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Abstract Preliminary aircraft design studies use structural
weight models that are calibrated with data from existing
aircraft. Computing weights with these models is a fast
procedure that provides reliable weight estimates when the
candidate designs lie within the domain of the data used for
calibration. However, this limitation is too restrictive when
we wish to assess the relative benefits of new structural tech-
nologies and new aircraft configurations early in the design
process. To address this limitation, we present a computa-
tionally efficient aerostructural design framework for initial
aircraft design studies that uses a full finite-element model
of key structural components to better assess the potential
benefits of new technologies. We use a three-dimensional
panel method to predict the aerodynamic forces and cou-
ple the lifting surface deflections to compute the deformed
aerodynamic flying shape. To be used early in the design
cycle, the aerostructural computations must be fast, robust,
and allow for significant design flexibility. To address
these requirements, we develop a geometry parametriza-
tion technique that enables large geometric modifications,
we implement a parallel Newton–Krylov approach that is
robust and computationally efficient to solve the aeroelastic
system, and we develop an adjoint-based derivative eval-
uation method to compute the derivatives of functions of
interest for design optimization. To demonstrate the capa-
bilities of the framework, we present a design optimization
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of a large transport aircraft wing that includes a detailed
structural design parametrization. The results demonstrate
that the proposed framework can be used to make detailed
structural design decisions to meet overall aircraft mission
requirements.
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1 Introduction

The rapid assessment of candidate technologies is an essen-
tial aspect of preliminary aircraft design. Within the context
of aircraft structural design, advanced lightweight materi-
als and novel structural layouts should be considered during
the early stages of the design process. At this stage, air-
craft weight estimates are usually obtained using simplified
structural weight models that are calibrated with weight
data from existing aircraft (Ning and Kroo 2010). They
are usually correlations that are combined with simple
strength-of-materials structural models (Hajela and Chen
1988). These models have the advantages that they are
computationally inexpensive and provide sufficiently accu-
rate weight predictions. However, these correlation-based
weight predictions are valid only within the design space for
which data exists; they are not applicable when the impact of
new weight reduction technologies is being assessed. In this
paper, we address this issue by developing techniques that
are fast enough to be suitable for initial design studies, while
providing a more reliable aircraft structural weight predic-
tion. We achieve this through a multidisciplinary analysis
and optimization framework that includes a full structural
finite-element model of the structure.
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Advanced materials with greater strength and stiffness
may enable the use of slender, higher-aspect ratio wings that
are aerodynamically favorable, but exhibit greater flexibility
than conventional wings. Therefore, even at an early stage
of the design process, it is important to model the effects of
wing flexibility using aeroelastic analysis. While dynamic
aeroelastic phenomena are often critical in the design of
wings, especially in the transonic regime, we focus on static
aeroelastic analysis, which we call aerostructural analysis.
In this work, we use a design parametrization that includes
geometric, aerodynamic, and structural design variables.
Since we use low-fidelity aerodynamics, we usually restrict
the geometric design variables so that only planform mod-
ifications are possible, and we do not design the section
profile shapes. This reduces the number of geometric and
aerodynamic design variables involved in the design prob-
lem. However, we do utilize detailed structural models that
can be used to accurately size the structure for strength
and buckling constraints, to predict structural weight, and
to compute aerostructural deflections. These detailed struc-
tural models often include sophisticated structural design
parametrizations for advanced materials. As a result, the full
aerostructural design space may have thousands of design
variables. To handle these large design problems in an effi-
cient manner, we use gradient-based design optimization
methods with an efficient coupled adjoint implementation
that can be used to evaluate the derivative with respect to
thousands of design variables in a reasonable computational
time (Martins and Hwang 2013).

Since rapid analysis and design capabilities are essential
for preliminary design optimization, we focus on improv-
ing the turn-around time required for an optimization by
making the most efficient use of parallel high-performance
computing resources. Within our aerostructural framework,
we use three levels of parallelism to achieve computa-
tional efficiency: optimization-level, aerostructural-level,
and discipline-level. The optimization-level parallelism
consists of concurrently analyzing multiple flight conditions
on different groups of processors. This level is embar-
rassingly parallel and requires only communication at the
beginning and at the end of each analysis or gradient eval-
uation. Parallelism at the aerostructural level is achieved
by dividing processors assigned to the aerodynamics and
structural analysis into nonoverlapping groups within each
optimization-level subgroup. This second level of paral-
lelism involves coordination of the discipline-level analyses
to perform an aerostructural solution or gradient calcula-
tion. The last level of parallelism is at the discipline-level,
where efficient single-discipline aerodynamic and struc-
tural analyses run on independent process groups within
each aerostructural group. We use these three levels to
achieve efficient parallel multidisciplinary analysis and
optimization.

Many authors have performed design optimization stud-
ies that take into account wing flexibility. In one of the ear-
liest examples of aerostructural optimization, Haftka (1977)
performed a static aeroelastic optimization of composite
and aluminum fighter aircraft undergoing a pull-up maneu-
ver. The aeroelastic model included a small finite-element
model of the wing and a lifting line model of the aerody-
namics. Later, Grossman et al. (1988) compared aerostruc-
tural design optimization using a sequential approach, in
which the aerodynamic and structural variables were opti-
mized in sequence, to an integrated approach, in which all
design variables were optimized at once. They found that
the integrated approach produced better designs in terms
of both aerodynamic and structural performance, and that
the integrated designs exhibited more favorable aeroelastic
interactions. In an application to transport aircraft wings,
Grossman et al. (1990) performed an aerostructural opti-
mization of a wing for minimum structural weight subject
to a fixed range requirement. Jansen et al. (2010) performed
a series of aerostructural optimization studies for nonpla-
nar lifting configurations with a lifting line theory coupled
to a beam model of the wing. They utilized a gradient-
free method (Jansen and Perez 2011) to obtain optimal
designs considering a sequence of aerodynamic modeling
assumptions. Ning and Kroo (2010) performed a series
of optimizations of wings with various wing-tip devices.
They used a weight model that included a historical weight
correlation and an integrated bending moment over wing
thickness to predict the relative changes in weight of dif-
ferent designs. These studies demonstrate that important
conclusions can be drawn from simple analytical models.
However, in almost all cases, the scope of the studies was
limited by the use of either statistical weight correlations or
simplified finite-element models.

High-fidelity aerostructural design optimization methods
that couple computational fluid dynamics (CFD) models
with finite-element structural models can be used to reduce
the impact of the modeling limitations inherent in low-
fidelity analysis. Maute et al. (2001) were the first to per-
form high-fidelity aerostructural design optimization, cou-
pling a linear finite-element solver to an Euler CFD solver.
However, this work was limited to applications with small
numbers of design variables since the authors employed the
direct method, which scales well with the number of func-
tions of interest but poorly with the number of design vari-
ables. Later, Martins et al. (2001) proposed the application
of the adjoint method to high-fidelity aerostructural design
optimization, which in contrast to the direct method, scales
well with the number of design variables but poorly with
the number of functions of interest. As a result, the coupled
adjoint method enables the efficient evaluation of the deriva-
tives required for high-fidelity aerostructural optimization
with a computational cost that is nearly independent of the
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dimensionality of the design space (Martins et al. 2005).
Martins et al. (2004) applied the coupled adjoint method
to the design optimization of a supersonic business jet.
Maute et al. (2003) also developed a coupled adjoint imple-
mentation for high-fidelity static aeroelastic simulations.
To develop more robust aerostructural solution strategies,
Barcelos et al. (2006) proposed a Newton–Krylov–Schur
method to solve coupled aerostructural problems. Later,
Barcelos and Maute (2008) developed a coupled adjoint
method for the turbulent Reynolds averaged Navier–Stokes
equations. More recently, Kenway et al. (2014) developed
a more scalable coupled adjoint for high-fidelity aerostruc-
tural optimization using the ADjoint approach (Mader et al.
2008). This framework has since been applied to the design
of large transport aircraft (Kenway and Martins 2014; Liem
et al. 2014).

Given these developments, it may seem that high-fidelity
aerostructural design optimization can now be used rou-
tinely earlier in the design cycle. However, there remain
limitations that are difficult to overcome. Most of these
limitations are due to the fact that CFD methods require
volume meshes, which are time-consuming to generate.
In addition, mesh movement strategies are required for
design optimization with large-scale geometry modifica-
tions. This requirement substantially increases the complex-
ity of the implementation of the aerostructural analysis and
coupled adjoint method. Finally, mesh movement strate-
gies cannot handle drastic changes in the aircraft shape,
thus restricting the design space. While these high-fidelity
aerostructural optimization tools are extremely useful for
design refinement, they may not have the flexibility required
for the early stages of the aircraft design process. There-
fore, we regard the present work as a practical middle
ground in which we use high-fidelity structures coupled
to a lower-fidelity aerodynamic analysis to enable greater
design flexibility and a faster turnaround time in the design
cycle.

One of the primary tasks in aerostructural analysis is to
develop a scheme to couple the aerodynamic and structural
disciplines into a single, integrated analysis. To integrate
the structures and aerodynamics, it is necessary to extrapo-
late the displacements from the structure to the aerodynamic
surface and to transfer forces from the aerodynamic surface
back to the structure. Numerous authors have developed
load and displacement transfer methods (Smith et al. 2000).
Displacement extrapolation can be extremely difficult when
there are large gaps between the aerodynamic and structural
models. These gaps arise when the secondary structure is
on the wetted aerodynamic surface, but it is not included
in the model used for structural sizing. As a result, the
aerodynamic and structural surface meshes may not be
coincident everywhere, and thus displacement extrapola-
tion is required. Load transfer schemes must also handle

noncoincident surfaces. There are two types of load trans-
fer methods: methods that transfer the aerodynamic loads
to the structure directly, and methods that integrate the
force contribution on either the aerodynamic surface or an
intermediate surface such as the outer mold line. In the
first approach, we must ensure that the loads transferred to
the structure are consistent with the original aerodynamic
forces, i.e., we must ensure that the work done on the aero-
dynamic mesh is equal to the work done on the structure. In
the second approach, this consistency and conservativeness
property is nearly automatic if the scheme is derived using
the method of virtual work and the forces are integrated with
sufficient accuracy.

Maman and Farhat (1995) developed a method for
matching aerodynamic and structural meshes for the direct
transfer of loads and displacements in a parallel computing
environment. In their scheme, pressure and shear stresses
from the fluid solver are transferred to Gauss points on
the structural mesh, and displacements are transferred back
to the aerodynamic nodes. Their method employs a fast
matching algorithm that quickly determines pairs of adja-
cent aerodynamic and structural points. Farhat et al. (1998)
devised two methods for load and displacement transfer
for transient problems. The first is a method based on
consistent interpolation between coincident surfaces, and
the second, more general, method is based on displace-
ment and load transfer between discrete surfaces. Brown
(1997) focused on the development of load and displace-
ment transfer schemes where the structural and fluid models
are nonconforming, where large gaps may exist between
the structural and aerodynamic meshes. Brown used dis-
placement interpolation functions that are either a contin-
uous extension of the finite-element shape functions, or
a rigid attachment to the nodal degrees of freedom. The
load transfer was derived based on the principle of virtual
work.

