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Abstract This paper presents a methodology for including
fixed-area flexible void domains into the minimum com-
pliance topology optimization problem. As opposed to the
standard passive elements approach of rigidly specifying
void areas within the design domain, the suggested approach
allows these areas to be flexibly reshaped and repositioned
subject to penalization on their moments of inertia, the
positions of their centers of mass, and their shapes. The
flexible void areas are introduced through a second, dis-
crete design variable field, using the same discretization
as the standard field of continuous density variables. The
formulation is based on a combined approach: The pri-
mary sub-problem is to minimize compliance, subject to a
volume constraint, with a secondary sub-problem of min-
imizing the disturbance from the flexible void areas. The
design update is performed iteratively between the two sub-
problems based on an optimality criterion and a discrete
update scheme, respectively. The method is characterized
by a high flexibility, while keeping the formulation very
simple. The robustness and applicability of the method are
demonstrated through a range of numerical examples. The
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flexibility of the method is demonstrated through several
extensions, including a shape measure requiring the flexible
void area to fit a given reference geometry.
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1 Introduction

Structural engineering design problems are generally asso-
ciated with geometrical restrictions. A common restriction
is that void space should be reserved for functional or man-
ufacturing specific reasons. Functional restrictions include
e.g. other components passing through the structure or pre-
scribed objects to be embedded. Holes for components
passing through may or may not have a rigidly prescribed
geometry and position, whereas embedded objects usu-
ally have a prescribed geometry. Manufacturing restrictions
include reserving space for the assembly process or main-
tenance. The exact position and shape of the corresponding
holes are usually not strictly defined.

Another area where structural optimization is increas-
ingly being used is architecture (see e.g. Stromberg et al.
2012). Here geometrical restrictions are usually tightly con-
nected to aesthetic considerations, meaning that prescribed
holes may be attributed a considerable flexibility in terms of
shape and position.

This paper considers design problems which are
approached as a minimum compliance problem solved
using topology optimization with the standard density
approach (Bendsøe and Sigmund 2003). Holes or objects of
a fixed shape and position are usually included by defining
passive areas in the design domain, i.e. areas with a pre-
scribed density. The corresponding elements are excluded
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ly = 100

lx = 160

Fig. 1 Design domain for cantilever beam with void inclusion denoted
by the dashed circle. The circle has radius ly/3 and the center is located
at (2lx/3, ly/2)

from the set of design variables, but included in the evalua-
tion of the structural response.

The passive elements method is easy to implement, but
has certain drawbacks. As an example, consider the can-
tilever beam problem with a circular void inclusion shown in
Fig. 1. Unless the shape of the hole is carefully defined, the
resulting optimized structure may contain irregular beams
(see Fig. 2), possibly with unwanted singularities. Fur-
thermore, the position of the hole strongly impacts the
compliance of the optimized structure (see Fig. 3). Prob-
lems also arise when structural optimization is used very
early in the design phase. The method of defining fixed, pas-
sive areas requires a clear specification of the design space.
Design choices made very early in the process will gener-
ally be based on experience rather than optimization, with
the risk of choosing sub-optimal configurations which can-
not be changed later. For holes where the shape and position
are less strictly defined, the standard approach is therefore
undesirable.

Different alternatives to the passive elements approach
have been explored, in which the shape and position of
embedded holes or objects are attributed a certain amount of
freedom. Qian and Ananthasuresh (2004)present a method-
ology for solving “the embedding problem” of optimally

Fig. 2 Optimized structure (160 by 100 elements) for problem defined
in Fig. 1, using the passive elements method. Parameter data provided
in Section 4. Compliance φ = 80.67

Fig. 3 Changing the position of the fixed circular void inclusion for
the problem illustrated in Fig. 1 has a major impact on the compli-
ance of the optimized structure. The figure shows how the compliance
varies with varying position of the x-coordinate for the center of the
circular void inclusion (the y-coordinate is fixed at ly/2). The com-
pliance is normalized with respect to the optimized structure shown in
Fig. 2

embedding predesigned objects of fixed geometry and stiff-
ness into a design region, and simultaneously designing the
topology of the connecting structure to optimize a charac-
teristic of the overall assembly. The method is demonstrated
with multiple objects, each determined by three design vari-
ables (in 2D): Centroid coordinates and part orientation.
Zhu et al. (2009) present a similar methodology for inte-
grated layout design of multi-component systems, includ-
ing a non-overlap constraint by means of the finite circle
method and several other constraints, including a constraint
of the gravity center position of the total structure (support-
ing structure and embedded objects together). The field of
integrated layout design of multicomponent systems, also
encompassing topology optimization with moveable com-
ponents, is treated in an overview paper by Zhang et al.
(2011). Within the same area, Xia et al. (2012) suggest
a material perturbation model for the sensitivity analysis,
as opposed to a usual geometric perturbation model. The
authors’ attention have been drawn to the fact that the prob-
lem of embedding objects of fixed shape has earlier been
approached with a combination of the density approach and
the level set method, incl. a nonoverlap constraint. The work
has appeared in Chinese language only.1

Kang and Wang (2012) present an approach for topology
optimization with embedded, moveable holes (void areas) of
fixed geometry. The method combines the density approach
with the level-set method (for hole shape description). Like
the above mentioned “embedding problem”, the position
and rotation of each embedded object are determined by
three design variables (2D), referred to as pseudo-velocities
(two variables for the translational motion of the centroid,
and one for the rotational motion). A non-overlap constraint
based on a single integral-type constraint is included.

1Shan (2008). Optimal embedding objects in the topology design of
structure. Master thesis, Dalian University of Technology.
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Mei et al. (2008) present a method for constructing a
topology optimized design from geometric primitives, such
as circles, triangles, etc. The Constructive Solid Geom-
etry (CSG) method is employed to gradually insert the
primitives based on topological derivative analysis. In a
recent paper, Zhou and Wang (2013) propose a method for
combining feature design and topology optimization, more
specifically combining CSG modeling and level set based
shape and topology optimization. Each geometric feature is
represented by a sub-level set half-space model, which is
individually updated. On top of the three design variables
used in the above papers, a fourth variable, a homogeneous
scaling coefficient, is introduced for each sub-level set
model. Thereby the method can represent shapes which may
be obtained from affine transformations of the sub-level set
models.

