objectives, forming a
generic goal vector as:

f=11. f2], (€))

with f; and f> being one of the objectives defined above,
U,D, orm.

In addition, each example was run twice (with differ-
ent seeds for the random number generator) and compared
to demonstrate stability of the stochastic method. As this
is a multiobjective optimization that does not iteratively
step through one design goal as a constraint, any compar-
ison between optimization results must consider the curve
of the approximate Pareto fronts. To that end, we define
the difference in results as the integral of the difference
in approximate Pareto fronts, using a linear interpolation
between rank-one chromosomes, given by the piece-wise
parameterization

FO)y=m—t+Df+¢ -, n<t<n+1 (10

where n = 1,..., Ny and N; is the number of rank-one
designs. While the results from two runs may have different
values of Ny and different spacings between all fi, (10) can
nonetheless be converted from a parametric form as, by def-
inition of Pareto optimality, it can be defined as a function.
Given a suitable mapping to a function g (x), a relative error
measure can then be defined as

fl,max

h |ga (x) — gb (x)| dx
I 180 @)l dx [ gy ()] dx

where f max = min (max f, 1, max fp,1) is the minimum
of the maximum values of goal f| of both runs, f, 1 is the
first goal of one run and corresponds to function g,, and fp 1
and gy, represent a second run. In practice, the two functions
are simply discretized on an even, fine grid and the integral
is computed numerically.

Error, p :=

. (D

4.1 Linear elastic

The first results use a linear elastic material in the RVE,
with Young’s modulus 65 GPa, Poisson’s ratio 0.2, and den-
sity 2235 kg/m>. The remaining material was assumed to
be void. The global scale geometry is given in Figs. 11
and 12, with loads and boundary conditions as discussed in
Subsections 3.2.2 and 3.2.1. Here, the goal vector is given as

r=[p-§

U], (12)

and we wish to minimize fj and maximize f>.
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Fig. 14 Population for the linear elastic example after 350 generations

The algorithm was run for 350 generations with a pop-
ulation size of 500, resulting in the population shown in
Fig. 14, plotted in goal space. In this figure, the red circles
indicate the approximately Pareto optimal members of the
set (the rank 1 members), while the set of blue x show the
suboptimal population members. The static displacement is
given on the x-axis with the strain energy on the y-axis and
both were normalized by the value given by a design con-
sisting fully of the material given above (i.e. no voids). The
approximate Pareto front appears to be devoid of many dis-
continuities and only contains a small area of large slope

Fig. 15 Selected designs from
the approximate Pareto front

Bebt strain energy

41 Il

Tradeoﬂ design

i

on the left, indicating that any choice on the front would be
satisfactory if it fit a problem’s constraints. Several designs
from the front are shown in Fig. 15, in which the elas-
tic material is shown as black and void is shown as white.
The first is the best performing design in terms of strain
energy shown in Fig. 15a. The outer frame is deliberately
inserted by the algorithm, so that closed cell solutions are
generated. The next design is from the center of the front
(Fig. 15b), and has a normalized displacement of approxi-
mately 5 and a normalized strain energy of approximately
7.5 (in other words, the displacement is 5 times higher and
the strain energy is 7.5 times higher than those of a fully
dense design). It has an interesting design, with a pillar
through the middle of the cell. The final two designs (the
first with a normalized displacement 2.3 and a normalized
strain energy 4.8 shown in Fig. 15c, and the second with
displacement of nearly 1 and strain energy of 1.9 shown in
Fig. 15d) show designs with two voids. Designs with nor-
malized values of 1 are fully dense with material, so the
final design shows some diminishing returns in terms of
displacement, i.e. we have to give up a large amount of
strain energy to get only a small amount of displacement.
This type of analysis is difficult when simply applying
constraints to generate a single design.

To test the significance of the results, a few canoni-
cal designs were tested and compared against the designs
returned by the optimization algorithm. First, a local scale