One common issue with the load and displacement trans-
fer schemes described above is that they are not able
to handle the different mesh resolution requirements of
the aerodynamics surface panel mesh and finite-element
structural model. To address this, we develop an adaptive
refinement scheme tailored to coupling low- or medium-
fidelity aerodynamic analysis to more refined structural
finite-element models. Following Brown (1997), we extrap-
olate the displacements to the aerodynamic surface and use
the method of virtual work to derive the consistent force
vector. In a departure from Brown (1997) and Farhat et al.
(1998), we use an adaptive refinement approach to integrate
the aerodynamic force contribution.

In the remainder of this paper, we describe a parallel
gradient-based aerostructural analysis and design optimiza-
tion framework for initial aircraft design studies. The key
components of this framework include a panel method
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that predicts the induced drag and estimates profile and
wave drag contributions using an empirical model; a full
finite-element model of the flexible lifting surfaces for the
estimation of a portion of the structural weight; and an accu-
rate and robust load and displacement transfer technique for
transferring loads and displacements between disciplines.
The discipline-level analyses, the load and displacement
transfer technique, and the overall aerostructural solution
method are implemented efficiently in parallel. The key
contributions of the analysis framework are the load and dis-
placement transfer technique, tailored for coupling coarse
aerodynamic models to refined structural finite-element
models, and the novel approximation strategies used in the
Newton–Krylov solution method that enable rapid paral-
lel aerostructural analysis. To enable design optimization,
we present a novel flexible geometric parametrization tech-
nique that can be used to perform large geometry modifi-
cations that are consistent with preliminary design studies.
Since we utilize gradient-based design optimization meth-
ods, we present an efficient coupled adjoint method for
the aerostructural system that is implemented efficiently
in parallel. We verify the accuracy of the gradient evalua-
tion technique using the complex-step method (Squire and
Trapp 1998; Martins et al. 2003). As a demonstration of the
framework, we present an optimization of a large transport
aircraft.

2 Aerostructural analysis components

In this section, we outline the key components of
our aerostructural analysis framework. These components
include the aerodynamic analysis, load and displace-
ment transfer scheme, structural analysis, and geometric
parametrization.

2.1 Aerodynamic analysis

Panel methods are a mature aerodynamic analysis tool that
can be used for the prediction of aerodynamic forces on air-
craft in subsonic and supersonic conditions (Erickson 1990).
Since panel methods require only a surface discretiza-
tion, they have much less demanding mesh requirements
than CFD methods, which rely on a volume discretization.
As a result, panel methods can be employed to rapidly
analyze a variety of aerodynamic shapes. In this work,
we use an unstructured three-dimensional panel code that
can determine the aerodynamic characteristics of invis-
cid, external lifting flows governed by the Prandtl–Glauert
equation (Erickson 1990). The panel method uses constant
source and doublet singularity elements distributed over the
surface of a body discretized with quadrilateral and triangu-
lar panels that form a closed, watertight surface (Katz and

Plotkin 1991; Hess and Smith 1967). Based on an early ver-
sion of the code, which handled only triangular discretiza-
tions, we call this panel code TriPan. In TriPan, the induced
drag is computed using a Trefftz plane integration scheme
with a stream-wise wake (Smith 1996). We add profile and
wave drag corrections using an empirical model (Wakayama
and Kroo 1995; Kennedy and Martins 2012). The remain-
ing aerodynamic forces and moments are calculated using
surface pressure integration. The discretized set of boundary
conditions governing the doublet strengths is represented by
the following vector of aerodynamic residuals:

RA(xA, XA(xG), w) = Aw − b = 0, (1)

where xA are the aerodynamic design variables, XA are
the surface mesh nodal locations, xG are the geometric
design variables, and w represents a vector of the doublet
strengths. In addition, A is the dense aerodynamic-influence
coefficient matrix and b is the vector of boundary condi-
tions, where for simplicity, we omit the dependence on the
design variables and the nodal locations. We solve the lin-
ear system (1) using the parallel linear algebra routines in
PETSc (Balay et al. 1997; Balay et al. 2004). We use a
dense matrix storage format to store the full aerodynamic-
influence coefficient matrix, which is distributed across the
group of aerodynamic processors by row. Each processor
is assigned a group of contiguous panels that corresponds
to a range of rows in the aerodynamic-influence coefficient
matrix. The panels are assigned to each processor based on
a domain decomposition of the dual graph of the surface
mesh computed using METIS (Karypis and Kumar 1998).
The mesh is reordered to ensure that all panels within each
domain are ordered contiguously.

Within PETSc, we solve the system of linear equations
(1) using GMRES(60) (Saad and Schultz 1986) with a
block–Jacobi preconditioner. Each block in the precondi-
tioner corresponds to the group of panels assigned to a pro-
cessor. The preconditioner on each block is an incomplete
LU decomposition with a level of fill of zero (ILU(0)) (Saad
2003). Instead of using all the entries from the dense matrix
in the preconditioner, we use a subset of entries selected
based on the initial surface mesh. For each row in the
block preconditioner we include the column entry only if
the centroids of the two corresponding panels are within a
prescribed radius of one another. We construct the nonzero
pattern for the preconditioner at initialization and keep it
fixed regardless of subsequent geometric modifications dur-
ing the optimization. The rationale for this construction is
that the largest influence coefficients should be contributed
by the panels that are closest to each other. We note that a
similar effect to a higher ILU fill level can be achieved by
selecting a larger inclusion radius.
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A key component of TriPan that is required for aerostruc-
tural gradient-based evaluation is its discrete adjoint imple-
mentation, which enables the rapid evaluation of gradients
for design optimization. To the best of our knowledge, no
other panel method of this type has a discrete adjoint imple-
mentation. Within TriPan, the design variables are split into
two distinct groups: aerodynamic-only design variables and
geometric design variables, which we write as xA and xG,
respectively. Given an aerodynamic function of interest,
f (x, w), where xT = [

xT
A, xT

G

]
, the total derivative can be

evaluated as follows:

∂RA

∂w

T

ψA = AT ψA = ∂f

∂w

T

, (2)

df

dx
= ∂f

∂x
− ψT

A

∂RA

∂x
.

The derivative of the aerodynamic residuals with respect
to the geometric design variables requires special consid-
eration. For this computation, we use the product rule and
compute the following product:

ψT
A

∂RA

∂xG

= ψT
A

∂RA

∂XA

∂XA

∂xG

where XA is a vector containing all the aerodynamic sur-
face nodes. In this implementation, we evaluate the dense
matrix ∂RA/∂XA using a hand-coded implementation of
the derivatives, and we store it in a distributed format in
an analogous manner to the aerodynamic-influence coeffi-
cient matrix. Computing this dense matrix exactly requires
10 to 20 times the computational cost of the aerodynamic-
influence coefficient matrix evaluation. This high compu-
tational cost is due to the complex expressions that are
evaluated to determine the derivative of the aerodynamic-
influence coefficients with respect to the 9 to 12 surface
mesh coordinates for each panel. Like the aerodynamic-
influence coefficient matrix, this computation does not
require any parallel communication and exhibits excellent
parallel performance. While the set-up cost of this term is
high, it can be reused to evaluate the total derivative for
multiple functions of interest.

Many panel methods implement a far-field approxima-
tion in which exact but computationally expensive influence
coefficients are calculated for points in close proximity
to the panel, while approximate expressions are used for
points far from the panel (Smith 1996). These approxima-
tions introduce a conditional switch into the aerodynamic-
influence coefficient calculations that can reduce compu-
tational times considerably. We found that while these
far-field approximations do not have a significant impact on
the function values within engineering precision, they can
produce gradient errors that lead to slow convergence and
failure during the optimization. As a result, we do not use
far-field approximations.
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T
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]
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10 1
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Solution time [s]
dR/dXA time [s]
Adjoint time [s]

261 s

33.5 s
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3.06 s
7.76 s

2.49 s

Fig. 1 Scaling results for the ONERA M6 test case with 8000 surface
panels on 4, 8, 16, 24, and 32 processors

Figure 1 shows a comparison of the computational times
of several operations performed by TriPan on 4, 8, 16, 24,
and 32 processors for a mesh with 8000 surface panels.
The solution time is the time to form the aerodynamic-
influence coefficient matrix, factor the preconditioner, and
solve the linear system (1). We also show the time to com-
pute ∂RA/∂XA, and the time to solve the adjoint system
and evaluate the total derivative (2.1) for lift, with respect to
100 design variables. Both the solution time and the com-
putation of ∂RA/∂XA exhibit excellent scalability with the
number of processors. The time to compute the adjoint and
evaluate the derivative is less than the solution time, once
∂RA/∂XA is assembled. All subsequent derivatives would
scale with the adjoint time shown here, and therefore the
computation of ∂RA/∂XA can be amortized when multiple
derivatives are required for the same analysis condition.

2.1.1 Verification of TriPan

Since TriPan is a new panel-method implementation, we
present the results of a verification study for the ONERA
M6 wing. In this study, we compare the pressure distribu-
tion on the wing at Mach numbers of 0.5, 0.7, and 0.8395,
respectively, for an angle of attack of 3.06◦. These Mach
numbers span from the subsonic regime well into the tran-
sonic regime. At all Mach numbers compressibility effects
are significant, so this study tests the accuracy of the com-
pressibility correction used in TriPan. For this study, we
compare the results against SUmb (van der Weide et al.
2006), a finite-volume structured multi-block code that we
use here to solve the Euler equations. The surface panel
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Fig. 2 Verification results for a
comparison between SUmb (van
der Weide et al. 2006) and
TriPan for the ONERA M6 wing
at a Mach numbers of 0.5, 0.7,
and 0.8395. The TriPan surface
mesh has 8000 surface panels.
The SUmb mesh has 3.15
million volume cells, including
32 768 wing surface cells

(a) (b)

mesh consists of 160 chord-wise panels and 50 span-wise
panels for a total of 8000 surface panels. The CFD volume
mesh, for SUmb, contains 3.15 million cells, with 32 768
cells lying on the wing surface. Figure 2 shows the chord-
wise Cp distributions at 20 % and 80 % of the semi-span of
the ONERA M6 wing. For M = 0.5, the agreement between
TriPan and SUmb is excellent with small discrepancies of
the peak Cp at the leading edge. For M = 0.7, there is a
greater discrepancy at the leading edge and on the upper sur-
face. For M = 0.8395, TriPan cannot capture the transonic
shocks and the solutions clearly diverge, as expected. This
case demonstrates the range of applicability of the TriPan
aerodynamic model.

2.2 Structural analysis

Within the present framework, the structural analysis is per-
formed using the Toolkit for the Analysis of Composite
Structures (TACS), a parallel finite-element code designed
specifically for the design optimization of stiffened, thin-
walled composite structures using either linear or geomet-
rically nonlinear strain relationships (Kennedy and Martins
2014). We typically use third-order elements for structural
design optimization problems, since these elements are a
good trade-off between solution accuracy and gradient eval-
uation cost (Kennedy and Martins 2014). Within this paper,
we focus on aerostructural design optimization using lin-
ear structural analysis. We view this as a necessary first
step before the inclusion of either geometric or material
nonlinearities in the design optimization problem.