This paper presents a new method for including a flexible
void area (hole) into a minimum compliance optimization
problem. The main difference from the approaches in the
above mentioned papers is in the void definition, allow-
ing for full flexibility of the void space: Rather than using
a level set function, the void is defined by means of a
second design field. This field describes the flexible void
area by means of discrete variables, and uses the same
discretization as for the usual density variables. The dis-
crete formulation allows the void region to take any shape
and position, satisfying a connectivity and constant area
requirement.

The paper is organized as follows. Section 2 presents
the problem formulation, where the flexible void defini-
tion is presented, including the definition of two flexibility
penalization measures (Sections 2.1-2.2). The same section
presents a formal definition of the optimization problem,
sensitivity analysis, and considerations related to the use
of a sensitivity filter (Sections 2.3-2.5). In Section 3 the
design update scheme is presented, with focus on the dis-
crete update of the flexible void field. Section 4 presents
a range of numerical results, followed by two examples of
extensions to the method in Section 5. The method and
the presented results are discussed in Section 6. Section 7
concludes the work.

2 Problem formulation

The introduction of a flexible void area through a second
design field requires a formulation that allows for sensitivity
calculation as the basis for design updates. Such a for-
mulation is presented in the following subsection. Derived
challenges such as properly defining penalization measures
on the void shape and position, and formally including the
flexibility into the optimization problem are treated in the
following subsections.

2.1 Flexible void formulation

For a standard minimum compliance problem, the element
densities, ρe, of the FE discretization are used as (con-
tinuous) design variables. As described in Section 1, the
passive elements method copes with fixed objects by defin-
ing passive elements with a prescribed density. If the set of
passive elements should be allowed to change during the
optimization, a different formulation is required. For this
end a second design variable, μe, is introduced for each
element, defining whether the element is within the flexi-
ble void region or not. This variable may be interpreted as
defining a second design field discretized the same way as
the density variables. The flexible void variables are chosen
to be discrete, as this allows for a convient design update
scheme (see Section 3). The variables are allowed to take the
value of either 1 (within flexible void) or 0 (outside flexible
void). This way, by letting Ω refer to the entire, discretized
design domain, the void area, B , may be formally defined as

B = {e ∈ Ω | μe = 1} (1)

and the physical element density as

ρ̂e = ρe(1 − μe) (2)

The two fields are shown in Fig. 4. The flexible void should
stay connected and with constant area throughout the opti-
mization. Only changes in μ fulfilling these requirements
are allowed.

Fig. 4 Arbitrary design domain,
Ω . a Physical field described by
ρ̂. Standard passive elements are
indicated by black (solid) and
white (void), whereas the
flexible void is indicated by
white with a dashed interface.
b Corresponding flexible void
field described by μ. Void is
defined by μe = 1 (black area).
μe = 0 everywhere else
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2.2 Void flexibility measures

A convenient way to interpret the flexible void region is
as a geometrical entity, having a mass (area), a center of
mass, and a moment of inertia. For some applications, the
void area may be allowed to deform or move freely dur-
ing the optimization, but for many applications the degree
of flexibility is constrained by practical limitations. For this
reason two different penalization measures are introduced:
A deformation measure and a location measure. These may
be included either individually or combined.

2.2.1 Deformation measure

The degree of deformation of the void is controlled using its
moment of inertia, I (μ), normalized by a reference value,
I0. Thus, the deformation measure, g1(μ), may be defined
in the following way:

g1(μ) = I (μ)

I0
(3)

where

I (μ) =
n∑

i=1

μivir
2
i (4)

Here, vi is the element volume and ri is the distance from
the center of element i to the center of mass of the void area
(the field μ). As the lowest possible moment of inertia for
an object of a given area occurs when it is shaped as a circle,
this value is chosen as the reference, I0. With this choice
g1(μ) ≥ 1 for any μ satisfying the void volume constraint.
Fig. 5 provides a few example values of the deformation
measure.

2.2.2 Location measure

The freedom of translational motion is controlled using the
void region’s center of mass. The location measure, g2(μ),
is chosen as the (squared) radial distance, rcm, from a given

Fig. 5 Example values of the deformation measure, g1(μ), for differ-
ent shapes of a void region of constant area

reference point, p0 = (x0, y0), to the void region’s center of
mass, (xcm, ycm), normalized by a reference distance, r0:

g2(μ) = r2
cm

r2
0

(5)

with

r2
cm =

2∑

j=1

(x
j
cm − x

j

0 )2 =
2∑

j=1

⎛
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i=1

μivix
j

i

M
− x

j

0

⎞

⎟⎟⎟⎟⎠

2

(6)

The summation over j refers to the two coordinates (x, y),
and M is the total mass of the void area, defined by

M =
n∑

i=1

μivi (7)

The reference distance used for normalization, r0, is cho-
sen as the radius of a circle having the same area as
the void.

It should be noted that the element volume, ve, is part of
the expressions for the deformation measure and the shape
measure. However, as long as the analysis is performed on a
uniform mesh the element volume may be ignored in these
expressions.

2.3 Optimization problem

The inclusion of a flexible void area, as defined in the previ-
ous subsections, leads to a combined minimization problem.
The primary problem is to minimize compliance, subject to
a volume constraint. A sub-problem is to minimize the dis-
turbance from the void, subject to restrictions on the shape
and location. By including the void flexibility measures by
means of the penalty method, the optimization problem may
be defined in the following way:

min
ρ,μ

: f (ρ, μ) = α0φ(ρ, μ) +
∑

k

αkgk(μ)

subject to: KU = F
g0(ρ, μ) = V (ρ̂)/V ∗ − 1 ≤ 0

0 ≤ ρ ≤ 1
μe ∈ {0, 1}

Ṽ (μ) = Ṽ ∗
B simply connected

(8)

Here f (ρ, μ) is the objective function expressed in terms
of the two vectors of design variables, ρ and μ, φ(ρ, μ)

is the compliance, α0 is a normalization factor for the
compliance function, αk is the weight of the penalization
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measure gk(μ), K is the global stiffness matrix, U and F
are the global displacement and force vectors, respectively,
g0(ρ, μ) is the volume constraint, V (ρ̂) = ∑

viρ̂i and
V ∗ are the material volume and maximum allowed volume,
respectively, and Ṽ (μ) and Ṽ ∗ are the actual and required
flexible void volume, respectively. The requirement that B

be simply connected implies that this domain cannot contain
holes.

