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Abstract In the reliability-based design optimization
(RBDO) process, surrogate models are frequently used to
reduce the number of simulations because analysis of a sim-
ulation model takes a great deal of computational time. On
the other hand, to obtain accurate surrogate models, we have
to limit the dimension of the RBDO problem and thus miti-
gate the curse of dimensionality. Therefore, it is desirable to
develop an efficient and effective variable screening method
for reduction of the dimension of the RBDO problem. In
this paper, requirements of the variable screening method
for deterministic design optimization (DDO) and RBDO are
compared, and it is found that output variance is critical
for identifying important variables in the RBDO process.
An efficient approximation method based on the univariate
dimension reduction method (DRM) is proposed to calcu-
late output variance efficiently. For variable screening, the
variables that induce larger output variances are selected
as important variables. To determine important variables,
hypothesis testing is used in this paper so that possible errors
are contained in a user-specified error level. Also, an appro-
priate number of samples is proposed for calculating the
output variance. Moreover, a quadratic interpolation method
is studied in detail to calculate output variance efficiently.
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1 Introduction

The variable screening method is a useful method in the
design optimization process because it can select essential
design variables for accurate surrogate models and effective
design optimization. In the formulation of a design opti-
mization problem, a set of design variables that describe
the system need to be identified (Arora 2004). Design vari-
ables are selected to be independent of each other as much
as possible in the design space. The number of indepen-
dent design variables is known as the degrees of freedom,
and this is the dimensionality of the optimization prob-
lem. To obtain an appropriate optimum design, a minimum
number of design variables is required. For this reason, it
is better to identify as many design variables as possible
and then fix some of the variables at certain values accord-
ing to the variable screening result. The variable screening
method can play a key role, especially in reliability-based
design optimization (RBDO), because the RBDO process
requires a larger number of analyses than the deterministic
design optimization (DDO) process due to reliability anal-
yses and the design sensitivities of probabilities of failure.
To this end, surrogate models are usually used to reduce
the number of analyses required in RBDO. Various sur-
rogate model methods such as the radial basis function
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(RBF), polynomial response surface (PRS), support vector
regression (SVR), Kriging, and dynamic Kriging (DKG)
methods have been developed (Cressie 1991; Barton 1994;
Jin et al. 2001; Simpson et al. 2001; Queipo et al. 2005;
Wang and Shan 2007; Forrester et al. 2008; Forrester and
Keane 2009; Zhao et al. 2011). However, even for the
surrogate model, the number of design variables becomes
a critical factor because surrogate model generation is dif-
ficult for high-dimensional problems, due to the curse of
dimensionality.

Variable screening methods have been developed in vari-
ous disciplines. In statistics, important variables were found
to create an accurate surrogate model of computer simu-
lation using the maximum likelihood estimator (MLE) of
correlation parameters of the Gaussian process for a deter-
ministic problem (Welch et al. 1992). Using a regression
model, essential variables among candidate variables were
efficiently identified based on data (Duarte Silva 2001;
Wang 2009). Especially in statistical learning theory, var-
ious feature selection methods have been developed to
choose a reduced number of input variables to represent an
output effectively (Guyon and Elisseeff 2003). In addition,
methods such as manifold learning have been used to pre-
serve input information in reduced dimension for efficient
statistical analysis (Izenman 2008). In physics, a variable
screening model was developed for the quasi-molecular
treatment of ion-atom collision (Eichler and Wille 1975). In
engineering, a confidence interval of the coefficient of a lin-
ear surrogate model was proposed to detect key variables for
a car crash DDO problem (Craig et al. 2005). A sampling-
based sensitivity measure using a small amount of data
was introduced to rank the importance of variables and was
applied to long-term performance of a geologic repository
for high-level radioactive waste (Wu and Mohanty 2006).
Moreover, the design sensitivity method can be extended to
the variable screening method because vital variables have
larger design sensitivity. In the deterministic problem, the
design sensitivity, which shows the rate of change in the per-
formance measure at the design point, can be obtained using
various methods (Choi and Kim 2005a, b) and is called local
sensitivity analysis (LSA) (Reedijk 2000; Chen et al. 2005).
For a reliability problem, the variability of the input ran-
dom variable should be incorporated to assess the design
sensitivity of a probabilistic constraint. The design sensi-
tivity of the probabilistic constraint using the first-order
reliability method (FORM) (Haldar and Mahadevan 2000;
Ditlevsen and Madsen 1996; Hou 2004), dimension reduc-
tion method (DRM) (Rahman and Wei 2008; Lee et al.
2010), and sampling-based stochastic sensitivity (Lee et al.
2011a, b), could be used to identify important design vari-
ables. In addition, global sensitivity analysis (GSA), such
as correlation ratio (McKay et al. 1999), global sensitivity
indices (Sobol 2001), and analytical GSA methods (Chen

et al. 2005), can be used for variable screening as well
(Mack et al. 2007).