The residuals of the structural governing equations, with-
out aerodynamic forces, can be written as follows:

R̃S(xM, XS(xG), u) = Ku − FI = 0, (3)

where XS are the structural nodal locations, u is the finite-
element state vector, K is the linear stiffness matrix, and

FI are the inertial forces on the structure. We split the
design variables into two groups: material design variables,
denoted xM , and geometric design variables, denoted xG.
The geometric variables are shared between the aerodynam-
ics and the structures. The distinction between the material
and geometric design variables arises at the element level,
where the material design variables modify the constitutive
relationships, while the geometric design variables modify
only the finite-element nodal locations. The force vector FI

consists of two main contributions: the inertial self-weight
and the inertial fuel loads. The self-weight is evaluated
based solely on the density per unit area of each component
of the structure. The fuel loads are applied as a distributed
force per unit area of the surface. These forces are calculated
based on the amount of fuel stored locally with the rib-bay
formed by the adjacent spars and ribs.

To ensure the safe operation of the aircraft within the
flight envelope, we impose both failure and buckling con-
straints at a number of off-design conditions, such as 2.5 g
or −1 g maneuver cases. To reduce the number of con-
straints in the design problem to a practical number for
adjoint-based gradient evaluation, we use a Kreisselmeier–
Steinhauser (KS) aggregation technique, which provides a
conservative estimate of the feasible domain of the disaggre-
gated constraint set (Akgun et al. 2001; Poon and Martins
2007; Kennedy and Martins 2014). For both the strength and
buckling constraints we compute a local constraint envelope
at each Gauss point within each element of the finite-
element model. Instead of grouping all envelopes together
into a single constraint, we group the aggregation domains
by structural design condition, major structural component,
and constraint type. For instance, we often aggregate all
the failure constraints for the 2.5-g maneuver condition for
the upper skin into a single constraint. This aggregation
approach has two advantages: it simplifies the interpretation
of the results and, based on our experience, it typically leads
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to optimization problems that require fewer optimization
iterations to solve.

2.3 Load and displacement transfer

In this section, we present the load and displacement trans-
fer schemes that link the structural displacement to the
aerodynamic surface and transfer the loads from the aero-
dynamic surface to the structure. We develop these schemes
in a general manner to link any structural analysis method
to an aerodynamic analysis that utilizes a full surface dis-
cretization. For instance, the following scheme could be
used to link a panel or CFD analysis to a beam model, but
it could not be used to link lifting line methods to a full
three-dimensional finite-element model.

The surface discretizations employed by panel meth-
ods often use high-aspect-ratio cells that are stretched
span-wise. These stretched surface meshes are designed to
capture the rapid chord-wise variation of the pressure distri-
bution without over-resolving the more gradual span-wise
variation of the solution. On the other hand, finite-element
meshes used for structural analysis tend to have near-
uniform resolution with elements that have approximately a
unit aspect ratio. Depending on the relative resolution of the
surface discretizations, this can lead to an issue with the load
transfer scheme, where a single aerodynamic panel may
stretch over several finite-elements. Under these conditions,
certain load transfer schemes apply loads to a small fraction
of the surface elements in the structural mesh, which leads
to a nonsmooth stress distribution. While many of these
schemes are consistent and conservative, the introduction
of nonsmoothness makes the design optimization problem
more challenging, due to the introduction of local stress con-
centrations. In this work, we develop a load transfer scheme
that alleviates this issue by matching the discretization level
used to perform the surface pressure integration. Our pro-
posed approach produces a smoother load transfer, even
when high-aspect-ratio cells are present.

To present the load and displacement transfer schemes
concisely, we introduce a new notation for the aerodynamic
and structural surfaces. In our approach, we treat the aero-
dynamic and structural geometry not as discrete meshes,
but as a representation of the underlying geometry. For
the structure, we represent this geometry using the finite-
element shape functions, while for the aerodynamics, we
introduce an interpolation consistent with the aerodynamic
discretization. The structural surface is defined as follows:

d(e)
S (ξ) = N(e)

S (ξ)XS, (4)

where d(e)
S is the position vector at parametric point ξ within

finite-element e, and N(e)
s ∈ �

3×ns are the finite-element
shape functions defined parametrically over the domain

ξ ∈ �S ⊂ �
2 . We also define a displacement and rotation

interpolation in which we first restrict the full vector of dis-
placements and rotations, u, to a vector containing either the
nodal displacements or nodal rotations, and then interpo-
late these using the finite-element shape functions. We write
these operations as follows:

u(e)
S (ξ) = N(e)

S (ξ)Duu,

θ
(e)
S (ξ) = N(e)

S (ξ)Dθ u,
(5)

where u(e)
S and θ

(e)
S are the displacement and rotation inter-

polated within finite-element e, and Du and Dθ are the
displacement and rotation restriction operators, respectively.
We also define the aerodynamic surface using the following
interpolation:

d(c)
A (η) = N(c)

A (η)X0
A, (6)

where X0
A are the undeformed aerodynamic mesh locations,

d(c)
A is the position within cell c at the parametric point η,

and N(c)
A ∈ �

3×na are the shape functions, which are also
defined over the domain η ∈ �A ⊂ �

2 . Note that we write
these formulae in terms of the full displacement and nodal
vectors, but in the implementation we exploit the sparsity
structure of the interpolation to improve the computational
performance of the approach.

Our load and displacement transfer scheme is based on
the work of Brown (1997). In Brown’s approach, the dis-
placement extrapolation and load transfer utilize so-called
rigid links, which are vectors that originate on the struc-
tural surface and extend to the aerodynamic surface. The
displacements at the aerodynamic surface nodes are extrap-
olated based on the displacements and rotation at the origin
of the rigid link as follows:

u(c)
A = u(e)

S + θ
(e)
S × r

= u(e)
S + θ

(e)
S ×

(
d(c)

A − d(e)
S

) (7)

where we have omitted the parametric points for ease of
presentation. Here u(c)

A is the displacement extrapolated to
the aerodynamic surface in cell c, from finite-element e on
the structural surface. Note that the rigid link r = d(c)

A −
d(e)

S is evaluated based on the distance between the unde-
formed geometries. Omitting the second rotational term
from the displacement extrapolation (7) produces unrealis-
tic deformed aerodynamic surfaces in areas where there are
gaps between the aerodynamic and structural surfaces, e.g.,
at the leading edge, trailing edge, or wing tip. Throughout
this work, we restrict the discussion to small-angle approx-
imations, but the displacement extrapolation (7) could also
be extended to large rotations using the following expres-
sion:

u(c)
A = u(e)

S +(C(θ
(e)
S )−I)(d(c)

A −d(e)
S ), (c, η, e, ξ) ∈ �

where C is a rotation matrix and I is the identity matrix.



1086 G. J. Kennedy, J. R. R. A. Martins

The information required to compute a rigid link includes
the aerodynamic cell index c, the parametric point within
the aerodynamic cell η, the finite-element index e, and the
parametric point within the finite-element ξ . We introduce
the following notation for the information required to com-
pute a rigid link: (c, η, e, ξ) ∈ �. We compute the rigid
links by fixing a cell index and parametric location on the
aerodynamic surface and then searching for the closest point
within any finite-element on the structural surface. This can
be expressed as follows:

� = (c, η, argmine, ξ ||d(e)
S (ξ) − d(c)

A (η)||2). (8)

We compute each rigid link based on the initial geometry,
and then we fix each � for all subsequent geometry mod-
ifications. As a result, the rigid link changes and may no
longer be the closest point to the aerodynamic surface. It is
possible to construct the rigid links with a different norm.
For instance, we have experimented with the following
formulation:

� =
(
c, η, argmine, ξ

(
|nT r| + ||

(
I − nnT

)
r||2

))
,

where r = d(e)
S (ξ) − d(c)

A (η), and n is a unit normal
vector perpendicular to the symmetry plane. Note that
the first term |nT r| adds the perpendicular distance to
the norm to remove the nonuniqueness of the symmetry-
plane distance alone. This modified norm produces rigid
links that are predominantly aligned with the symmetry
plane.

Using the above definitions, we can now describe the
displacement extrapolation scheme. First, we determine
the rigid links for each aerodynamic surface node based
on the initial aerodynamic and structural geometry. For
each rigid link, we then compute the displacement extrap-
olation (7). These aerodynamic surface displacements are
added to the undeformed aerodynamic surface nodal loca-
tions. Therefore, the result of the structural deformation can
be transferred to the aerodynamic surface nodes as follows:

XA = X0
A + TAu (9)

where X0
A and XA are the initial and deformed aerodynamic

surface nodal locations and TAu represents the extrapo-
lation of the structural deformation to the aerodynamic
surface nodes through (7). Figure 3a shows the rigid links
for the displacement extrapolation and the deformed struc-
tural and aerodynamic surface meshes. The displacements
are computed at each aerodynamic node via the closest point
search (8), but are interpolated from parametric locations
within each element on the structural mesh.

Next, we present the load transfer scheme based on
the rigid-link approach. To derive this scheme, we use the
method of virtual work in conjunction with the displacement
extrapolation (7) to determine the aerodynamic force vector
to apply to the finite-element structural model. The virtual

work done by the pressure loads acting through the virtual
displacement and rotation from the rigid-link extrapolation
is

δ W = q
∫
SA

Cp(η, w) n̂T δuA dS

= q
∫
SA

Cp(η, w)
(

n̂T δuS − (
n̂ × (dA − dS)

)T
δθS

)
dS,

(10)

where q is the dynamic pressure, Cp(η, w) is the surface
pressure coefficient, and n̂ is the normal defined on the
deformed aerodynamic surface. Note that the pressure coef-
ficient depends on the aerodynamic state variables w and
may also vary spatially over the aerodynamic cell as a func-
tion of η depending on the spatial reconstruction of Cp .
The deformed aerodynamic surface normal n̂ from (10) is
computed as follows:

t = N(c)
A,η1

(X0
A + TAu) × N(c)

A,η2
(X0

A + TAu),

n̂ = t
||t ||2 ,

where N(c)
A,η1

and N(c)
A,η2

are the derivatives of the shape func-
tions along the first and second coordinate directions. Note
that the integration in the method of virtual work (10) is per-
formed over the deformed aerodynamic surface rather than
the undeformed surface. This leads to a nonconservative fol-
lowing force that produces nonsymmetric components in the
structural Jacobian.

Based on (10), the expression for the consistent forces
due to the application of aerodynamic loads can be written
as

FA =
∑

c

q

∫

S
(c)
A

Cp(w, η)
(

DT
u N(e)

S

T
n̂ − DT

θ N(e)
S

T
n̂

×(N(c)
A X0

A − N(e)
S XS)

)
dS. (11)

This formulation produces both forces and moments
exerted on the structural model. The first term within the
integrand in (11) represents the forces acting on the struc-
ture, and the second term contributes the moments. The
one remaining task is to approximate the integral in (11)
over each surface panel. We evaluate this integral using a
two-part numerical quadrature rule. First, we split quadri-
lateral cells based on a specified characteristic length scale
into a series of subquadrilaterals. The characteristic length
scale is selected to match the length scale of the average
finite-element within the structural model. If any side of
the quadrilateral exceeds the characteristic length scale, we
split the cell along that edge into multiple subcells. Next,
on each subcell we use a Gauss quadrature scheme that
matches the order of accuracy required by the underlying
finite-elements. For each quadrature point within each sub-
cell, we compute a rigid link using (8). In an analogous
manner to the displacement transfer scheme, we evaluate
the rigid links based on the initial geometry and keep them
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Fig. 3 Load and displacement
transfer rigid links for a
second-order finite-element
mesh. (a) Displacement transfer
rigid links. (b) Load transfer
rigid links

fixed throughout the optimization. We have found that this
two-level quadrature rule is effective at smoothly trans-
ferring loads to the finite-element mesh even in the pres-
ence of high-aspect-ratio surface cells. Figure 3b illustrates
the load transfer scheme including the subcell refinement
step.