Using the modified SIMP approach, the Young’s modu-
lus of an element is a function of the design variable, ρ̂e:

E(ρ̂e) = Emin + ρ̂
p
e (E0 − Emin) (9)

The global stiffness matrix, K, is defined as:

K =
∑

e

ke(ρ̂e) =
∑

e

E(ρ̂e)k0
e (10)

where ke is the element stiffness matrix, dependent on the
element design variable, and k0

e is the element stiffness
matrix for an element with unit Young’s modulus. In this
paper, the values E0 = 1 and Emin = 10−9 are used.

2.4 Sensitivity analysis

The formulation in which both ρ and μ are design vari-
ables, means that sensitivities must be calculated with
respect to both ρe and μe. Differentiation with respect to ρe

gives:

∂φ

∂ρe

= ∂φ

∂ρ̂e

∂ρ̂e

∂ρe

= −p (E0 − Emin) ρ̂
p−1
e uT

e k0
eue (1 − μe)

(11)

∂g0

∂ρe

= ve

V ∗ (1 − μe) (12)

∂g1

∂ρe

= ∂g2

∂ρe

= 0 (13)

Differentiation with respect to μe gives:

∂φ

∂μe

= ∂φ

∂ρ̂e

∂ρ̂e

∂μe

= p (E0 − Emin) ρ̂
p−1
e uT

e k0
eueρe (14)

∂g1

∂μe

= ver
2
e

I0
(15)

∂g2

∂μe

= 2ve

Mr2
0

2∑

j=1

(x
j
cm − x

j

0 )(x
j
e − x

j
cm) (16)

The positive sign in (14) (opposite compared to density vari-
able sensitivities, (11)) is due to the choice of representing
void elements with μe = 1 and non-void with μe = 0,
meaning that an increase in a void variable implies a larger
void and thereby a larger compliance.

The sensitivity of the volume constraint, g0, with respect
to μe is not used, as the update scheme for μ does not
require this constraint to be satisfied (see Section 3.1).

2.5 Sensitivity filtering

Topology optimization algorithms usually employ some
sort of filtering to prevent numerical instabilities, such as
checkerboards and mesh-dependency. A popular choice is
the sensitivity filter (Sigmund 1994, 1997). The method was
originally implemented as a heuristic modification of strain
energy densities, but in a recent paper it was demonstrated
that the filtering corresponds to optimizing for a nonlo-
cal elasticity formulation (Sigmund and Maute 2012) and
thereby is physically well-founded. The filtering is given by
the expression:

∂̃φ

∂ρe

=

∑

i∈Ne

w(ci )ρi

∂φ

∂ρi

/vi

ρe/ve

∑

i∈Ne

w(ci )
(17)

where

w(ci ) = R − ‖ci−ce‖ (18)

is a linearly decaying weight function, R is the filter radius,
Ne is a list of elements for which the centers lie inside the
filter radius, and cj is the spatial location of the center of
element j . In order to assure a non-zero denominator the
density weight is defined as max(ρe, 10−3). The filtering is
performed similarly for the sensitivities with respect to the
discrete variable, μ, except that the density weight is defined
as max(1 − μe, 10−3).

For consistency, the interface of the flexible void area
and the domain border should influence neighboring ele-
ments in the same way. If elements outside the domain
are attributed zero sensitivity, this simply corresponds to
using the same normalization factor,

∑
i∈Ne

w(ci ), for all
elements in the entire domain, i.e. assuming Ne being of full
size.

3 Design update scheme

As described in Section 2, the overall optimization problem
may be interpreted as two sub-problems, formulated in the
two different variables ρ and μ. These two sub-problems
are strongly coupled, as may be seen from the sensitivity
expressions in (11) and (14). The chosen discrete repre-
sentation of μ allows to conveniently assure that the two
geometrical requirements on the flexible void area, the con-
nectivity requirement and the constant area requirement, be
satisfied. The connectivity requirement is satisfied by only
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letting elements along the interface of the void area change
during an update, and the constant area requirement is satis-
fied by swapping an equal number of elements between the
interior and the exterior of the void area (see Section 3.1 for
details).

The discrete nature of μ implies that the design variables
ρ and μ should be updated separately. The design update
is performed in an iterative manner, including the following
two steps:

• With a fixed void area (fixed μ), perform a certain
number of design updates for the minimum compli-
ance sub-problem in the design variable ρ, using a
standard optimality criterion method (see e.g. (Bendsøe
1995))

• Perform a discrete update of the void variable, μ, satis-
fying the connectivity and constant area requirements

The flow chart for the entire optimization algorithm is
shown in Fig. 6.

For the test problems it has shown appropriate with 3 iter-
ations of the continuous field, ρ, before updating the flexible
void area, μ. The overall optimization problem is consid-
ered converged, when the two sub-problems simultaneously
attain convergence. The sub-problem in ρ is considered
converged when the maximum (absolute) element density
change is below the convergence criterion (= 0.01). Conver-
gence of the sub-problem in μ is discussed in the following
section.

3.1 Update of flexible void area

As mentioned above, the update scheme for the flexible void
area, μ, must comply with both the connectivity require-
ment (safisfied by only changing elements along the inter-
face of the flexible void during an update) and the constant
area requirement (satisfied by swapping an equal number of
elements between the interior and the exterior of the void
area).

The interface elements can be identified by applying
a density filter (Bruns and Tortorelli 2001; Bourdin
2001) to the flexible void field, μ. Thereby interface
elements get intermediate density, which may then be
identified. The radius of the filter, ri , determines the
width of the interface, and thereby which elements
are allowed to change. If only elements right at the
interface should be allowed to change, this radius should
take a value in the interval 1 < ri <

√
2 (for a mesh

with square unit length elements). For many problems,
a larger radius will lead to similar results, and may
therefore be chosen to accelerate the optimization.
However, if the radius is too high, the flexible void area
may split into two different regions, e.g. by “jumping”
over a thin bar. A simple way to assure connectivity of

Fig. 6 Flowchart for optimizing with flexible void area

the void area is to keep ri within the aforementioned
interval.