However, previous works may have limitations to being
directly applied to RBDO with surrogate models. If a
method depends entirely on existing data (Duarte Silva
2001; Wang 2009; Guyon and Elisseeff 2003; Izenman
2008), it may not be possible to carry out RBDO because
design variables change during the optimization process.
Finding input variables from among all the variables that
may be irrelevant to an output to well represent the output
from data (Guyon and Elisseeff 2003) is not an issue from
the RBDO perspective. The relationship and relative input
variables are already known through the computer aided
engineering (CAE) such as the finite element method (FEM)
or computational fluid dynamics (CFD). A method using
CAE to find variables which significantly affect output reli-
ability is more interesting. Moreover, capturing the input
information in reduced variables (Izenman 2008) is not an
issue with RBDO, either; how much output uncertainty
is affected by the input variables is the main interest. A
method developed for a specific problem (Eichler and Wille
1975) will be inadequate for broad applications. Variable
screening and design sensitivity methods for a determinis-
tic problem (Welch et al. 1992; Craig et al. 2005; Choi and
Kim 2005a, b) may not be applicable for RBDO because
input randomness is not considered. Methods that require a
very large number of analyses (McKay et al. 1999; Sobol
2001) could be ineffective for RBDO of computationally
demanding problems and could become unstable when suf-
ficient numbers of analyses are not provided (Wu and
Mohanty 2006). The design sensitivity of the probabilistic
constraint using FORM or DRM (Haldar and Mahadevan
2000; Ditlevsen and Madsen 1996; Hou 2004; Rahman and
Wei 2008; Lee et al. 2010) requires searching for the most
probable point (MPP), which may be very difficult to obtain
for a large-dimensional problem. If a method was devel-
oped based on the assumption that accurate full-dimensional
surrogate models are available a priori (Chen et al. 2005;
Lee et al. 2011a, b), RBDO could be carried out using the
surrogate models because it can provide accurate response
and sensitivity of the problem, unless the optimization algo-
rithm has a limitation on the number of design variables,
which is not common. From the previous works, key desir-
able properties of a variable screening method for RBDO
with a surrogate model were found: it should (1) be effi-
cient, (2) consider input randomness, (3) not require a
full-dimensional surrogate model, and (4) be applicable to
broader problems.

Therefore, the objective of this paper is to develop a vari-
able screening method that can satisfy the above desirable
properties. The reliability analysis in RBDO captures the
output variability induced by the input variability and the
sensitivity of the performance function. The variable that
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induces larger output variability is important in the RBDO
process. In this paper, a partial output variance, which is the
output variance when one random variable has variability
while others are fixed at their mean, is used to find impor-
tant design variables (Bae 2012). The partial output variance
is simple to calculate and requires a 1-D surrogate model for
each design variable. The method introduced in this paper
has strengths and weaknesses. Its main strength is its effi-
ciency and practical applicability. Its weakness is accuracy;
the interactions between the random variables are not fully
captured. However, practical applicability is the focus in
this paper because it is very important for large-scale prob-
lems. In the following sections, the proposed method will
be explained in detail, and its strengths and weaknesses
will be fully discussed. To demonstrate the effectiveness of
the proposed method, analytical examples and a large-scale
industrial problem are used.

2 Variable screening

As explained in the introduction, screening out variables
means finding important variables among all random vari-
ables. Here, the word “important” could have different
meanings depending on the problem we are dealing with. In
the following two sections, the difference between variable
screening for DDO and RBDO will be explained. Based on
the difference, the required properties of variable screening
for RBDO will be introduced.

2.1 Variable Screening for DDO

A DDO problem can be formulated as

minimize cost (d)

subject to
Gj (d) ≤ 0, j = 1, ..., NC

dL ≤ d ≤ dU , d ∈ R
NDV (1)

where d, Gj , NC, and NDV are the design variable vector,
jth constraint function, number of constraints, and number
of design variables, respectively.