Figure 4 shows the impact of the subcell refinement on
the von Mises stress distribution in the structure. In this
example, the loads from the coarse aerodynamic mesh and
a refined aerodynamic submesh are transferred to the same
underlying structural discretization. The initial aerodynamic
surface panel mesh is shown in Fig. 4a. The subcell refine-
ment process, illustrated in Fig. 4b, produces a significant
number of subcells within each cell of the initial aero-
dynamic surface mesh. The difference between the aero-
dynamic surface pressure integration using (11) over the
initial and the refined meshes is reflected in the von Mises
stress distributions in the underlying structure. The resulting
von Mises stress distributions are shown for the coarse and

refined aerodynamic integration in Fig. 4c and d, respec-
tively. The underlying third-order structural mesh is shown
in Fig. 4e. With subcell refinement, the von Mises stress
distribution is smooth, while without subcell refinement
there are significant stress concentrations at some locations
within the finite-element mesh. These stress concentrations
are due to large point loads applied by the unrefined load
transfer scheme.

2.4 Geometry parametrization

The selection of the geometric parametrization technique
impacts both the aerodynamic and structural disciplines.
Any proposed geometric parametrization must handle both
disciplines in a consistent manner to ensure compatibility of
the resulting geometry. Within the context of gradient-based
aerostructural optimization, we also require a geometry
parametrization that is sufficiently smooth and yet able to
handle the large geometric modifications that are required in
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Fig. 4 Initial and refined
meshes used for the load
transfer quadrature and the
resulting stress distributions.
The refinement-based approach
(d) produces a smoother stress
distribution. (a) Initial
aerodynamic mesh. (b) Refined
aerodynamic submesh. (c)
Initial von Mises. (d) Refined
von Mises. (e) Third-order
structural mesh

(d)

(b)(a)

(c)

(e)

the preliminary design context. Finally, the approach must
be computationally efficient for both geometry manipula-
tion and derivative computation.

In this work, we address these requirements by utiliz-
ing a geometry parametrization based on free-form defor-
mation (FFD) volumes (Sederberg and Parry 1986) to
define a design-dependent modification of the initial aero-
dynamic and structural surfaces. Using the FFD approach,
we embed the structural and aerodynamic meshes inside
a B-spline volume and perform design-dependent modifi-
cations of the B-spline volume control points to manip-
ulate the embedded aerodynamic and structural meshes.
One of the main advantages of the FFD approach is
that it produces smooth and differentiable geometry mod-
ifications. Furthermore, the derivatives of the embedded
points with respect to the design variables can be com-
puted efficiently. The disadvantage of the FFD approach
is that the initial source geometry representation and the
final geometry representation are not the same. However,
the FFD approach is flexible, and it can be applied to
any mesh without knowledge of the source geometric
representation.

In the following section, we outline a systematic way to
manipulate the B-spline control points that define the FFD
volume to obtain geometry changes consistent with plan-
form variables appropriate for preliminary aircraft design
studies. In particular, we include changes to the local twist
angle, span, chord, thickness-to-chord ratio, dihedral, and
sweep. In the proposed scheme, geometric modifications are
applied to the initial set of B-spline control points, pijk ∈
�

3 , to obtain the final set of control points, Pijk ∈ �
3 ,

where all coordinates are given in a global Cartesian refer-
ence frame. The chord, span, and thickness-to-chord ratio
are modified through an anisotropic scaling of the geom-
etry along different directions, while the twist, dihedral,
and sweep changes are applied in a consistent manner that
avoids self-intersecting surfaces for large changes to sweep
and dihedral and moderate changes to twist.

To apply these changes in a consistent manner, we
employ a series of unit vectors that define a span-wise direc-
tion, ts , a chord-wise direction, tc, and a vertical direction,
tv. In addition, we also employ a series of reference points,
rn ∈ �

3 , for n = 1, . . . , N , connected by line segments.
The geometry modification is divided into two steps: first,
the geometry changes are applied to the reference points;
second, the locations of the initial B-spline points, pijk ,
relative to the initial reference line segments are used to
determine the final position of the B-spline control points.
The geometric variables are split into two groups: those
given for each span-wise segment, and those given at each
span-wise station. The geometric variables given for each
segment consist of the scaling along the span-wise direction,
sn, dihedral, �n, and sweep, �n, while the geometric vari-
ables given for each span-wise station consist of the twist,
θn, chord-wise scaling, cn, and vertical scaling, vn.

The following rotation matrix is used extensively in the
proposed FFD manipulation scheme:

C(a, ϕ) = cos ϕI + (1 − cos ϕ)aaT − sin ϕa×,

where a ∈ �
3 is a unit vector such that aT a = 1, and ϕ is the

angle of about the unit vector a (Hughes 2004). This rotation
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matrix is defined such that the components of the the trans-
formed vector are expressed in the transformed reference
frame.

In the proposed scheme, the geometric changes are first
applied to the reference line segments. The reference line
segment is modified in the following manner: we first
apply the dihedral, then a sweep modification, and finally a
span scaling operation. These operations can be written as
follows:

An = snC(b, �n)
T C(tc, �n)

T an,

where b = C(tc, �n)
T tv is the vertical direction vec-

tor rotated through the dihedral angle, and the difference
between adjacent reference line points is an = rn+1 − rn

The final reference point locations, Rn, are determined by
applying the update

Rn+1 = Rn + An, (12)

with R1 = r1, for n = 1, . . . , N − 1.
The twist axis, tθ , which defines the axis about which

the twist rotation is applied, is determined by projecting the
segment direction, Ak , onto the plane defined by the span
axis, ts , and vertical axis, tv, as follows:

tθ = (ts tTs + tvtTv )An

||(tstTs + tvtTv )An||2 . (13)

To obtain the final geometry, the vertical axis and the chord
axis are scaled and rotated based on the values of the twist,
dihedral, chord, and vertical scaling. In the final geometry,
the modified vertical and chord axes are denoted vn and cn,
respectively. These vectors are defined for each segment as
follows:

c1 = c1C(ts, θ1)
T tc, v1 = v1c1C(ts , θ1)

T tv,
cn = cnC(tθ , θn)

T tc, vn = vncnC(tθ , θn)
T C(tc, �̃n)tv,

where �̃n = 1/2 (�n + �n+1), �̃N = �N .
After the final reference line locations and the trans-

formed chord and vertical axes, cn and vn, have been calcu-
lated, the final FFD control point locations are determined
based on the values of the following projections:

us = tTs
tTs an

(pijk − rn),

uc = tTc (pijk − rn − usak),

uv = tTv (pijk − rn − usak),

where us is the projection onto the span direction, uc is the
projection onto the chord direction, and uv is the projection
onto the vertical direction. If 0 ≤ us < 1, then the following
update is applied:

Pijk = Rn + usAn + uc((1 − us)cn + uscn+1)

+ uv((1 − us)vn + usvn+1). (14)

If us < 0 or us ≥ 1, then Pijk is not modified by the
segment.

To demonstrate the flexibility of this geometry
parametrization, we take a simple straight wing and modify
it into a swept C-wing with taper and a crank. The result is
shown in Fig. 5, which also shows the FFD volume points,
reference points, and line segments.

3 Aerostructural analysis

In the following section, we present a robust parallel
Newton–Krylov method for the solution of the coupled
aerostructural system of equations and demonstrate the
scalability of the approach with respect to the number of
processors. This Newton–Krylov solution strategy utilizes
novel approximation techniques that make use of the nature
of the three-dimensional panel method to reduce the com-
putational time required to solve the coupled system. The
aerostructural system of equations is formed by evaluating
the aerodynamic residuals (1) on the deformed mesh (9),
and by adding the aerodynamic forces (11) to the original
system of structural governing equations (3). This coupled
system of equations is written as follows:

R(x, q) =
[

RA(x, u, w)

RS(x, u, w)

]
=

[
RA(xA, XA, w)

R̃S(xM, XS, u) − FA(XS, X0
A, XA, w)

]
= 0,

(15)

where qT = [
wT uT

]
are the aerodynamic and structural

state variables, xT = [
xT
A xT

M xT
G

]
are the aerodynamic,

material, and geometric design variables, and XA = X0
A +

TAu are the deformed aerodynamic surface nodal locations.
Note that we have suppressed the dependence of the aero-
dynamic and structural nodal locations on the geometric
design variables xG for ease of presentation.

While the individual aerodynamic and structural disci-
plines are linear, the coupled aerostructural system (15)
is nonlinear. This nonlinearity is due both to the aerody-
namic forces and the nonlinear relationship between the
aerodynamic surface nodal locations and the aerodynamic
residuals. Linearity of the system is recovered when the dis-
placements are zero, u = 0, or when the dynamic pressure
is zero, q = 0.

3.1 A Newton–Krylov method

During the solution procedure, we accept a point as con-
verged when the relative tolerances of both the aerodynamic
and structural residuals are reduced below a given threshold.
As a result, our stopping criterion does not depend on the
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relative scaling of the structural and aerodynamic governing
equations and can be written as follows:

||RA(q(n))||2 < εr ||RA(q(0))||2,
||RS(q(n))||2 < εr ||RS(q(0))||2. (16)

To solve the coupled aerostructural system (15) we use an
approximate and inexact Newton method where the update
at each iteration, 
q(n), is computed from the following
linear system:

J
q(n) = −R(q(n)), (17)

where we apply the update q(n+1) = q(n) + 
q(n). We
select J ≈ ∂R/∂q to be a computationally convenient
approximation of the exact Jacobian. Instead of solving the
approximate Newton update (17) exactly, we use inexact
solutions with the following stopping criterion:

||R(q(n)) + J
q(n)||2 < εnk||R(q(n))||2. (18)

While we have experimented with more sophisticated meth-
ods for selecting εnk , we have found that an effective

approach is to fix this parameter to εnk = 10−3 for all
iterations.

At each iteration, we solve the linear system (18)
inexactly using a preconditioned Krylov subspace method.
We use inexact solutions of (18) that make sufficient
progress toward the solution but require less computational
time than exact solutions (Eisenstat and Walker 1996).
The preconditioner consists of a single iteration of block–
Jacobi where each block consists of the discipline-level
solvers. We use a full factorization of the stiffness matrix
for the structural block and preconditioned GMRES(5) for
the aerodynamic block. We have found that this selection
approximately balances the workload between disciplines
for a wide range of problem sizes. Since the aerodynamic
discipline solver is also a Krylov subspace method, we use
FGMRES(15), a flexible variant of GMRES (Saad 1993), to
solve (17).