The method requires a maximum for the number of
flexible void elements allowed to change per iteration. Oth-
erwise, elements at the interior and exterior of the same
interface point might change simultaneously, implying non-
connectivity. On the other hand, if too few void elements
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are changed the algorithm risks getting stuck in a local
minimum. For the examples shown in this paper, the ini-
tial maximum value was chosen as 20% of the number
of interface elements on a reference circle with the same
area as the flexible void. Numerical experiments have
shown that this approach is robust and independent of the
test problem. It should be noted that when one or both
penalization functions are applied (α1 > 0 or α2 > 0),
the sensitivities are less homogeneous, as the contribu-
tions from the compliance expression and the penaliza-
tion measures may be conflicting. In this case it might
be necessary to choose a lower initial maximum number,
e.g. 10-15 %.

The constant area requirement for the flexible void
means that any design update corresponds to swap-
ping an equal number of elements from within the
void (interior) with elements outside the area (exterior).
The discrete design update is based on ranking the
sensitivities of the interface elements, quite similar to
the approach employed in the BESO method (for a
review, see e.g. Huang and Xie (2010)). Interior and
exterior elements are ranked separately. The interior ele-
ments with highest sensitivity are swapped with an equal
number of exterior elements with the lowest sensitivities.
The material volume constraint, g0(ρ, μ), is not taken
into account in this scheme, as a minor violation is
quickly counteracted by the subsequent update of the
continuous field, ρ.

In order to prevent oscillating updates of the flexible
void area, a move limit scheme is introduced, based on the
last two updates of μ. If the compliance has not devel-
oped monotonously, the maximum number of elements
allowed to change per iteration is decreased by a factor of
0.95. Inversely, if the compliance develops monotonously,
the maximum number is increased by a factor of 1.03,
though never above the initial limit of 20 %. The
sub-problem is considered converged when the maximum
number reaches 0.

4 Results

The following section presents a range of numerical exam-
ples to demonstrate the robustness and wide applicability of
the presented method.

Where nothing else is mentioned, the problems are
solved using unit length square elements, sensitivity fil-
ter radius R = 6, density filter radius ri = 1.2 (for
identification of void interface), and a volume constraint,
V ∗, of 40 % of the total volume. The optimization shown
in Fig. 2 is likewise performed using these parameter
values.

4.1 Progression of flexible void area

In order to demonstrate the optimization process, the design
problem shown at the beginning of the paper, in Fig. 1, is
used as an example.

The development is shown without applying the flexibil-
ity measures, i.e. α1 = α2 = 0. Snapshots from the iteration
history are shown in Fig. 7. The flexible void area devel-
ops from being a circle placed at a sub-optimal location
into a relocated (rounded) triangle, allowing the surrounding
structure to assume an optimized shape, almost undisturbed
by the void inclusion. It may be noticed that the method,
in line with the passive elements method, leads to a sharp
solid/void interface between the flexible void area and solid
parts of the continuous field. As mentioned in Section 2.5,
the interface is treated the same way as the outer domain
border in terms of filtering.

The compliance of the optimized structure (φ = 59.25)
is 27 % lower than for the fixed circle case (φ = 80.67). The
compliance convergence is shown in Fig. 8. The compli-
ance is seen to decrease stably, despite the discrete updates
(seen as small bumps in the graph, see also detail). The
topological change occuring around iteration 150 (a bar
is eliminated, see Fig. 7) translates to a rapid decrease in
compliance.

4.2 Size of flexible void area

The algorithm is able to handle flexible void areas of
considerable size. To illustrate this, the problem from
Fig. 1 (optimized structure shown in Fig. 7) is investi-
gated using a larger void area. The radius of the initial void
circle is increased by 25 %, from ly/3 to 5ly/12,
corresponding to an area increase of 56 %. The
optimized structure is compared to the original result
in Fig. 9. The compliance has obviously increased due
to the larger void area, but the geometry is very similar,
except that the structure with the larger void area has been
forced to fix the left diagonal cross bar at a higher point
of the supported edge. The number of iterations has
increased from 365 to 507.

4.3 Validation of flexibility measures

In order to visualize the influence of the void flexibil-
ity measures, g1 and g2, the initial design in Fig. 10 is
used. The figure refers to the flexible void variable μ.
For the validation, the structural part is eliminated such
that only penalization terms are active (α0 in (8) is
set equal to 0), meaning that loads and supports are
of no importance. The entire domain outside the flexible
void area is allowed to be filled with material, meaning
that the volume constraint is not active. The reference
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point, p0, for the location measure, g2, is indicated
by a ×. In Fig. 11 the resulting “optimized” flexible
void areas are shown. Application of the deformation
measure alone (α1 = 1, α2 = 0) leads to a perfect
circle with an unchanged center. Application of the loca-
tion measure and deformation measure simultaneously
(α1 = 1, α2 = 1) leads to a perfect circle centered at the
reference point.

Application of the location measure alone, without
an underlying compliance optimization, is numerically
unstable. The reason is that the sensitivities for the
location measure always constitutes monotonically
changing isolines perpendicular to the vector from the
void region center of mass to the reference point, p0,
with the zero line passing through the center of mass. If
the reference point is located outside the void region, this
means that small bars perpendicular to the isolines will
evolve in the flexible void region, and eventually violate the
connectivity requirement. If a minimum compliance prob-
lem is solved simultaneously, this effect is counteracted

Fig. 7 Iteration history for optimization of the problem shown in
Fig. 1. The flexible void area is updated for every third iteration of the
continuous problem, or when the continuous problem has converged

Fig. 8 Compliance development for optimization of the problem
shown in Fig. 1. The compliance is normalized with respect to
the optimized structure obtained using the passive elements method
(see Fig. 2). The black dots refer to the iteration snapshots shown in
Fig. 7

by the compliance sensitivities, however the problem may
still arise if the penalization weight, α2, is too high. The
effect may to some extent be remedied by simultaneously
applying the deformation measure, g1, as demonstrated in
Fig. 11b. Issues with the connectivity requirement related
to application of the location measure are further discussed
in Section 6.