As stated before, in the DDO problem, the input design
variables do not have uncertainty, and thus the design
sensitivity can be used as a barometer to determine the
importance ranking of design variables with respect to the
performance measure. The question is: “Where should the
importance ranking of design variables be determined?” or
“Where should the design sensitivity be calculated?”

The LSA calculates the design sensitivity at a given
design point (Reedijk 2000; Chen et al. 2005). Usually,
LSA is used to provide the direction of design movement in
the optimization process. For variable screening, LSA can
provide the importance ranking of design variables at the

current design point. However, the importance ranking at
the given design point could be different from the ranking
at other design points if the performance measure is a non-
linear function of design variables. On the other hand, GSA
is used to calculate overall design sensitivity on the entire
design domain. The GSA is like averaged design sensitiv-
ity in the design domain. As it is an average, the importance
ranking using GSA could mislead at specific points or
even regions. Hence, LSA and GSA have advantages and
disadvantages for variable screening (Reedijk 2000).

2.2 Variable Screening for RBDO

A general RBDO problem can be formulated as

minimize cost (d)

subject to
PFj =P

[
Gj (X)>0

]≤PT ar
Fj

j=1, ..., NC

dL≤d≤dU , d ∈ R
NDV , and X ∈ R

NRV

(2)

where d, Gj , P
T ar
Fj

, NC, NDV, and NRV are the design vari-
able vector, jth constraint function, jth target probability of
failure, number of constraints, number of design variables,
and number of random variables, respectively.

In the RBDO process, design variable vector d is the
mean vector of the corresponding random variable X.
Though the design variable d is deterministic, the design
sensitivity for RBDO should consider the randomness of X
because the constraints are based on the probabilistic perfor-
mance measure P [Gj(X) > 0] as shown in (2). Therefore,
the design sensitivity of the performance measure alone
cannot be used as a barometer. The design sensitivity of
the probabilistic performance measure can be obtained
by using several methods, such as FORM (Haldar and
Mahadevan 2000; Ditlevsen and Madsen 1996; Hou 2004),
DRM (Rahman and Wei 2008; Lee et al. 2010), and
sampling-based stochastic sensitivity (Lee et al. 2011a, b).
The design sensitivity of the probabilistic performance mea-
sure can be used for variable screening. The design sen-
sitivities by those methods are LSA because they provide
different sensitivities at different designs. The GSA method
is also applicable for variable screening in RBDO prob-
lems as it is in DDO problems. Again, both LSA and GSA
methods have advantages and disadvantages.

The random parameters will not increase the dimen-
sionality of the optimization problem because they are not
random design variables. However, the surrogate model that
includes random parameters is still required because they
affect the output distribution. The main objective of this
paper is to select important design variables so that accurate
surrogate models can be generated and, at the same time, an
appropriate optimum design (i.e., not suboptimum) can be
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obtained in the RBDO process. Hence, once variable screen-
ing is done, the screened-out random design variables need
to be fixed, not to be a random parameter. However, fixing a
random variable as a deterministic variable will reduce the
total output variability.

Consider a simple example:

Xi ∼ N
(

5, 32
)
, i = 1, 2, ... , 10

Y =
10∑

i=1

Xi ∼ N

(
50,

(
3
√

10
)2

)
(3)

If the probabilistic performance measure is P [Y>60], then
the reliability analysis result is

P [Y > 60] = 1 −�

(
60 − 50

3
√

10

)
= 0.1459 (4)

However, if one dimension is reduced by screening out
X10 = μ10 = 5 while the other variables remain random,
then the probabilistic performance measure changes to

Ỹ =
9∑

i=1

Xi + 5 ∼ N
(

50, 92
)

(5)

As a consequence, the reliability analysis result yields

P
[
Ỹ > 60

] = 1 −�

(
60 − 50

9

)
= 0.1333 (6)

From (4) and (6), 0.0126 (1.26 %) of the reliability output
is decreased by screening out one variable. A more fun-
damental problem is that the lost amount 1.26 % cannot
be estimated without the full-dimensional reliability analy-
sis result of (4). On the other hand, let’s assume that X10

has a smaller variance of one. Then, the full-dimensional
reliability analysis yields

P (Y > 60) = 1 −�

(
60 − 50√

82

)
= 0.1347 (7)

From (6) and (7), the difference is 0.0014 (0.14 %), which
could be acceptable. Therefore, in this case, X10 could be
fixed at the mean value. As shown in the example, the out-
put variability decreases if any random variable is fixed at a
deterministic value. However, there are some variables that
affect the output variability a small amount. The variable
screening method for effective surrogate models for RBDO
is to find those variables that have small effects on the output
variability. It is noted that the random parameters are con-
sidered as much as the random design variables in this paper.
Even though the random parameters are not changing during
the RBDO process, they will influence the output variability.
Hence they should be considered in the variable screening

process, so that reliability of the performance measure can
be accurately approximated using reduced dimension.