It is often necessary to employ globalization strategies in
Newton’s method to converge from starting points far from
the solution (Kelley and Keyes 1997). In our experience,
however, globalization is not required for the aerostructural

(d)(c)

(a) (b)

Fig. 5 A geometry modification from an initial straight wing to a swept C-wing with taper and a crank
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system (15). We attribute this to the mild nonlinearity of
the coupled system, where the nonlinearities arise entirely
from the coupling, rather than the individual disciplines.
We also note that many authors have used Jacobian-free
Newton–Krylov methods where the matrix-vector products
are calculated using finite differences (Knoll and Keyes
2004). However, Jacobian-free methods are not competitive
for this coupled system, since it is as costly to evaluate the
residual as it is to evaluate the full aerodynamic-influence
coefficient matrix. Therefore, we compute and store most
components of the aerostructural Jacobian.

3.2 Approximate Jacobian

At each iteration of the Newton method, we solve the linear
system (18) using the following approximate Jacobian that
is less computationally expensive to compute than the exact
Jacobian:

J =
[

A JAS

JSA K

]
, (19)

where the off-diagonal terms JAS and JSA represent the
coupling between the aerodynamics and structures. Note
that the approximate Jacobian is formed by omitting the
contribution to the structural block from the Jacobian of
the aerodynamic forces, −∂FA/∂u. Since we use Krylov
subspace methods to solve (18), in practice only matrix-
vector products are required with the Jacobian (19). This
poses no problem for the diagonal blocks, since they are
stored explicitly. For the off-diagonal blocks, we compute
the matrix-vector product

JSAv = −∂FA

∂w
v, (20)

for the aerodynamic input v, using an exact expression for
∂FA/∂w. For the other off-diagonal term, we compute the
following matrix-vector product:

JASs = JXTAs ≈ ∂RA

∂XA

∂XA

∂u
s, (21)

where we form JX such that it approximates the exact term
JX ≈ ∂RA/∂XA. We compute the matrix-vector prod-
uct (21) by first transferring the input s from the structural
processors to the aerodynamic processors, using the opera-
tor TA, and then evaluating the matrix-vector product with
JX. In this implementation, we compute and store JX on the
aerodynamic processors in the same dense matrix used to
store ∂RA/∂XA. We have experimented with both an exact
linearization and an approximate linearization for the term
JX. In the exact approach, we use JX = ∂RA/∂XA. How-
ever, as discussed in Section 2.1, computing this term is 10
to 20 times more computationally expensive than evaluat-
ing the aerodynamic-influence coefficient matrix. A second
approach, which we have found effective, is to construct an

approximation by computing the contributions to ∂RA/∂xA

from the panels that are within the nonzero pattern of the
preconditioner. This typically makes the computational cost
of computing JX approximately equal to the cost of com-
puting the aerodynamic residuals. As a final approximation
strategy within the Newton method, we do not re-evaluate
JX at every iteration, but instead update it only every m

iterations. Typically we choose m = 10, so that JX is recom-
puted only if the aerostructural system is relatively difficult
to solve. This high value of m is chosen since we have found
that approximations of JX are effective, even in subsequent
iterations.

3.3 Aerostructural solution scalability

To demonstrate the scalability of the aerostructural solu-
tion methods, we examine the parallel scalability of the
Newton–Krylov solution method presented above for a
large aerostructural model. The aerodynamic model con-
sists of a mesh with 13 250 quadrilateral surface panels.
The structural finite-element model consists of 39 134 third-
order MITC9 shell finite-elements (Bucalem and Bathe
1993) with 151 107 nodes and roughly 906 000 degrees of
freedom. We use a characteristic length of 0.1 m for the
load transfer refinement, which results in a nearly 15-fold
increase in the number of integration cells used in the load
transfer scheme.

Number of processors

T
im

e 
[s

]

16 32 48 64 80 96

100

200

300

400

500
600

ANK time [s]
NK time [s]
ideal

47 s

90 s

522 s

237 s

Fig. 6 Aerostructural solution scalability with the number of
processors
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Figure 6 shows the solution time of two variants of
the Newton–Krylov method on 16, 24, 32, 64, and 96
processors. The method labeled “NK” updates the exact
derivative ∂RA/∂xA every 10 iterations, while the method
labeled “ANK” forms the approximate JX every 10 itera-
tions. Both methods achieve excellent parallel scalability.
The first Newton–Krylov variant requires 522 seconds on
16 processors and only 90 seconds on 96 processors, while
the second Newton–Krylov variant takes 237 seconds on 16
processors and 47 seconds on 96. The nearly two-fold dif-
ference between the computational time required by the two
methods is due to the additional time required to compute
∂RA/∂xA exactly, rather than the approximation JX used in
the second variant.

4 Coupled aerostructural adjoint implementation

Gradient-based design optimization methods require accu-
rate derivatives of the objective and constraints within the
design problem. In many aerostructural design optimization
problems there are fewer objective and constraint functions
than there are design variables. Therefore, an adjoint imple-
mentation is more efficient than a direct method (Martins
and Hwang 2013). Following Martins et al. (2005) and
Kenway and Martins (2014), who developed coupled
adjoint methods using CFD, we develop a coupled adjoint
method for the aerostructural system (15). Our implemen-
tation is based entirely on hand-coded analytic derivatives
that produce highly accurate gradients at a low computa-
tional cost compared to finite-difference or complex-step
calculations. Similar accuracy and computational efficiency
could also be achieved using selective automatic differenti-
ation (Mader et al. 2008).

The aerostructural adjoint equations can be written in the
following form:

∂R
∂q

T

ψ = ∂f

∂q

T

, (22)

where f (x, q) is a function of interest, and ψT = [
ψT

A ψT
S

]

are the aerodynamic and structural adjoint variables. After
the adjoint variables have been obtained, the total derivative
is evaluated using the additional computation,

df

dx
= ∂f

∂x
− ψT ∂R

∂x
. (23)

We implement the adjoint equation (22) and the total deriva-
tive equation (23) for a number of aerodynamic and struc-
tural functions of interest, including induced drag, lift, and
moments, as well as the KS aggregation function for both
stress and buckling constraints (Poon and Martins 2007;
Kennedy and Martins 2014).

In our adjoint implementation, we solve the linear
system (22) using a coupled Krylov approach, with a block–
Jacobi preconditioner formed from the adjoint solvers for
each discipline. We use the aerodynamic adjoint imple-
mentation from (2.1) with GMRES(5) as a preconditioner
for the aerodynamic block, and the stiffness matrix as the
preconditioner for the structural block. The coupled linear
system is solved using the flexible variant of GMRES(60)
since the discipline-level aerodynamic preconditioner is
nonstationary. Unlike the solution phase, the adjoint sys-
tem/equation (22) must be solved with the exact transpose
matrix-vector products, without any approximation. These
exact products are required to obtain accurate values of the
adjoint variables ψ and, in turn, accurate gradients. The
exact transpose of the Jacobian is

∂R
∂q

T

=

⎡

⎢⎢⎢
⎣

AT −∂FA

∂w

T

TT
A

∂RA

∂XA

T

K − TT
A

∂FA

∂XA

T

⎤

⎥⎥⎥
⎦

, (24)

where we note that in contrast to the Newton–Krylov
approach, ∂RA/∂XA is computed exactly, and the following
force term ∂FA/∂XA is included in the Jacobian.

To compute the adjoint variables, it is also necessary to
evaluate the right-hand side, ∂f/∂q, in the adjoint (22). This
derivative is handled differently for aerodynamic and struc-
tural functions of interest. For an aerodynamic function of
interest, fA(x, q), we have

∂fA

∂q
=

[
∂fA

∂w
∂fA

∂XA

TA

]
.

Note that the aerodynamic function depends on the struc-
tural state variables because of the displacement transfer
that modifies the aerodynamic surface nodes. Structural
functions, on the other hand, typically depend only on
the structural state variables, fS(x, u), and as a result, the
derivative of the function with respect to the aerodynamic
state variables, ∂fS/∂w, is zero.

Once the adjoint variables have been determined by
solving the adjoint equation (22) with the exact lineariza-
tion (24), the total derivative must be evaluated using (23).
The derivatives with respect to the geometric design vari-
ables are the most complex to evaluate. For the geometric
variables, the contribution from the product of the adjoint
vector with the derivative of the residuals can be written as
follows:

ψT ∂R
∂xG

= ψT
A

∂RA

∂XA

∂XA

∂xG
+ ψT

S

[
∂RS

∂XS

∂XS

∂xG
− ∂FA

∂X0
A

∂X0
A

∂xG
− ∂FA

∂XA

∂XA

∂xG

]
,

(25)

where the derivatives with respect to the deformed and
the undeformed aerodynamic surface nodal locations arise
because of the load and displacement transfer. These terms
must be evaluated with care to ensure that the resulting
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derivative is correct. The derivative of the deformed aerody-
namic surface nodal locations with respect to the geometric
design variables contains two contributions:

∂XA

∂xG

= ∂X0
A

∂xG

+ ∂TAu
∂xG

where the transfer matrix TA depends on the geometry of
the aerodynamic and structural surfaces due to the rigid-link
terms. Omitting the contribution from these derivative terms
results in gradient errors that can lead to poor optimizer
performance.

4.1 Derivative accuracy study

In this section, we present a verification of the derivatives
for aerodynamic and structural functions of interest using
the complex-step method (Squire and Trapp 1998; Martins
et al. 2003) as the benchmark. In this approach, the total
derivative is calculated using complex arithmetic as follows:

df

dxi

= Im(f (x + j h ei ))

h
+ O(h2), (26)

where j = √−1 and the entire code must perform all
arithmetic operations using complex numbers. The step
size h in the complex-step derivative approximation (26)
is a complex perturbation of the i th design variable, where
ei is the i th Cartesian basis vector. The advantage of the
complex step method is that it does not suffer from sub-
tractive cancellation (Squire and Trapp 1998; Martins et al.
2003). As a result, very small step sizes—�(10−20) and
smaller—may be used, yielding extremely accurate gradi-
ent approximations that can be used for conclusive gradient
verification, which is not possible with finite-difference
methods (Martins et al. 2003).

To verify our adjoint implementation, we compare the
derivatives computed using the complex-step and coupled
adjoint methods for a small aerostructural problem with 566
surface panels and 1956 structural degrees of freedom. A
small case is chosen to allow rapid testing of all aerody-
namic and structural functions. The design variables consist
of five geometric twists, eight structural thicknesses, and
one angle of attack. Figure 7 shows the relative error of the
lift, normalized by the dynamic pressure, and the KS failure
function. The results demonstrate that the relative error of
any gradient component is less than 10−7.

4.2 Coupled adjoint scalability

In this section, we demonstrate the scalability of the adjoint-
based gradient evaluation method with the number of pro-
cessors for the large aerostructural model presented in
Section 3.3. Figure 8 shows the computational times for 16,
24, 32, 64, and 96 processors. The computational time is

divided between the time to evaluate and store the exact
Jacobian of the aerostructural system, and the time to solve
the adjoint system and evaluate the total derivative. The
exact linearization can be reused when multiple adjoint
solutions are required at the same operating condition. Both
the computational time to evaluate the exact Jacobian and
the time to solve the adjoint and evaluate the total derivatives
of the structural and aerodynamic functions of interest scale
well with the number of processors. The computational time
to compute ∂RA/∂xA scales from 360 seconds on 16 pro-
cessors to 61 seconds on 96 processors. The time to solve
the adjoint equations and compute the total derivative is 10
to 20 times less than the time to compute ∂RA/∂xA for the
lift and KS functions, respectively. The times for the lift and
KS functions scale from 29 and 15 seconds on 16 proces-
sors to 6.4 and 3.0 seconds on 96 processors, respectively.
Note that the discrepancy between the time required for the
aerodynamic and structural gradients is due to the additional
iterations required in the coupled adjoint solution for the lift
adjoint variables.