) Tradeoff design

LOW displacement
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design with a centered, circular inclusion was tested for
three different volume fractions, 36 %, 50 %, and 75 %, and
are shown in Fig. 14 as the green circles, with the 75 % vol-
ume fraction design having the lowest relative displacement.
As can be seen from the plot, the designs with circular inclu-
sions do not approach the approximate Pareto front. Next,
centered, square inclusions were tested, again with volume
fractions of 25 %, 50 %, and 75 % and shown in Fig. 14 as
the magenta squares. Again, these designs are not compet-
ing with the designs returned by the optimization algorithm,
though the optimal design at the minimal displacement and
maximal strain energy is a square inclusion due to the con-
straints placed on the designs. Finally, the SIMP algorithm
was run on a 50-by-50 grid constrained at the same vol-
ume fractions, with the outer frame forced as solid material
and the boundary condition given by the static displacement
boundary condition used at the global scale. These designs
were then used as the local scale RVEs and their objective
function values computed. (Their contours were generated
using the built-in Sobel edge detection algorithm from
Matlab and the 50 % volume fraction design is shown in
Fig. 16 as used in MultiMech before automatic meshing.)
The SIMP designs are plotted in Fig. 14 as the black
diamonds. The lowest displacement design (75 % vol-
ume fraction) lies with the rank-1 GP-generated designs,
while the 50 % and 25 % designs are suboptimal in the
Pareto sense. That the lower displacement design lies on
the approximate Pareto front is not surprising; because
low-displacement designs are mostly solid material, small
changes in geometry would not produce large changes in
strain energy.

To further study the results, local optimization was per-
formed on a design from the approximate Pareto front. As
we are interested in two goals, the local optimization will

Fig. 16 A SIMP-generated design with 50 % volume fraction
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Fig. 17 Result of local optimization

attempt to improve one goal, while holding the second as a
constraint using a penalty in the form:

f=D-§|+plUo-U?, (13)

where p is a weighting factor set to 10 and Uy is the strain
energy of the initial design before local optimization. The
CSG description of the solution is converted to a set of linear
splines to remove any redundant points, thus reducing the
dimensionality of the search space. A gradient-based local
search algorithm, BFGS, is used on the components of the
points in the linear spline. The initial design is shown in
Fig. 17 in red, with the final result shown in blue. After opti-
mization, the normalized displacement of the design was
improved to 2.34, over 2.43 of the original. Interestingly,
while a small improvement was realizable, the resulting
design is no more symmetric than the original, indicating
a possible insensitivity to symmetry in the optimization
problem.

| | — Asymmetric designs
— Symmetric designs

—_
(=)

Normalized strain energy

D W A LN 3 0 O

—_

2 3 4 5 6 7 8 9 10
Normalized displacement

—_

Fig. 18 Approximate Pareto fronts for forced symmetric designs vs.
asymmetric designs
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Fig. 19 Population for the example with local scale damage after 250
generations

Finally, as the algorithm tends to generate asymmetri-
cal designs, it was tested with symmetry enforced on the
local scale RVE designs. The symmetry plane is x = 0
so that the left plane is simply copied and reversed to the
right half plane. All dimensions remain the same, though the
design domain is now of course restricted to half the original
domain. The symmetric designs resulted in an approximate

Fig. 20 Selected designs from
the approximate Pareto front
shown in Fig. 19

Best strain energy

I

(C) Tradeoff design

Pareto curve with a difference relative to the asymmetric
designs of 1.9 x 10~!. Overall, the asymmetric designs out-
performed the symmetric designs, except for an area below
f1 < 2; the two interpolated fronts are plotted in Fig. 18.

4.2 Linear elastic with damage

The problem set up is identical to that of Subsection 4.1,
though here we allow insertion of cohesive zone elements
at the local scale. Otherwise, all parameters and goals are
identical to those in Subsection 4.1, with the cohesive zone
model given by the viscoelastic formulation introduced in
(Allen and Searcy 2001). The critical opening distances
were set to 1 mm, the maximum stresses were set to 10
MPa, and the elastic properties for the model had a Young’s
modulus of 1 KPa, a Poisson’s ratio of 0.2, and a den-
sity of 1000 kg/m3. The approximate Pareto front after
250 generations is shown in Fig. 19, with selected designs
shown in Fig. 20. The design in Fig. 20a has a normal-
ized strain energy of 11.9 and a normalized displacement
of 9.1, the design in Fig. 20b has a normalized strain
energy of 8.3 and a normalized displacement of 4.0, the
design in Fig. 20c has a normalized strain energy of 4.5
and a normalized displacement of 2.0, and the design in

HX

Tradeoff design

Low displacement
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Fig. 21 Population for the example with local scale damage and a
mass goal after 500 generations

Fig. 20d has a normalized strain energy of 1.7 and a nor-
malized displacement of 1.14. The addition of damage to
the optimization problem seems to have removed designs
with a thin, central pillar, rather using an hourglass-like
design.

Next, the dynamic loading goal (minimization of strain
energy) was changed to minimization of mass, to observe
the difference in designs resulting from these two goals.
The static displacement goal remains the same, again
with the insertion of cohesive zones. The population size
was again 500, with the Pareto optimal designs shown in
Fig. 21 after 500 generations. The resulting designs are
similar to those above in that they do not have any thin seg-
ments, though they lack the hour-glass shape seen in designs
incorporating strain energy. For example, a design with a
similar displacement to that shown in Fig. 20b is shown in
Fig. 22, and has a normalized displacement of 1.72 and a
normalized mass of 0.63. A second run was performed, and

Fig. 22 An example of a tradeoff design from Fig. 21
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similar results were obtained, with an error as defined by
(11) of 4.6 x 1073.