3 Variable screening with 1-D surrogate model

The probability of failure cannot be solely determined by
the output variability. To obtain accurate probability of fail-
ure, the output distribution is needed, that is, all statistical
information of the output is required. However, even though
an input distribution is known, it is very difficult to obtain
complete output distribution since the performance mea-
sure could be implicit, a non-linear function, or even both.
For example, for a given normal input distribution, the out-
put distribution could be bimodal as well as asymmetric.
Consequently, it is impractical to select a reduced number
of input variables based solely on probability of failure.
As discussed in previous sections, a screened-out variable
will be fixed at its mean value. Then the change of output
mean will be minimized. As a result, the output variabil-
ity becomes the measure that can determine a probability of
failure. Of course, other statistical moments or parameters,
such as skewness and kurtosis, could affect probability of
failure. However, either of these statistical moments cannot
be a measure by itself. For example, a variable that induces
larger (or smaller) output skewness may not be an impor-
tant variable, but it could be an important variable when it
induces larger (or smaller) output skewness and very sim-
ilar output variability. We could consider a combination of
the moments as a measure, but there are too many possible
combinations to consider. Hence, under the assumption that
the output mean is similar, the output variability is chosen as
the measure to select vital variables for RBDO in this paper.

The output variability can be quantified by the output
variance as shown in the previous section. The exact out-
put variance of a nonlinear implicit performance measure
is very difficult to obtain. Hence, an approximated output
variance is used in this paper. In the following sections, the
output variance is decomposed into partial output variances,
which are the output variances when each input variable is
random and the others are fixed at their mean values. Then, a
method to find the design variables that have a large impact
on output variance is developed using a hypothesis testing.

3.1 Approximated output variance

A univariate DRM is a well-known approximation method
for statistical moments using multiple 1-D integrations
(Rahman and Xu 2004). Consider a performance measure
Y and its realization y subject to input random vector
X = {X1, . . . , XN }T:

Y (X) = Y (X1, . . . , XN) , y (x) = y (x1, . . . , xN) (8)
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Define a function Yi , which is the performance measure
when Xi is random and other variables are fixed at their
mean values, as

Yi = Y (μ1, . . . , μi−1, Xi, μi+1, . . . , μN) (9)

The realization of the performance measure at the input
mean point µX is defined as

y0 = y (µX) (10)

The lth statistical moment of Y , which is approximated
using the univariate DRM, is defined as (Rahman and Xu
2004)

ml
∼= E

⎡

⎣
{

∑

i

Yi − (N − 1) y0

}l
⎤

⎦ (11)

Then, the output variance σ 2
Y can be approximated as

σ 2
Y
∼= m2 −m2

1 =
∑

i

σ 2
Yi
+ 2

∑

i>j

ρYiYj σYi σYj (12)

where σ 2
Yi

is the variance of (9), which is the partial out-
put variance when only Xi is random, and ρYiYj is the
correlation coefficient between Yi and Yj . As shown in
(12), the partial output variances σ 2

Yi
are the main vari-

ables for approximating the output variance σ 2
Y . When σ 2

Yi
is

larger than other partial output variances, it takes the largest
portion in the output variance σ 2

Y . Therefore, if some Xi

produces larger partial output variance than others, then Xi

should be selected as an important variable. It is noted that
calculation of σ 2

Yi
requires only 1-D integration, and thus

only 1-D surrogate models are required.
Statistical correlation between Xi and Xj yields the term

of ρYiYj σYi σYj in (12) and affects the output variance. When
Xi and Xj are strongly correlated, one could be replaced
by the other. To calculate the term ρYiYj σYi σYj , a two-
dimensional surrogate model is required. If there are only a
few correlation pairs, calculating the correlation term could
be affordable. However, with a practical point of view, the
partial output variance σ 2