4.4 Effect of the flexibility penalization measures

The effect of the two flexibility penalization measures may
be investigated by optimizing an identical problem with
and without applying the penalization measures. The results
are shown in Fig. 12. In Fig. 12a the optimization is run
without applying the penalization measures, leading to the
result which is already shown in Fig. 7. The same topology
is obtained when the deformation measure, g1, is applied
alone (see Fig. 12c) with α1 = 1. However, the void area
is forced to assume a more rounded shape, leading to a
higher disturbance of the structure and thereby a slightly
higher compliance. When applying the location measure,
g2, alone (see Fig. 12b) with α2 = 10 and the reference
point, p0, at the center of the initial void area, a differ-
ent topology is obtained. Due to the forced location of the
void area, the compliance is significantly higher, but the

Fig. 9 Influence of varying the size of the void area. In both cases the
design domain from Fig. 1 is used, except that the radius of the initial
void circle is increased for the structure shown in Fig. 9b
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Fig. 10 Flexible void field, μ, used for verification of the two penal-
ization terms. The center of the initial square void is located at
(2lx/3, ly/2). The reference point, p0 (shown as a ×), is located at
(lx/3, ly/2)

void area smoothly follows the structure, thereby avoid-
ing dents in the surrounding bars. When the two measures
are applied simultaneously (see Fig. 12d), the same topol-
ogy is obtained as when applying the location measure
alone, however, in line with the result from Fig. 12c the
presence of the deformation measure forces the void area
into a more rounded shape. The void interface no longer
“sticks” to the structure in the corners, leading to a higher
compliance.

In Fig. 12e and 12f, the optimizations from Fig. 12c and
12d, respectively, are repeated with a higher weight on the
deformation measure (α1 = 10). This implies that the final
shape of the flexible void area becomes close to circular.
The limited flexibility of the void area also means, how-
ever, that the algorithm is not able to break down the slender
bars. Therefore, the optimization shown in Fig. 12e, with the
deformation measure applied alone but with a high weight,
ends with the same topology as when the location measure
is applied.

4.5 Mesh-independency

The method described in this paper leads to similar designs
when using various discretizations for the same problem.
This is illustrated in Fig. 13, where the optimized struc-
ture from Fig. 7 is compared with the very similar geometry
obtained with a higher discretization (twice as many ele-
ments in both the x− and y−direction and a sensitivity filter

Fig. 11 Validation of penalization with flexibility measures, using the
domain defined in Fig. 10 with α0 = 0. a Deformation measure alone
(α1 = 1, α2 = 0). b Location measure and deformation measure
applied simultaneously (α1 = 1, α2 = 1)

radius, R, extending over twice as many elements). The dif-
ference in compliance is 2.4 %. This number is equal to the
difference obtained when running the two problems with-
out a void area, meaning that the difference is not due to
variations in the final design, but inherent for the refined
discretization.

The interface width of the flexible void area is deter-
mined using the same density filter radius, expressed in
number of elements. This means that the void area will
progress more slowly in the fine discretization case, as it
will need twice as many steps to progress the same distance
in the domain. The iteration number is therefore larger for
the fine discretization (542 iterations) compared to the base
case (365 iterations).

4.6 Moving circle

The flexible void method is an efficient way to reduce the
disturbance from void inclusions. This is already illustrated
in Section 4.1, Figs. 7-8, where the compliance is reduced
by more than 25 % by letting the void inclusion take a flex-
ible shape and position. Also in the case where the position
is restricted, the method may increase the performance of

Fig. 12 Effect of the flexibility penalization measures on a minimum
compliance problem, using the domain defined in Fig. 1. The reference
point is equal to the center of the initial void area, p0 = (2lx/3, ly/2).
a No flexibility measure applied. b Location measure alone. c & e
Deformation measure alone. d & f Location measure and deformation
measure applied simultaneously
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Fig. 13 Influence of refining the discretization. Similar structures are
obtained

the optimized structure. This is illustrated in Fig. 14. In
line with Fig. 3, the figure describes the variation in com-
pliance with varying position of the void inclusion, but in
this case, a position measure penalization is applied, with
the reference point, p0, equal to the center point of the ini-
tial circle. For the solid line, the compliance is normalized
with respect to the optimized structure shown in Fig. 2. The
dotted line compares the passive and flexible void cases
directly: The compliance for the flexible void optimization
is normalized with respect to the corresponding passive ele-
ment void inclusion (with same initial center). As expected,
the flexible void method provides a lower compliance for all
positions of the reference point. Comparison with the solid
line shows, that the gain increases with increasing compli-
ance for the test case, i.e. for more challenging positions of
the inclusion.

4.7 Facade optimization in architecture

As briefly mentioned in the introduction, topology opti-
mization is being increasingly used in architectural contexts.
An example design problem is a concrete facade with a
single, large window of fixed size, which may take any
shape. The design domain, starting from a standard design,

Fig. 14 Variation of compliance with varying position of the x-
coordinate for the center of the (initially circular) flexible void inclu-
sion (y = ly/2), see reference domain in Fig. 1. Location penalization
applied with p0 equal to the initial center, and α2 = 10. For the solid
line, the compliance is normalized with respect to the optimized struc-
ture shown in Fig. 2. For the dashed line, the compliance is normalized
with respect to the corresponding passive element void inclusion, i.e.
the values of the graph in Fig. 3

Fig. 15 Design domain for the facade optimization problem. The ini-
tial window is a square with side length ly/2, and the upper right corner
placed at (lx/2, ly/4). The maximum material volume, V ∗, is chosen
such that all non-void elements are allowed to have maximum density
(=1)

is shown in Fig. 15 (the × indicates the center of mass of
the initial window). The facade should mainly be support-
ing a beam at the center, as indicated by the load case. The
entire domain outside the flexible void area is allowed to be
filled with material, meaning that the volume constraint is
not active.

This constrained shape optimization problem may be
solved using the flexible void method. Two optimized
designs are shown in Fig. 16. In Fig. 16a, there are no
restrictions on the position of the window, and the sym-
metric, (rounded) triangular shape of the flexible void is
obtained. The design in Fig. 16b is obtained by applying
the location measure penalization with α2 = 10. The design
still follows the triangular shape at the left part, where it dis-
turbs the load path least possible. The effect of varying the
value of α2 is shown in Fig. 17. When increasing α2, the
center of mass of the flexible void in the optimized design
approaches the reference point (the center of mass of the ini-
tial window). With α2 = 100, the distance is below 1/10 of
an element.