4.3 XFEM results

Finally, an example was run using XFEM at the global scale.
The criterion for XFEM element insertion was that a cohe-
sive element is transitioned to the macroscale if the acoustic
tensor of the homogenized material tangent degrades to
90 % of its original value, according to

det| 0F) 1] = xedet | @) 1 =0)], (14)

where Q?j is the acoustic tensor at the macroscale at each
time step and x. = 0.9 is the multiscale localization cri-
terion (Souza and Allen 2011; Nguyen et al. 2011). Here,
XFEM element insertion is only available for quasi-static
problems, so we use static displacement as one goal and
total mass as a second, as

,m]. (15)

In this example, normal loading (as shown in Fig. 11), a
population size of 500, and a total of 280 generations were
used. The approximate Pareto front at the final generation
is shown in Fig. 23, along with a tradeoff design from the
center of the curve (with a value of 1.7 for normalized dis-
placement, and 0.66 for normalized mass) in Fig. 24. This
design can be compared with that of Fig. 22, as they have
similar objective function values. As expected, for the same
displacement, the design using XFEM requires a slightly
higher mass, because damage at the global scale weakens
the response.

The normal stress (in the y-direction) of a randomly cho-
sen design (with its local scale geometry shown in Fig. 25b)
is shown in Fig. 25a along with the inserted XFEM zones
(as black lines) at the final time step. A second run resulted
in similar results, with an error of 9.8 x 1073.
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Fig. 23 Population for the example with XFEM 280 generations
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Fig. 24 Tradeoff design

4.4 Discussion

Several design cases are presented above, each producing
slightly different results. The design goals always included
minimization (at the global scale) of static deflection and
either maximization of elastic strain energy or minimiza-
tion of mass. The use of different damage models (none,
local scale CZ, and global scale XFEM) was to establish a
baseline design (i.e. no damage model) and compare two
damage models, one more accurate but with a higher com-
putational cost (XFEM). The purpose of replacing energy
maximization with mass minimization is that they are non-
conflicting goals and so it may be possible to replace energy
maximization with the more computationally efficient mass
minimization.

The results comprise a linear elastic case with no dam-
age, one with damage modeled solely at the local scale in

Fig. 25 An example of the
global scale stress and inserted
cohesive zones
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Fig. 26 Comparison between local scale damage model and XFEM

the form of cohesive zone insertion, and XFEM with dam-
age localization at the global scale. The main difference
seen between the models that include damage and the base-
line is the inclusion of thin supporting members through the
center of the RVE. This is sensible as any thin members
may incur damage and not contribute to the improvement
of static loading, while contributing to the detriment of the
strain energy. The main difference seen between the cases
including energy maximization or mass minimization as the
second goals is the hour-glass like shape of the inclusions. A
comparison of Figs. 24 and 20b or 20c reveals that designs
accounting for energy maximization tend to form hour-glass
structures, while those using total mass result in a more stan-
dard structure. Finally, Fig. 26 shows the difference between
the Pareto curves generated by the local scale damage model
and XFEM. The curves are fairly similar, with a difference
of 4 x 1072, and, as would be expected, show that the local
scale damage model gives results that are consistently better
in displacement for the same mass. This figure demonstrates
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that it may be possible to forgo the use of XFEM for this
design study.

5 Conclusions

A method for the multiobjective design of energy absorb-
ing materials was presented that uses a GP-based topology
optimization method and a multiscale FEM code. Topology
was represented using a CSG-like approach, where convex
polygons defined by the convex hulls of lists of points were
used as primitives and combined with an overlapping func-
tion. This approach is flexible in that convex polygons with
any number of sides can be combined together generating
complicated topologies. Material properties are embedded
in the convex polygons as well. A commercially available
multiscale FEM code was used that models damage using
automatic insertion of cohesive zone elements at the local
scale and XFEM at the global scale. Pareto optimal designs
were generated for several different cases, including quasi-
static and dynamic loadings, with and without local scale
cohesive zone insertion, and with and without global scale
XFEM insertion.

Future work includes extending the algorithm to 3D
designs. The method is easily implemented in 3D as all
concepts—convex hulls and CSG-are equally valid in 3D.
We also plan to incorporate a hierarchical design scheme,
where the global structure is optimized along with the
local structure. This can be done again with a homogenous
assumption of global scale material properties, or we could
enable multiple local scale designs that can be used at the
global scale.
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