Yi
is the focus in this paper. As

we are looking for important variables, not the value of the
output variance σ 2

Y , the partial output variance would be
enough for variable screening. In Fig. 1, contours of inde-
pendent, positively correlated (ρ = 0.8) and negatively
correlated (ρ = −0.8) probability density functions are
shown. Correlation determines how the random variables
are distributed inside the box (dotted line), whereas the size
of the box is determined by variances of X1 and X2. It can
be seen that the primary effect on output variance is the box
size, and then distribution inside the box follows. Conse-
quently, to perform variable screening efficiently, the first
thing we need to consider is the box size, not the distribution
of random variables inside the box. Hence, the correlation

-10 -5 0 5 10
-10

-5

0

5

10

Independent = 0.8  = -0.8

g(X) = 0

X1

X
2

ρ ρ

Fig. 1 Effect of variance and correlation of input random variables

term is not considered in this paper for efficiency and prac-
ticality. It is noted that the statistical correlation between Xi

and Xj will be considered in reduced-dimensional RBDO if
both variables are selected.

The partial output variance of σ 2
Yi

is like LSA because
it can have different values at different input mean points
µX, which is the current design point in the RBDO process.
Hence, the variable screening result could be changed as
the design point changes. There are several recommended
points at which to perform variable screening using LSA.
The first one is the DDO optimum. As the DDO optimum
is usually close to the RBDO optimum, the variable screen-
ing result at the DDO optimum is likely to be similar to the
result at the RBDO optimum. Also, the design point where
most of the deterministic constraints are active can be a good
candidate point. It is noted that DDO or the design point
where the constraints are active could be obtained using the
finite difference method in a practical engineering problem.
Also, DDO could be achieved using the sensitivity obtained
from a 1-D surrogate model because DDO requires only the
deterministic LSA, which is 1-D.

3.2 Variable screening using hypothesis testing

Using the 1-D surrogate model, the partial output variance
σ 2
Yi

can be calculated approximately as

s2
Yi

= 1

ns − 1

ns∑

j=1

{
yi

(
μ1, . . . , x

(j)

i , . . . , μN

)
− yi

}2
(13)
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where x(j)i is the jth realization of the input random variable
Xi , ns is the number of samples, and yi is the mean of yi as,

yi =
1

ns

ns∑

j=1

yi

(
μ1, . . . , x

(j)
i , . . . , μN

)
(14)

As explained in previous sections, the partial output vari-
ance s2

Yi
can be used to determine important design vari-

ables. To make the variable screening procedure systematic,
hypothesis testing is applied in this paper. Hypothesis test-
ing can prevent undesirable choices that could occur during
the decision-making procedure. Calculated partial output
variance s2

Yi
depends on the number of samples ns. When

ns is large enough, the variable screening result will be
accurate. However, it would require a large computational
time. Also, it is hard to determine what value of ns is large
enough. When ns is small, it will include statistical error. If
calculated s2

Yi
are distinctive from each other or with respect

to the screening threshold value, then the effect of ns may
not be significant. However, ns could cause an error when
some s2

Yi
are similar to each other or are near the screening

threshold value. Hypothesis testing can prevent this problem
in a statistical manner by letting users control the error level.

Various hypothesis testing methods have been developed
for the decision-making problem (Rosner 2006). Among
those methods, we need the one that is not sensitive to dis-
tribution type because the distribution type of Yi or s2

Yi
is

not known in general. The one-sample t-test is developed
based on the central limit theorem, which states that the
sample mean of non-normal distribution follows normal dis-
tribution approximately for a large number of samples. The
one-sample t-test is not sensitive to underlying distribution
types, so it is used in this paper. As the t-test is a method
for sample mean, s2

Yi
is calculated nr times for its statistical

moments as

vi = 1

nr

nr∑

k=1

s
2(k)
Yi

(15)

s2
vi
= 1

nr − 1

nr∑

k=1

(
s

2(k)
Yi

− vi

)2
(16)

where s
2(k)
Yi

is the kth repetition of s2
Yi

and nr is the number
of repetitions. Now, the hypothesis is constructed:

H0 : vi ≤ μ0 versus H1 : vi > μ0 (17)

where μ0 is the criterion of hypothesis testing. According
to (17), the design variable that corresponds to vi , which is
greater than μ0 (H1 is true), will be selected as an important
variable. Using the one-sample t-test, the hypothesis can be
tested by checking the following statement:

Reject H0 in favor of H1 if q ≥ tnr−1,1−α (18)

where α is the significance level, tnr−1,• is t−1
nr−1 (•), and the

test statistics q is defined as

q ≡ (vi − μ0)

/
svi√
nr

(19)