4.8 Design domain flexibility

Instead of representing a void inclusion, the flexible void
formulation may alternatively be used to define a certain
flexibility in the design domain. In this case the flexible void
should initially be placed along the border of the domain.

Fig. 16 Optimized designs for the facade optimization problem
shown in Fig. 15. Only the flexible void field, μ, is shown, as the vol-
ume constraint is not active in the problem. a Optimization with no
flexibility measures applied (α1 = 0, α2 = 0). b Optimization with
location measure penalization (α1 = 0, α2 = 10)
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Fig. 17 Influence of the weight, α2, of the location penalization mea-
sure, g2, demonstrated for the facade optimization problem defined in
Fig. 15. The center of mass of the flexible void area (marked by a solid
circle) is seen to approach the reference point (marked by a ×) as α2
increases

As opposed to the general case, where the flexible void area
should be able to progress across potential bars (as in Fig. 7),
the flexible void is in this case only supposed to reshape
along the edge of the structure. For this reason, the filter
radius R of the sensitivity filter has less influence of the
ability of the flexible void to develop, meaning that a small
filter radius will be sufficient.

An example of a flexible domain is the L-shape domain
shown in Fig. 18. The standard passive elements method
leads to the design shown in Fig. 19, using filter radius
R = 2.1 and a volume constraint of 25 %. It is well-known
that this design suffers from a singulariy at the corner of the
passive void area. The same problem is optimized using the
flexible void method, see Fig. 20a (α1 = 0) and Fig. 20b
(α1 = 10), again with R = 2.1. In both cases the opti-
mized designs exploit the opportunity of cutting the edge,
while restricted from extending too far into the flexible void
area. In the case where the deformation measure is applied
(α1 = 10), the structure is extending less into the initial void
area.

Fig. 18 Design domain for optimization of L-shape domain combined
with a flexible void

Fig. 19 Optimization of the problem described in Fig. 18, using the
passive elements method

4.9 Bridge

In order to illustrate the flexible void method on a larger
example, the bridge problem shown in Fig. 21 is consid-
ered. The problem involves an initially rectangular void area
placed at the bottom center of the domain (see Fig. 21a),
with the dimensions (lx/2) × (2ly/3). The optimization is
performed with a 800 × 200 elements discretization, 25 %
volume fraction, sensitivity filter radius R = 8, and den-
sity filter radius for interface identification ri = 1.2. The
equally distributed load sums up to 1.

For reference, the problem is first optimized without
a void area, see Fig. 21b. However, if space is required
under the bridge, e.g. for a train passing through, the void
area should be included in the optimization. The results
using the passive elements method and the flexible void
method are shown in Fig. 21c and 21d, respectively. The
compliance obtained using the flexible void method is
strongly decreased, from 5.03 to 2.16 (57 %), and the design
does not contain singularities. The possibility for round-
ing the corners of the void area allows to distribute the
load much more evenly in the structure. Obviously, further
design steps would be required to assure the right dimen-
sions of the passage under the bridge, but the example

Fig. 20 Optimization of the problem described in Fig. 18, using the
flexible void method. The initial void area is indicated by the dashed
square. a Optimization with no flexibility measure applied (α1 = α2 =
0). b Optimization with deformation measure (α1 = 10, α2 = 0)
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Fig. 21 Optimization of the bridge problem. Comparison of results
obtained without void area (b), with the passive elements method (c),
and with the flexible void method (d). The distributed load sums up
to 1. The dimensions of the initial void rectangle placed at the bottom
center of the domain is (lx/2) × (2ly/3)

illustrates the usefulness of the method in the early design
phase.

5 Extensions

This section shows how the flexible void method may
immediately be extended to include multiple void areas.
Furthermore, a shape measure is introduced, requiring the
flexible void area to fit a given reference geometry with a
certain accuracy.

5.1 Multiple void areas

The method may easily be extended to include multiple
flexible void areas, simply by defining multiple void fields,
μ1, μ2, ..., μn. Only minor modifications to the design
update scheme described in Section 3 are required. Several
approaches are possible. For the present implementation it

Fig. 22 Optimization using multiple flexible void areas. In both exam-
ples the two void areas have size (2ly/3× ly/3). a Example 1: Centers
of void areas placed in (lx/2, ly/4) and (lx/2, 3ly/4). b) Example 2:
Centers moved ly/10 towards each other. c Optimized structure from
(a), c = 61.62. d Optimized structure from (b), c = 62.59

has been chosen to update each flexible void area individ-
ually, without recomputing sensitivities (or the structural
response) between the updates of individual void areas.
When updating a void area, only interface elements which
do not coincide with another flexible void area are allowed
to change. This assures non-overlap of void areas, and
thereby that the total flexible void area remains constant.
The various penalization measures may be applied simply
by adding the average across void areas to the compliance
value in the objective function.

Figure 22 compares two examples of optimizing with two
flexible void areas of equal size (and equal size across the
two examples). For the first example (Fig. 22, left), the two
void areas are initially further separated than in the second
example (Fig. 22, right). The first example shows a stan-
dard situation where the two void areas remain separated
throughout the optimization. In this case the behavior of
each void area is highly similar to the corresponding single
void area case.

The second example illustrates the situation where two
void areas merge from an initially divided state. Ideally,
a merged area would behave similar to a single void area
of the same size. However, since the update of elements
is performed indidually for each void area, low sensitiv-
ity elements from one void area interface are not allowed
to swap with high sensitivity elements from the other void
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area interface, thereby slowing down motion perpendicu-
lar to the interface between the two void areas. Another
particular issue should be noticed. Since one void area is
always updated before the other, low sensitivity elements
at the interface between the two void areas will always be
occupied by the first updated area. This possibly implies
that the first void area slowly “floats” around the other
area, until this latter area is completely absorbed in the
first. This is partially occuring at the “tip” of the merged
void areas in Fig. 22f. Another effect impeding motion
perpendicular to the interface between the two void areas is
that once the two areas are merged, the sensitivities along
the interface of the two areas will remain zero, as all ele-
ments within the sensitivity filter radius have minimum
density. This heavily impedes the flexible void areas to
subdivide again, once they are merged. These effects
combined imply that a merged flexible void area will
have a tendency of moving in a direction parallel to
the interface between the two areas, even though this direc-
tion would not necessarily be optimal. If the merged case
arises it is recommended to substitute the merged areas with
a single void area.