5 Aerostructural optimization of an aircraft wing

In this section, we present an aerostructural optimization
study of a large transport aircraft wing using the frame-
work presented above. The geometry of the configuration
has roughly the same dimensions as a Boeing 777-200ER,
so we utilize secondary weight and geometric data from
this aircraft. In this study, we compare the results of take-
off gross weight minimization and a composite objective
consisting of the mission fuel consumption added to the

Gradient component

R
el

at
iv

e
er

ro
r

0 2 4 6 8 10 12
10-12

10-11

10-10

10-9

10-8

KS rel. err.
Lift rel. err.

Fig. 7 Relative error between the gradient computed using the adjoint
formulation and the complex-step method



1094 G. J. Kennedy, J. R. R. A. Martins

Number of processors

T
im

e 
[s

]

16 32 48 64 80 96

101

102

103

Adjoint set up [s]
KS adjoint [s]
Lift adjoint [s]
ideal

360 s

29 s

15 s

61 s

6.4 s

3.0 s

Fig. 8 Aerostructural adjoint scalability with the number of
processors

takeoff gross weight for a single long-range, high-payload
mission.

5.1 Quasi-CRM geometry

For this study we use what we call the quasi-CRM (QCRM)
geometry. The QCRM is a wing-tail geometry, without
a fuselage, with a planform that is roughly the same as
that of the common research model (CRM) used in the
DPW 4 and 5 workshops (Vassberg et al. 2008; Vassberg
2011) but is not derived from the CRM geometry directly.
The QCRM wing is untwisted and has a root chord of
12 m, a tip chord of 2.75 m, a semi-span of 30 m, and a
quarter-chord sweep of 35◦. The leading edge of the wing is
straight, while the trailing edge of the wing is quadratically
interpolated between the root trailing edge and the tip. The
trailing edge is determined using a quadratic spline where
a control point is added at a span-wise location of 10.5 m,
with a chord of 6.5 m. The curved trailing edge mimics a
wing crank in a smooth manner. The wing geometry is con-
structed using a set of lofted super-critical NASA airfoil
sections. The first two sections are NASA SC(2)-0414 sec-
tions, while the tip section is a NASA SC(2)-0610 airfoil.
While the initial aerodynamic performance of the QCRM
wing is poor because of the initial twist distribution, we
do not use its initial performance as a baseline and instead
compare only optimized designs.

The geometry of the wing and the internal wing structure
is shown in Fig. 9. The wing box structure consists of two
structural spars and 44 ribs, as well as top and bottom wing
skins. Within the wing box, the first 3 ribs in the structure
are parallel to the symmetry plane. This section of the wing
box lies within the fuselage and is designed to model the
center wing-box. The leading- and trailing-edge spars lie at
15 % and 65 % of the root chord, respectively.

To model the structure of the QCRM, we use a finite-
element mesh with 28 778 third-order MITC9 shell ele-
ments, with 110 395 nodes, resulting in just over 662 000
degrees of freedom. For the aerodynamic model, we use a
surface mesh for both the wing and tail with 2300 quadrilat-
eral panels. We set the characteristic length scale for the load
transfer scheme to 0.1 m, which results in roughly 15 times
more quadrilateral subcells for the load transfer integration.

5.2 Aircraft design problem

To demonstrate the capabilities of our framework, we
present a design formulation where we minimize either the
takeoff gross weight (TOGW) or the mission fuel burn
(FB) added to the TOGW of the aircraft for a long-range,
high-payload mission. We label these objectives TOGW and
FB + TOGW, respectively. The TOGW consists of a mea-
sure of both the structural and aerodynamic performance
of the aircraft. The structural performance enters through
the empty weight contribution to TOGW, while the aerody-
namic performance enters through the mission fuel weight
component of TOGW. The FB + TOGW objective places
additional importance on the aerodynamic performance of
the aircraft relative to the structural weight. The TOGW
and FB + TOGW objectives are equivalently the zero fuel
weight plus fuel burn and the zero fuel weight plus twice the
fuel burn, respectively.

We estimate the mission fuel requirements using the
Breguet range equation. The fuel consumption over the
entire mission can be predicted from the Breguet range
equation based on a single value of L/D. In aerostruc-
tural analysis, however, L/D depends on the actual aircraft
weight through the structural deflection. Therefore, a more
accurate fuel burn estimate could be obtained by integrat-
ing the rate of fuel consumption over the entire mission
taking this L/D variation into account (Liem et al. 2014).
To simplify the design problem, however, we analyze only
the performance of the aircraft at the mid-fuel weight point.
Note that this is not the same as the mid-mission point.
Using the Breguet range equation, we can calculate the
mission fuel burn as follows:

FB = Wm

2
(
eβ − 1

)

eβ + 1
= 2Wm tanh

(
β

2

)
, (27)
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Fig. 9 Quasi-CRM (QCRM)
wing geometry and internal
structure

where Wm is the half-fuel mass of the aircraft and β is
defined as follows:

β = R TSFC

V (L/D)
,

where R is the mission range, TSFC is the thrust-specific
fuel consumption, and L/D is the lift to drag ratio. The
takeoff gross weight of the aircraft can then be calculated as

TOGW = Wm + 1

2
FB. (28)

To simplify the design formulation, we add the mission
fuel mass and the takeoff gross weight as design vari-
ables and add (27) and (28) as compatibility constraints
within the design optimization problem. The use of these
compatibility variables also simplifies the application of
preliminary weight estimates of secondary aircraft compo-
nents that play an important role in weight estimation and
balance computations.

In the design problem, we analyze three flight conditions:
the mid-fuel cruise condition and 2.5-g and −1-g maneuver
conditions at the takeoff gross weight. We trim the cruise
and maneuver flight condition using a fully moving tail. We
set the payload for the mission to 55 000 kg and use a range
of 6000 nautical miles. Since this is a high-payload, long-
range mission, we analyze the cruise flight condition at an
altitude of 33 000 ft and a Mach number of 0.85 to obtain a
reasonable cruise CL. For both the 2.5-g and −1-g maneu-
ver conditions, we perform the analysis at 20 000 ft, and we
use a Mach number of 0.9 to simulate a dive condition.

5.3 Aircraft weight estimation and balance

We perform a detailed breakdown of the weight of the air-
craft using a combination of preliminary weight estimation
techniques based on statistical correlations (Shevell 1989;

Kroo 2013) and weight predicted using the finite-element
model of the wing and horizontal tail. Instead of using the
weight directly from the finite-element models, we compute
the weight as follows:

Wwing = 1.5W
(FE)
wing + 15Swing (29)

where W
(FE)
wing is the finite-element mass of the full wing, and

Swing is the projected area of the wing in square meters.
The mark-up factor of 1.5 is designed to account for addi-
tional fastener weight and component weight not captured
in the finite-element model, while the area-dependent fac-
tor is designed to capture secondary weight contributions
from the leading- and trailing-edge structure. We place this
additional mass contribution at the same center of mass as
that for the finite-element wing model and use an analogous
expression for the horizontal tail weight.

5.4 Structural parametrization

In this work, we use an approach for preliminary struc-
tural wing-box sizing using an analysis based on smeared-
stiffener calculations. In this approach, the effect of discrete
stiffeners is included by modeling the impact of the stiff-
eners on the average panel stiffness, rather than including
discrete stiffeners directly in the finite-element model. This
smeared-stiffness approach works well when the ratio of
the panel side-length to stiffener pitch is high, meaning that
there is a high density of stiffeners (Stroud and Agranoff
1976).

In this design problem, we use a blade-stiffened panel
model with the design variables shown in Fig. 10. We
model all components using aluminum 7075-T6 with a
Young’s modulus of 70 GPa, a Poisson’s ratio of 0.33, and
a maximum design stress of 420 MPa. Only the upper and
lower wing skins are modeled using this approach, while
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Fig. 10 Panel geometry and
thickness design variables used
in the structural design
parametrization

b

wb

hs

tstb

tw

the remainder of the structure is modeled using a single
thickness variable. The design variables in the smeared-
stiffness formulation include the panel thickness tp, the
stiffener height hs , the stiffener width tw , and the stiffener
pitch sp.

To size the stiffener dimensions and skin thicknesses,
we consider both strength and local buckling requirements.
Including both strength and buckling criteria leads to a
more realistic sizing problem that produces a more reli-
able wing-box weight estimate than considering strength
requirements alone. For both the strength and buckling
constraints, we use the KS constraint aggregation tech-
nique, applying a point-wise strength or buckling envelope
at each Gauss point within the aggregation domain. For
the strength constraints, we apply a von Mises criterion
and utilize three aggregation domains: one for the upper
skins, a second for the lower skins, and a third for the
spars and ribs. For the buckling constraints, we apply the
methodology proposed by Stroud and Agranoff (1976) to
compute a buckling envelope. Within the analysis, the crit-
ical buckling loads are calculated based on the panels
formed by the spar and rib intersections in the finite-
element model. We use two buckling constraint aggregation
domains: one for the top skins and another for the bottom
skins.

To calculate the buckling envelope for each panel, we
consider several independent buckling modes and con-
struct an envelope based on an assumed interaction between
modes. These independent modes include buckling of the
skin between stiffeners, buckling of the stiffeners them-
selves, and overall panel buckling. The details of this
method can be found in Stroud and Agranoff (1976)
and (Kennedy et al. 2014). This approach to local buck-
ling does not require the computation of a global buckling
eigenvalue problem and can be easily and inexpensively
incorporated within the aerostructural framework presented
above.

5.5 Design problem summary

There are 577 design variables in the design parametrization
for both the TOGW and FB + TOGW optimization

problems. The design parametrization is summarized in
Table 1. We add 121 compatibility variables to sim-
plify the problem formulation. These include the TOGW,
the fuel mass, the reference area of the wing and tail,
the mean aerodynamic chord of the wing and tail, the
panel length variables, and the fuel traction variables. A
corresponding constraint is added for each compatibility
variable, which reduces the size of the effective design
space.