In (15) and (16), the uncertainty induced by ns is trans-
ferred to nr. Hence, ns can be a fixed number, whereas nr
should be decided appropriately. Also, μ0 needs to be iden-
tified in (17) and (19). μ0 is the key criterion that decides
important variables, and it should be a value relative to vi
because the relative difference of partial output variances
should be checked for variable screening. At the same time,
μ0 needs to be statistically independent from vi for reason-
able hypothesis testing. In this paper, preliminary testing
is proposed to obtain reasonable nr and μ0 as follows.
First, choose nr0, which is large enough so that the cen-
tral limit theorem holds. Then, calculate the initial statistical
moments of s2

Yi
as

v
(0)
i = 1

nr0

nr0∑

k=1

s
2(k)
Yi

(20)

s2(0)
vi

= 1

nr0 − 1

nr0∑

k=1

(
s

2(k)
Yi

− v
(0)
i

)2
(21)

Using the value from (20), the testing criterion μ0

relative to vi can be calculated as

μ0 = γ

N

N∑

i=1

v̄
(0)
i (22)

where γ is a constant that the user selects. nr is calculated
by limiting type II error (H0 is accepted when H1 is true) at
the level of false negative rate β as [35]

nr = max

(
s

2(0)
vi

(
tnr0−1,1−α + tnr0−1,1−β

)

v
(0)
i − μ0

, nr0

)

(23)

In (23), tnr−1,• should be used instead of tnr0−1,• for accu-
rate calculation of nr. However, (23) requires the value of
nr on the right side to calculate nr. To avoid this problem,
tnr0−1,• is used instead, and tnr0−1,• produces a conservative
result as it is larger than tnr−1,• because nr is larger than
nr0 in (23) and α is usually small. Finally, nr and μ0 are
determined so that the proposed hypothesis testing can be
utilized.

3.3 1-D surrogate model

In previous sections, the 1-D surrogate model is treated as
the given one because it is not difficult to generate. How-
ever, efficiently creating a 1-D surrogate model could be
an issue. For efficiency, quadratic interpolation is proposed
as a basic 1-D surrogate model in this paper. Quadratic
interpolation may not be an adequate method for creating
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a surrogate model for a highly nonlinear performance mea-
sure. However, a nonlinear performance measure can be
effectively approximated by a quadratic function on a small
region. If X follows normal distribution, the domain of X is
(−∞,∞), whereas 99.73 % of X is in (μX − 3σX, μX +
3σX), which is much smaller than the infinite domain.
Even if X does not follow normal distribution, the region
(μX−3σX, μX+3σX) can cover almost all (approximately
98 %) of X. In view of the fact that this paper is focused on
calculation of partial output variance, the region (μX−3σX ,
μX+3σX) is large enough. Hence, the 1-D surrogate model
needs to be accurate in the region (μX − 3σX , μX +
3σX) so that quadratic interpolation could be an appropri-
ate method to approximate the performance measure in the
region.

Quadratic interpolation requires three design of exper-
iments (DoE) samples, and the location of DoE samples
affects the accuracy of interpolation. The location of DoE
samples determined using the Chebyshev polynomial is
known to give uniform error in the domain (Rao 2002).
Because only the region (μX − 3σX , μX + 3σX) is of inter-
est, the location of DoE samples is determined as x1 =
μX − 2.5981σX, x2 = μX and x3 = μX + 2.5981σX
using the Chebyshev polynomial. Since a random variable
X may not be evenly distributed in its domain, providing
uniform error does not necessarily mean that the calcu-
lated partial output variance is accurate. However, since no
unique location of DoE samples is best for accurate par-
tial output variance, the sample location by the Chebyshev
polynomial is used in this paper due to the fact that it yields
reasonable results for various distribution types of the ran-
dom variable X. If the random variable X has a closed and
bounded domain like [a, b], the domain can be directly used
for calculation of partial output variance, and the location of
samples are x1 = 0.93301a+0.06699b, x2 = (a+b)/2 and
x3 = 0.06699a+ 0.93301b, using Chebyshev polynomials.