The two design problems presented in Fig. 22 only dif-
fer by the initial position of the flexible void areas. In
the second example, where the space between the areas
is smaller, the areas merge. More generally speaking, two
void areas will have a tendency to merge if the sensitivi-
ties of elements between the void areas are smaller (absolute
value) than sensitivities of elements at the remaining inter-
face elements for at least one of the void areas. As in the
second example, this will happen when the space between
the areas is so small that no initial structural member
passing through the areas will be formed. In this case
the sensitivities will remain low. Simultaneously, structural
members are enhanced around the flexible void area to com-
pensate for the low stiffness in and between the void areas.
Thus, sensitivities in these enhanced areas will be higher.
The combined effect of these circumstances will imply a
tendency of the void areas to merge.

5.2 Shape measure

The combined approach adopted in this paper introduces
a high degree of flexibility for including geometrical con-
straints. The alternation between continuous and discrete
updates makes it possible to use various heuristic design
update schemes in the discrete field.

In line with the two flexibility measures introduced in
Section 2.2, a shape measure, g3(μ), may be introduced.
This measure controls the degree to which the void area
is allowed to deviate from a given reference shape, Bref .
The idea is illustrated in Fig. 23. Bref is defined in a new
domain with same discretization as the design domain. This

Fig. 23 Definition of the reference shape and signed distance func-
tion in a domain of same discretization as the design domain. In (c)
and (d) the interface of the reference shape is indicated by black
elements

way, any geometry may easily be used as a reference with-
out needing to parametrize the shape. Bref is (optionally)
allowed to rotate freely around its center of mass. The rota-
tion is defined by the angle θ as illustrated in Fig. 23b. The
rotation is performed on a fixed mesh. For this reason the
operation should always be applied to the original reference
shape, as successive rotations will accumulate approxima-
tion errors and eventually, in the general case, modify the
shape.
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The shape measure is based on the signed distance func-
tion, h. The value he is calculated for each element as
the shortest distance from the center of element e to the
interface of Bref (see Fig. 23c). The value is chosen to
be negative in the interior of the flexible void area, B .
The interface of Bref is defined by element interfaces. It
is therefore possible to calculate the signed distance func-
tion based on information about the mesh. A drawback of
this reference shape definition is that the interface becomes
non-smooth at element corners. However, as the flexible
void area is already defined on a fixed mesh, the shape
measure cannot be smooth. It should be noted that the
reference shape is translated to a position defined by the
update scheme (see Section 5.2.1) before the signed distance
function is computed.

The shape measure is defined as the sum of the value of
the signed distance function for elements contained in the
flexible void area, B:

g3(μ) =
∑

μivihi

H0
(19)

H0 is a normalization factor. The calculation is illus-
trated in Fig. 23d, for the example flexible void area, B ,
from Fig. 23a and reference shape, Bref , from Fig. 23b. The
figure shows element values of the signed distance function
based on Bref for elements contained in B . It should be
noted that the reference shape initially should be scaled to
have the same area as the flexible void area.

The normalization factor, H0, is defined as the sum∑
μivihi for a circular flexible void region of same area as

B , having itself as a reference shape (i.e. B = Bref ). This
value may be analytically calculated as the surface integral
(absolute value) of the signed distance function over the
circle:

H0 =
∣∣∣∣
∫

B

hdA

∣∣∣∣ = πr3
0

3
(20)

With this definition, the shape measure may immediately
be included into the optimization problem as defined in (8),
by penalizing with a factor α3, and taking the sum over three
flexibility measures in the objective function.

The sensitivity of the shape measure with respect to the
flexible void variable, μe, of element e is

∂g3(μ)

∂μe

= vehe

H0
(21)

5.2.1 Continuation and design update for shape measure

In order to enforce the flexible void variables into a par-
ticular shape, a high penalization factor, α3, is required.
However, a well-known issue in relation to high penaliza-
tion is the increased risk of getting stuck in local minima.
An often used remedy is some sort of continuation strategy,

which is also applied here. Another modification to take
into account is that the reference shape needs to be updated
during the optimization.

The above considerations lead to the continuation
scheme presented in Fig. 24. The optimization is initially
run as a standard flexible void problem (i.e. α3 = 0)
until convergence. Then the reference shape, Bref , is
initialized by aligning its center of mass with the center
of mass of the flexible void area, B , and rotating it
the angle θ leading to the minimum value of the shape
measure, g3(μ). The optimization is then continued with
α3 > 0. When B converges, Bref should be updated.
Bref is updated to the position and rotation for which the
average compliance sensitivity (with respect to the flexible
void variables) of elements contained in Bref is minimized.
This happens at the step represented by the left-most box in
Fig. 24. In order to smooth the iterative optimization prob-
lem the motion of Bref is restricted for this step: Bref is only
allowed to rotate ±4o per update and may only be translated
up to m elements either diagonally or in an axial direction,
where m is a number proportional to the sensitivity filter
radius of the problem (here m = 2R/3). Bref is considered
converged when no combination of the allowed translation
and rotation leads to a smaller average sensitivity.

When Bref converges, the value of α3 is increased to its
maximum value whereupon B and Bref are alternatingly
updated until convergence. The problem is considered con-
verged when B , Bref and ρ are simultaneously converged.

5.2.2 Shape measure results

A first example of optimization using the shape measure is
shown in Fig. 25. The reference shape (an L-shape) is shown
in the top row, the final flexible void geometry is shown
at the bottom, and the middle figure shows the optimized
structure. The initial guess for the flexible void area was
a circle of same size as the reference shape, positioned as
in the problem from Fig. 1. The penalization factor α3 was
first increased from 0 to 10, then to the maximum value,
100. The example is run using the same parameters as in
Section 4, with a discretization of 160 by 100 elements.