Table 2 summarizes the constraint parametrization used
in the design problem. The constraints can be divided into
two categories: constraints whose gradient must be com-
puted using a total derivative, and sparse constraints that do
not depend on the aerostructural state variables and there-
fore do not require a total derivative. In total there are 18
constraints in the first category and 604 sparse linear and
nonlinear constraints in the second category. To evaluate the
18 constraints in the first category, we use 20 evaluations of
more basic structural and aerodynamic functions that can be
computed directly from the aerostructural solution includ-
ing the lift, moment, and normal force for all three flight

Table 1 Geometric and structural design parametrizations used in the
optimization study

Design variable Quantity Design variable Quantity

TOGW 1 Stiffener pitch 2

Fuel mass 1 Panel thickness 86

Sref 1 Panel thickness 86

MAC 1 Panel thickness 86

Sref tail 1 Panel length 86

MAC tail 1 Rib thickness 43

Twist 5 Spar thickness 86

Span scaling 1 Tail panel thickness 24

Chord scaling 1 Tail rib thickness 13

Vertical scaling 5 Tail spar thickness 12

Tail rotation 3 Fuel traction 29

Angle of attack 3

24 553

Total design variables 577



A parallel aerostructural optimization framework for aircraft design studies 1097

Table 2 Aerostructural design
optimization constraints. Constraints Quantity Sparse constraints Quantity

Cruise, 2.5 g and −1 g lift 3 Wing volume 1

Cruise, 2.5 g and −1 g trim 3 Sref compatibility 2

TOGW compatibility 1 MAC compatibility 2

Fuel mass compatibility 1 Panel length compatibility 86

2.5 g and −1 g KS failure 6 Fuel mass traction compatibility 29

2.5 g and −1 g KS buckling 4 Linear adjacency constraints 484

18 604

Total constraints 622

conditions, as well as the drag for the cruise condition, and
5 KS functions for each of the maneuver conditions.

When evaluating the objective and constraint gradi-
ents, we compute the gradient of these 20 more basic
functions using the adjoint method outlined above. Next,
we evaluate the gradient with respect to the fuel burn,
TOGW, and trim constraints using the derivatives of
the basic functions. The computational cost could be
reduced by implementing the adjoint for these constraints
directly and eliminating the two additional adjoint solutions.
However, this would complicate the implementation and
make it more difficult to modify the optimization prob-
lem formulation. For this problem, the elimination of these
two additional adjoint calculations would save roughly 20
seconds per gradient evaluation.

5.6 Results

To solve the TOGW and FB + TOGW design optimiza-
tion problems, we use the sparse gradient-based optimizer
SNOPT (Gill et al. 2005) with the feasibility and optimal-
ity tolerance set to 10−5. We use the interface to SNOPT
from the Python-based package pyOpt (Perez et al. 2012).
Before starting the aerostructural optimization, we per-
form a structural-only optimization with fixed aerodynamic
loads. We then start the aerostructural optimization with the
values obtained from the optimized structural-only solution.
We run all flight conditions on a single aerostructural-level
group of 24 processors split between 16 structural proces-
sors and 8 aerodynamic processors. In this configuration,
each evaluation of the objective and constraints requires
approximately 2 minutes and 10 seconds of computational
time. Note that this is the time to solve three aerostructural
cases and evaluate the functions of interest. The gradient
evaluation requires 3 minutes and 20 seconds of computa-
tional time per evaluation to compute the total derivative for
20 functions of interest.

The TOGW optimization requires 1033 objective and
constraint evaluations, and 456 gradient evaluations, while

the FB + TOGW design requires 769 objective and
constraint evaluations, and 370 gradient evaluations. Opti-
mization results that are within engineering precision of
the solution are produce after roughly two-thirds of the
total optimization iterations. Based on our experience, larger
span designs require more design iterations to converge
to a given optimization tolerance. In addition, these two
optimization examples are typical in terms of function and
gradient-evaluation count. To further reduce the computa-
tional time we could have run the tests using three inde-
pendent aerostructural-level groups. This would result in an
objective evaluation time of roughly 45 seconds and a gra-
dient evaluation time of 70 seconds, but it would require 72
processors.

A summary of the optimized TOGW and FB + TOGW
designs is presented in Table 3, where the relative differ-
ences are calculated with respect to the TOGW design. The
results show that the FB + TOGW design has a 0.46 %
higher TOGW, due to a 15 % increase in the wing mass,
but it achieves a 2.9 % fuel-burn advantage over the TOGW

Table 3 Results from the TOGW and FB + TOGW design optimiza-
tion problems and differences between the two optima

Parameter TOGW FB + TOGW % difference

TOGW [kg] 287,721 289,059 0.46

Fuel burn [kg] 94,256 91,510 −2.9

Sref [m2] 369.4 390.5 5.7

Span [m] 54.8 60.0 9.4

Aspect ratio 8.13 9.21 13.0

Cruise CL 0.482 0.461 −4.4

Cruise CD 0.0298 0.0273 −8.1

Cruise CDi
0.0120 0.0103 −14.0

Cruise L/D 16.2 16.9 4.3

Total wing mass [kg] 25,803 29,728 15.0

FE skins and stringers [kg] 11,540 14,015 21.0

FE ribs and spars [kg] 1,968 1,898 −3.6
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Fig. 11 Twist and lift
distributions for the TOGW and
FB + TOGW designs. Both
designs exhibit considerable
maneuver load alleviation

design. This lower fuel burn is achieved through a 5.2 m
wing-span extension that leads to a 14 % reduction in
the induced drag. The 21 % higher wing mass is due to
a combination of thicker wing skins that are required to
support the span increase and a 5.7 % increase in the
reference area.

Figure 11 shows the twist and lift distributions for the
TOGW and FB + TOGW wings. The twist is shown at the
jig, cruise, and 2.5 g conditions. In Fig. 11, the lift distribu-
tion is normalized by dynamic pressure and is shown at the
cruise and at the 2.5-g maneuver condition. Both designs
exhibit considerable aerostructural twist resulting in signif-
icant load alleviation at the 2.5-g maneuver condition. The
TOGW design has 7.3◦ of aerostructural washout at the

tip relative to the jig condition, and 4.3◦ of aerostructural
washout relative to the cruise condition. The FB + TOGW
design exhibits even larger aerostructural twist at the tip,
with 8.6◦ of additional aerostructural washout relative to
the jig condition, and 5◦ relative to the cruise condition.
The normalized lift distributions for the TOGW design are
larger because of the higher wing loading relative to the
FB + TOGW design.

Figure 12 shows the structural deflection at the −1 g,
cruise, and 2.5 g conditions, as well as the planform of the
designs, and the Cp distribution on the top surface of the
wing. Note that the chord of the FB + TOGW design is
smaller than that of the TOGW design, but the reference
area is higher. The FB + TOGW design is more flexible

Fig. 12 Deflections, planform,
and Cp distributions for the
TOGW and FB + TOGW
designs
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Fig. 13 Thickness and stiffener
height distributions for the
TOGW and FB + TOGW
designs. a Thickness b Stiffener
height

(a) (b)

than the TOGW design because of the larger wing span. At
the 2.5-g maneuver condition, the TOGW and FB + TOGW
designs exhibit 3.7 m and 4.6 m wingtip deflections, respec-
tively.

Figure 13 shows the panel thickness and stiffener height
distributions for the optimized TOGW and FB + TOGW
designs for the upper and lower wing skins. In both the
TOGW and FB + TOGW designs the lower skin thickness is
higher than the upper skin thickness, while the lower stiff-
ener height is smaller than the upper-skin stiffener height.
The relative sizes are due to the buckling constraints, which
have a greater impact on the sizing of the upper-skin panel
at the 2.5-g maneuver condition. The lower skin is subject
to compression only at the −1-g maneuver condition, where
the loads are considerably smaller. In addition, the thick-
nesses and stiffener heights of the FB + TOGW designs are
larger than those of the TOGW designs because of both the
higher TOGW and the larger wing span.

6 Conclusion

We developed a fast, robust, and flexible aerostructural anal-
ysis and design optimization framework for initial aircraft
design studies. This framework utilizes a full finite-element

model of the structure, and a panel method to predict the
aerodynamic forces on the wing, with added empirical
corrections for profile and wave drag.

We developed a new load and displacement transfer tech-
nique designed for both parallel solution methods and load
transfer between a coarse surface panel model and refined
structural finite-element models. To handle large-scale geo-
metric design changes, we developed a flexible geometric
parametrization technique based on free-form deformation
volumes.

To create a rapid design tool that is suitable for prelim-
inary design optimization studies, we used parallel high-
performance computing techniques to solve the coupled
aerostructural system and evaluate the total derivative using
the adjoint method. We demonstrated the performance of the
approximate and inexact Newton–Krylov solution method
and the adjoint-based coupled Krylov method for aerostruc-
tural gradient evaluation for a large aerostructural problem
with 13 250 surface panels and 906 000 structural degrees
of freedom. The Newton–Krylov solution strategy achieves
excellent scalability between 16 and 96 processors, with a
solution time of 47 seconds on 96 processors. The coupled
Krylov method also exhibits good scalability on between 16
and 96 processors. For 96 processors, the adjoint method
requires 61 seconds of set-up and 3.0 and 6.4 seconds
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for each additional structural and aerodynamic function
of interest, respectively. Furthermore, we verified that our
implementation of the coupled adjoint method achieves an
accuracy of at least 10−7 for all the derivative components.

To demonstrate the capabilities of our framework, we
performed a design optimization study for a large transport
aircraft wing. Since we optimized the aerodynamic shape
and structural sizing simultaneously, we obtained a wing
design with optimal static aeroelastic tailoring that takes
advantage of flexibility to obtain optimal performance at the
cruise condition, while unloading the outboard of the wing
at the maneuver condition.

This wing design optimization included a detailed struc-
tural parametrization of a metallic stiffened structure. The
results show that the proposed framework can be used to
make detailed design decisions in the structure in order
to meet overall aircraft mission requirements. This flexible
framework will be valuable in future aircraft design studies
that compare the impact of new structural technologies.
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202

Barcelos M, Bavestrello H, Maute K (2006) A Schur-Newton-Krylov
solver for steady-state aeroelastic analysis and design sensitiv-
ity analysis. Comput Methods Appl Mech Eng 195(17-18):2050–
2069. doi:10.1016/j.cma.2004.09.013

Barcelos M, Maute K (2008) Aeroelastic design optimization for
laminar and turbulent flows. Comput Methods Appl Mech Eng
197(19-20):1813–1832. doi:10.1016/j.cma.2007.03.009

Brown SA (1997) Displacement extrapolation for CFD+CSM aeroe-
lastic analysis. AIAA Paper:97–1090

Bucalem ML, Bathe K-J (1993) Higher-order MITC general
shell elements. Int J Numer Methods Eng 36:3729–3754.
doi:10.1002/nme.1620362109

Eisenstat S, Walker H (1996) Choosing the forcing terms in an
inexact newton method. SIAM J Sci Comput 17(1):16–32.
doi:10.1137/0917003

Erickson LL (1990) Panel methods: an introduction. Technical Report
NASA TP-2995, NASA Ames Research Center. Moffett Field,
California

Farhat C, Lesoinne M, Tallec PL (1998) Load and motion trans-
fer algorithms for fluid/structure interaction problems with

non-matching discrete interfaces: Momentum and energy con-
servation, optimal discretization and application to aeroelas-
ticity. Comput Methods Appl Mech Eng 157(1–2):95–114.
doi:10.1016/S0045-7825(97)00216-8

Gill PE, Murray W, M A Saunders. (2005) SNOPT: An SQP algorithm
for large-scale constrained optimization. SIAM Rev 47(1):99–131.
doi:10.1137/S0036144504446096

Grossman B, Gurdal Z, Haftka RT, Strauch GJ, Eppard WM (1988)
Integrated aerodynamic/structural design of a sailplane wing.
J Aircr 25(9):855–860. doi:10.2514/3.45980. 2013/09/28

Grossman B, Haftka RT, Sobieszczanski-Sobieski J, Kao PJ,
Polen DM, Rais-Rohani M (1990) Integrated aerodynamic-
structural design of a transport wing. J Aircr 27(12):1050–1056.
doi:10.2514/3.45980

Haftka RT (1977) Optimization of flexible wing structures subject to
strength and induced drag constraints. AIAA J 15(8):1101–1106.
doi:10.2514/3.7400

Hajela P, Chen JL (1988) Preliminary weight estimation of conven-
tional and joined wings using equivalent beam models. J Aircr
25(6):574–576. doi:10.2514/3.45625

Hess J, Smith A (1967) Calculation of potential flow about arbitrary
bodies. Prog Aerosp Sci 8:1–138

Hughes PC (2004) Spacecraft attitude dynamics. Dover books on
engineering. Dover Publications

Jansen P, Perez R (2011) Constrained structural design opti-
mization via a parallel augmented Lagrangian particle swarm
optimization approach. Comput Struct 89(14):1352–1366.
doi:10.1016/j.compstruc.2011.03.011

Jansen P, Perez RE, Martins JRRA (2010) Aerostructural opti-
mization of nonplanar lifting surfaces. J Aircr 47(5):1491–1503.
doi:10.2514/1.44727

Karypis G, Kumar V (1998) A fast and high quality multilevel scheme
for partitioning irregular graphs. SIAM J Sci Comput 20(1):359–
392

Katz J, Plotkin A (1991) Low–Speed Aerodynamics. McGraw–Hill
Inc.