To check the performance of a selected location of DoE
samples, a nonlinear performance measure Y is used as

Y (X) = 0.3 + sin (16X/15 − 0.7)+ sin2 (16X/15 − 0.7)

(24)

Assuming that random variable X follows N(0.5, 0.3332),
three locations of DoE samples are chosen to compare

the accuracy of the partial output variance. The first loca-
tion is {0.167, 0.5, 0.833} , which is μX and μX ± σX
and the second location is from the Chebyshev polyno-
mial as {−0.365, 0.5, 1.365}. The third location is wider, as
{−0.667, 0.5, 1.667}, which is μX and μX ± 3.5σX. Partial
output variances are calculated using 100,000 realizations of
X, and true partial output variance is calculated by (24) with
the same realizations. To check the accuracy of the quadratic
interpolation itself, mean square error (MSE) is calculated
in the region of (−0.5, 1.5), which is (μX−3σX, μX+3σX)
with 100 uniformly distributed points. The calculated result
is shown in Table 1, and the shape of quadratic interpola-
tions is shown in Fig. 2, where asterisk marks (*) represent
the DoE sample point. As shown in Table 1, the location
of the DoE sample using Chebyshev polynomials produces
more accurate partial output variance compared to the true
one and less MSE than the other cases.

This example cannot represent all performance measures.
When a highly nonlinear performance measure is expected,
more sophisticated surrogate methods, such as the RBF,
PRS, SVR, Kriging, and DKG (Cressie 1991; Barton 1994;
Jin et al. 2001; Simpson et al. 2001; Queipo et al. 2005;
Wang and Shan 2007; Forrester et al. 2008; Forrester and
Keane 2009; Zhao et al. 2011) methods, are better. In any
case, it is recommended to sample inside the region of
(μX − 3σX, μX + 3σX) for the random variable X if the
distribution has an infinite domain.

4 Numerical examples

Analytical examples and an engineering example are used
to test the performance of the proposed variable screen-
ing method. Partial output variances are calculated to select
important variables using the 1-D quadratic interpolation
presented in Section 3.3. To use the variable screening
method, five parameters: significance level α, false negative
rate β, number of sample ns, initial number of repetition
nr0 and control parameter γ for threshold value, need to be
decided by users. Smaller α and β are better choices because
they result in smaller statistical errors in the variable screen-
ing method. However, when they are too small, very large
nr could be required to maintain the error level specified by

Table 1 Quadratic interpolation with different DoE samples locations

Location of samples Quadratic interpolation True

{0.167, 0.5, 0.833} {−0.365, 0.5, 1.365} {−0.667, 0.5, 1.667}

Partial output variance Value 8.74E−02 7.84E−02 6.92E−02 7.84E−02

Accuracy 111.5 % 100.0 % 88.3 % 100.00 %

MSE 1.17E−02 1.19E−03 9.00E−03 0
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a

b

c

Fig. 2 Quadratic interpolation of Y with different locations of DoE
sample

α and β in (23). Hence, 0.025 to 0.05 would be a rea-
sonable choice for them. For nr0 and ns, a small number
could be chosen to reduce computational cost. However,
a small value of nr0 and ns will rapidly increase nr to
maintain the error level. Hence, an appropriately large num-
ber should be used; they are set to be 50 or 100 in the
numerical examples. The parameter γ in (22) is for user
control of the threshold value that determines important
variables. In the numerical example, γ is initially set to 1.0,
and the variable screening procedure is performed. Then,
the ratio of the sum of partial output variances of selected
variables to that of all random variables, which is an esti-
mation of the captured output variance, is checked. If the
ratio is less than 85 %, γ is lowered to achieve 85 %. As
explained before, the partial output variance is an approx-
imation method, which is why the ratio of 85 % may not
mean that 85 % of total output variance is actually cap-
tured in the selected variables. However, it would be a
good estimation with affordable cost because it does not
require many DoE samples or full-dimensional surrogate
models.

4.1 Analytical examples

Hartmann 6-D and Dixon-Price 12-D are well-known ana-
lytical functions. They are high-dimensional as well as
nonlinear, so they are tested for the variable screening
method. Constant terms are added to the original functions
to make both functions active (i.e. G(X) = 0) at the mean
point of the input random variables. Note that adding a con-
stant term does not change the character of the functions.
Input random variables have a variety of marginal distri-
bution types and copula types, so the analytical examples
can reveal the effects of different distribution types and
correlations.