The example demonstrates the ability of the method to
translate and rotate the reference shape into an optimized
position for minimizing the disturbance on the compliance
problem. Except for slightly rounded corners the final flexi-
ble void area is shaped like the reference. The area is placed
with a certain overlap with the grayscale regions of the
structure, whereas the solid edges are only touched.

Two other test examples, with a square of varying area
as reference shape, are shown in Fig. 26. For both cases
the initial guess for the void area and the continuation of
α3 are defined as in the L-shape example, and the same
discretization and optimization parameters are applied. For
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the small square the optimization algorithm exploits the
opportunity of rotating the reference shape to make it fit
with the triangle-shaped hole in the structure, similar to the
optimization for the L-shape test case. However, when the
size of the reference shape becomes larger compared to the
size of the domain, as is the case for the large square, there is
no longer an obvious way for the square to fit into the struc-
ture. Also for this case the algorithm moves the void area to
minimize the disturbance on the structure. However, due to
the size of the void area and the requirement to fit a square
shape with sharp edges, the optimized structure is character-
ized by irregularities similar to those obtained when using
standard passive elements.

As illustrated by the test cases the shape measure extends
the flexible void method to solve design problems with
holes of a fixed shape. However, the method has certain
drawbacks. First, as illustrated by the examples in Fig. 26,
the method reaches its limitations when the reference shape
area is large compared to the total domain area. Second, the
iteration number becomes high due to continuation of the
penalization parameter. The L-shaped test case converged in
722 iterations, whereas the square cases converged in 470
and 655 iterations, respectively. One way to decrease the
iteration number would be to relax the convergence criterion

determining when to update the reference shape. Another
option is to modify the move limit scheme for the flexible
void area to faster decrease the number of elements allowed
to swap per update of the void area.

6 Discussion

One of the strengths of this new method is the ability
to enforce a connected void area, while keeping the void
definition simple and defining the design variables at an
individual element level. Alternative approaches include
implementation of a “casting constraint”, where element
densities are required to change monotonously along a given
casting direction (see e.g. Gersborg and Andreasen 2011),
or a 2D level set definition (without topological derivatives),
where only existing interfaces are changed, meaning that no
new holes are introduced.

Cases may arise, however, where the connectivity is chal-
lenged. As mentioned in Section 4.3 this includes cases
where the location measure is applied with a high weight.
One remedy is, as already suggested, to simultaneously
apply the deformation measure, which forces the flexible
void elements towards its center of mass. Another approach

Fig. 24 Flowchart for
continuation strategy when
optimizing with shape measure
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Fig. 25 Optimization with shape measure. a L-shaped reference shape
with side lengths lx/8 and 3lx/8. b Optimized structure, c = 60.75. c
Final void area

is to implement a heuristic connectivity scheme, checking
whether a given design update of μ implies non-connected
areas, and if necessary removing elements leading to this
situation from the update list.

The designs obtained with the flexible void method are
obviously highly dependent on the initial location of the
void area. An example is the cantilever beam problem with a
flexible void circle from Fig. 1, with the final design shown
as the last iteration in Fig. 7. If the initial circle is instead
placed with its center point in (lx/3, ly/2), the flexible void
area moves towards the left, ending up in a different local
minimum as a triangle at the left edge (at the low density
area in Fig. 7).

Put more generally, the efficiency and applicability of the
method depends on characteristic parameters such as filter
radii, the maximum number of elements allowed to change
per iteration, and the weight of the penalization measures. If
the filter radius, R, of the sensitivity filter is too small (e.g.
R = ri = 1.2), the flexible void area develops very slowly
and tends to get stuck in a local minimum. As described
in Section 3, an increased interface width (increased radius,

Fig. 26 Optimization including shape measure a Example 1: Square
reference shape with side length lx/4. b Example 2: Square refer-
ence shape with side length lx/3. c Optimized structure from (a), c =
61.18. d Optimized structure from (b), c = 66.87. e-f Corresponding
final void areas

ri , on the density filter) decreases the number of iterations
required for the flexible void area to move large “distances”.
This is, however, with the risk of violating the connectivity.
A necessary condition is ri ≤ R.

With the presented implementation, the flexible void
area impacts surrounding elements in the same way as the
domain border, as the unfiltered sensitivities inside the void
are zero and the filtering weight factor is equal for all
elements. When the volume constraint is defined on the
physical densities, ρ̂, only, this has the implication that
the interface between the structure and the flexible void
becomes a sharp 0/1 edge. An alternative would be to apply
the volume constraint to the continuous design variables,
ρ. With this choice, however, the physical meaning of the
constraint value is lost. The method leads to a grayscale
interface, but the edge is still sharper than for interfaces
between maximum and minimum densities in the remainder
of the domain.

7 Conclusions

This paper presents a new method for including a flexible
void area into a minimum compliance topology optimiza-
tion problem. The void area is introduced as a second,
discrete design variable field with the same discretization as
the standard, continuous density field. This way, the method
allows to define a void inclusion of fixed area, which may
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be flexibly reshaped and repositioned in order to disturb the
structure least possible. The freedom of motion of the flexi-
ble void area may be restricted by penalizing its moment of
inertia and the position of its center of mass. By formulat-
ing the problem as two strongly coupled sub-problems, the
design update is performed in an iterative manner, alternat-
ing between updates of the continuous and discrete fields.
This alternation allows to introduce various heuristic mod-
ifications to the design update scheme in the discrete field,
as illustrated with the shape measure, forcing the void area
to assume a predefined shape.

The robustness and applicability of the method is demon-
strated through a range of numerical examples. The paper
has focused on demonstrating the fundamental properties of
the method. The method may easily be combined with the
passive elements method for fixed solid or void inclusions,
simply by excluding the passive elements from the set of
design variables also in the discrete field, μ. Extension to
3D is straightforward.

The nature of the method furthermore makes it very suit-
able for interactive topology optimization applications, e.g.
on handheld devices, as presented in Aage et al. (2013).
A challenge for this end is to handle the potential numer-
ical instabilities described in Section 4.3, arising when the
location constraint is applied with α2 too high. However,
the interactive definition of characteristic parameters, such
as penalization weights, αk , and the interface width, ri ,
allows to achieve maximum gain from the flexibility of the
method.
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