Kelley CT, Keyes DE (1997) Convergence analysis of pseudo-transient
continuation. SIAM J Num Anal 35:508–523

Kennedy GJ, Kenway GKW, Martins JRRA (2014) High aspect ratio
wing design: Optimal aerostructural tradeoffs for the next genera-
tion of materials. In Proceedings of the 52nd Aerospace sciences
meeting, National Harbor, Maryland. AIAA 2014-0596

Kennedy GJ, Martins JRRA (2012) A comparison of metallic and com-
posite aircraft wings using aerostructural design optimization. In:
14th AIAA/ISSMO Multidisciplinary analysis and optimization
conference, Indianapolis, IN

Kennedy GJ, Martins JRRA (2014) A parallel finite-element
framework for large-scale gradient-based design optimiza-
tion of high-performance structures. Finite Elem Anal Des.
doi:10.1016/j.finel.2014.04.011. In press

Kenway GKW, Martins JRRA (2014) Multi-point high-fidelity
aerostructural optimization of a transport aircraft configuration. J
Aircr 51(1):144–160. doi:10.2514/1.C032150

Kenway GKW, Kennedy GJ, Martins JRRA (2014) Scalable par-
allel approach for high-fidelity steady-state aeroelastic analy-
sis and derivative computations. AIAA Journal 52(5):935–951.
doi:10.2514/1.J052255

Knoll D, Keyes D (2004) Jacobian-free Newton–Krylov meth-
ods: a survey of approaches and applications. J Comput Phys
193(2):357–397. doi:10.1016/j.jcp.2003.08.010

Kroo I (2013) Aircraft design: Synthesis and analysis. http://adg.
stanford.edu/aa241/AircraftDesign.html

Liem R, Kenway GKW, Martins JRRA (2014) Multi-mission aircraft
fuel burn minimization via multi-point aerostructural optimiza-
tion. AIAA J. (Accepted)

http://dx.doi.org/10.2514/2.1336
http://dx.doi.org/10.1016/j.cma.2004.09.013
http://dx.doi.org/10.1016/j.cma.2007.03.009
http://dx.doi.org/10.1002/nme.1620362109
http://dx.doi.org/10.1137/0917003
http://dx.doi.org/10.1016/S0045-7825(97)00216-8
http://dx.doi.org/10.1137/S0036144504446096
http://dx.doi.org/10.2514/3.45980
http://dx.doi.org/10.2514/3.45980
http://dx.doi.org/10.2514/3.7400
http://dx.doi.org/10.2514/3.45625
http://dx.doi.org/10.1016/j.compstruc.2011.03.011
http://dx.doi.org/10.2514/1.44727
http://dx.doi.org/10.1016/j.finel.2014.04.011
http://dx.doi.org/10.2514/1.C032150
http://dx.doi.org/10.2514/1.J052255
http://dx.doi.org/10.1016/j.jcp.2003.08.010
http://adg.stanford.edu/aa241/AircraftDesign.html
http://adg.stanford.edu/aa241/AircraftDesign.html


A parallel aerostructural optimization framework for aircraft design studies 1101

Mader CA, Martins JRRA, Alonso JJ, van der Weide E (2008)
ADjoint: An approach for the rapid development of discrete
adjoint solvers. AIAA J 46(4):863–873. doi:10.2514/1.29123

Maman N, Farhat C (1995) Matching fluid and structure meshes
for aeroelastic computations: A parallel approach. Comput Struct
54(4):779–785. doi:10.1016/0045-7949(94)00359-B

Martins JRRA, Alonso JJ, Reuther JJ (2001) Aero-structural wing
design optimization using high-fidelity sensitivity analysis. In Pro-
ceedings of the CEAS Conference on Multidisciplinary Aircraft
Design and Optimization

Martins JRRA, Alonso JJ, Reuther JJ (2004) High-fidelity aerostruc-
tural design optimization of a supersonic business jet. J Aircr
41(3):523–530. doi:10.2514/1.11478

Martins JRRA, Alonso JJ, Reuther JJ (2005) A coupled–adjoint sen-
sitivity analysis method for high–fidelity aero–structural design.
Optim Eng 6:33–62. doi:10.1023/B:OPTE.0000048536.47956.62

Martins JRRA, Hwang JT (2013) Review and unification of meth-
ods for computing derivatives of multidisciplinary computational
models. AIAA J 51(11):2582–2599. doi:10.2514/1.J052184

Martins JRRA, Sturdza P, Alonso JJ (2003) The complex-
step derivative approximationx. AIAA J 29(3):245–262.
doi:10.1145/838250.838251

Maute K, Nikbay M, Farhat C (2001) Coupled analytical sensitivity
analysis and optimization of three-dimensional nonlinear aeroelas-
tic systems. AIAA J 39(11):2051–2061. doi:10.2514/2.1227

Maute K, Nikbay M, Farhat C (2003) Sensitivity analysis and design
optimization of three-dimensional non-linear aeroelastic systems
by the adjoint method. Int J Numer Methods Eng 56(6):911–933.
doi:10.1002/nme.599

Ning SA, Kroo I (2010) Multidisciplinary considerations in the
design of wings and wing tip devices. J Aircr 47(2):534–543.
doi:10.2514/1.41833

Perez RE, Jansen PW, Martins JRRA (2012) pyOpt: a Python-
based object-oriented framework for nonlinear constrained
optimization. Struct Multidiscip Optim 45(1):101–118.
doi:10.1007/s00158-011-0666-3

Poon N, Martins JRRA (2007) An adaptive approach to constraint
aggregation using adjoint sensitivity analysis. Struct Multidiscip
Optim 34:61–73. doi:10.1007/s00158-006-0061-7

Saad Y (1993) A fexible inner-outer preconditioned GMRES algo-
rithm. SIAM J Sci Comput 14(2):461–469. doi:10.1137/091
4028

Saad Y (2003) Iterative methods for sparse linear systems, 2nd edn.
PWS Pub. Co.

Saad Y, Schultz MH (1986) GMRES: A generalized minimal residual
algorithm for solving nonsymmetric linear systems. SIAM J Sci
Stat Comput 7(3):856–869. doi:10.1137/0907058

Sederberg TW, Parry SR (1986) Free-form deformation of solid
geometric models. SIGGRAPH Comput Graph 20(4):151–160.
doi:10.1145/15886.15903

Shevell RS (1989) Fundamentals of Flight. Prentice Hall PTR
Smith MJ, Hodges DH, Cesnik CES (2000) Evaluation of computa-

tional algorithms suitable for fluid-structure interactions. J Aircr
37(2):282–294. doi:10.2514/2.2592

Smith S (1996) A computational and experimental study of nonlin-
ear aspects of induced drag. Tech. Rep. NASA TP 3598, National
Aeronautics and Space Administration, Ames Research Center,
Moffett Field, CA

Squire W, Trapp G (1998) Using complex variables to esti-
mate derivatives of real functions. SIAM Rev 40(1):110–112.
doi:10.1137/S003614459631241X

Stroud WJ, Agranoff N (1976) Minimum mass design of filamen-
tary composite panels under combined loads. Design procedure
based on simplified buckling equations. Technical report, NASA
Langley Research Center, Hampton, VA

van der Weide E, Kalitzin G, Schluter J, Alonso JJ (2006) Unsteady
turbomachinery computations using massively parallel platforms.
In Proceedings of the 44th AIAA Aerospace Sciences Meeting and
Exhibit, Reno, NV. AIAA 2006–0421

Vassberg J, DeHaan M, Rivers S, Wahls R (2008) Development of
a common research model for applied CFD validation studies.
AIAA 2008-6919

Vassberg JC (2011) A unified baseline grid about the Common
Research Model wing-body for the fifth AIAA CFD drag pre-
diction workshop. In Proceedings of the 29th AIAA Applied
Aerodynamics Conference, Honolulu, Hawaii. AIAA 2011-3508

Wakayama S, Kroo I (1995) Subsonic wing planform design
using multidisciplinary optimization 32(4):746–753. doi: 10.2514/
3.46786

http://dx.doi.org/10.2514/1.29123
http://dx.doi.org/10.1016/0045-7949(94)00359-B
http://dx.doi.org/10.2514/1.11478
http://dx.doi.org/10.1023/B:OPTE.0000048536.47956.62
http://dx.doi.org/10.2514/1.J052184
http://dx.doi.org/10.1145/838250.838251
http://dx.doi.org/10.2514/2.1227
http://dx.doi.org/10.1002/nme.599
http://dx.doi.org/10.2514/1.41833
http://dx.doi.org/10.1007/s00158-011-0666-3
http://dx.doi.org/10.1007/s00158-006-0061-7
http://dx.doi.org/10.1137/0914028
http://dx.doi.org/10.1137/0914028
http://dx.doi.org/10.1137/0907058
http://dx.doi.org/10.1145/15886.15903
http://dx.doi.org/10.2514/2.2592
http://dx.doi.org/10.1137/S003614459631241X
http://dx.doi.org/10.2514/3.46786
http://dx.doi.org/10.2514/3.46786

	A parallel aerostructural optimization framework for aircraft design studies
	Abstract
	Introduction
	Aerostructural analysis components
	Aerodynamic analysis
	Verification of TriPan

	Structural analysis
	Load and displacement transfer
	Geometry parametrization

	Aerostructural analysis
	A Newton–Krylov method
	Approximate Jacobian
	Aerostructural solution scalability

	Coupled aerostructural adjoint implementation
	Derivative accuracy study
	Coupled adjoint scalability

	Aerostructural optimization of an aircraft wing
	Quasi-CRM geometry
	Aircraft design problem
	Aircraft weight estimation and balance
	Structural parametrization
	Design problem summary
	Results

	Conclusion
	Acknowledgments
	References