The functions are tested with three different methods.
The first is the developed variable screening method. As
mentioned before, parameters of α = β = 0.025, nr0 =
ns = 100 and γ = 1.0, and 1-D surrogate model with
quadratic interpolation are used. γ is initially set to 1.0 and
lowered when necessary. The second is screening with accu-
rate partial output variances using the analytical functions
directly and 1,000,000 realizations of random variables.
The calculated partial output variances are used for ref-
erence. When a performance measure is a linear function
(G = �αiXi ) of the input random variables Xi ’s, the out-
put variance is �α2

i σ
2
Xi

, where σ 2
Xi

is variance of Xi . Hence,
the partial output variance can be linearly approximated as
α2
i σ

2
Xi

with a design sensitivity (gradient) αi and the input

variance σ 2
Xi

. Furthermore, an important variable might be
selected based on the partial output variances calculated
with the sensitivity-variance method, and it is applied to the
analytic functions for comparison.
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4.1.1 Hartmann 6-D

The first analytical example is the Hartmann 6-D, and a
constant term is added as explained earlier. The analytical
expression is shown as (Dixon and Szegö 1978)

G(X) = −
q∑

i=1

ai exp

⎛

⎝−
m∑

j=1

bij
(
Xj − dij

)2

⎞

⎠ + 3.3082

(25)

where 0 ≤ Xi ≤ 1, m = 6, q = 4 and

a = [
1.0 1.2 3.0 3.2

]
(26)

b =

⎡

⎢⎢
⎣

10.0 3.0 17.0 3.5 1.7 8.0
0.05 10.0 17.0 0.1 8.0 14.0
3.0 3.5 1.7 10.0 17.0 8.0

17.0 8.0 0.05 10.0 0.1 14.0

⎤

⎥⎥
⎦ (27)

d =

⎡

⎢⎢
⎣

0.1312 0.1696 0.5569 0.0124 0.8283 0.5886
0.2329 0.4135 0.8307 0.3736 0.1004 0.9991
0.2348 0.1451 0.3522 0.2883 0.3047 0.6650
0.4047 0.8828 0.8732 0.5743 0.1091 0.0381

⎤

⎥⎥
⎦

(28)

Information about input random variables is listed in
Table 2. Input random variables have four different marginal
distribution types: normal, lognormal, gamma, and Weibull.
X5 and X6 are correlated with the Clayton copula and
Kendall’s tau of 0.5.

The result of variable screening is shown in Table 3.
The design sensitivity (gradient) of the Hartmann 6-D in
(25) at the input mean point is shown in the second col-
umn, and the third through fifth columns show partial output
variances using the sensitivity-variance method, the variable
screening method, and the accurate method, respectively.
As the variable screening method calculates partial output
variances nr times, the result is the mean value of the cal-
culated partial output variances. In each method, important

variables are marked with bold font. It can be seen that the
variable screening method finds the same variables as the
accurate method, whereas the sensitivity-variance method
misses X4 and X5. The sixth and seventh columns are
the ratios of partial output variances using the sensitivity-
variance method and the variable screening method to
the accurate partial output variances, respectively. It is
evident that the sensitivity-variance method cannot esti-
mate the partial output variances accurately, while the
variable screening method does. Overall, the variable-
screening method outperforms the sensitivity-variance
method. Hence, it is better to use at least quadratic approx-
imation for the 1-D surrogate model to calculate partial
output variances.

In Table 3, the bottom four rows show more informa-
tion about each method. The first and second rows are the
sums of partial output variances of selected variables and
all variables, respectively. The third row shows the ratio
of the first row to the second row. The last row is μ0,
which is the criterion used to select important variables.
In the variable screening method, the important variables
(X4, X5 and X6) are determined to be larger than μ0 by
hypothesis testing. The sensitivity-variance method and the
accurate method select important variables if the variable
has partial output variance larger than μ0. In the third row,
the ratio for the variable screening method is larger than
85 %, so γ is the initial value of 1.0, and equivalent μ0 is
applied for other methods. The sensitivity-variance method
estimates that 92.3 % of output variance is contained in
X6 only. This is a very poor estimation, as only 36.7 %
(= 1.66E − 04/4.52E − 04) of output variance is captured
in X6 according to the result of the accurate method. On
the other hand, the variable screening method estimates that
96.9 % of output variance is contained in X4, X5 and X6,
and this is very accurate compared to the 97.1 % determined
by the accurate method.

However, the total and captured output variances in
Table 3 are approximation using the partial output vari-
ances and the correlation term is not considered as explained
in Section 3.1. Having the analytical expression of the
Hartmann 6-D example in (25), true total output variance

Table 2 Input random
variables for Hartmann 6-D
example

Random variable Distribution type Mean STDEV Correlation (Copula)

X1 Normal 0.20 0.009 −
X2 Lognormal 0.15 0.007 −
X3 Gamma 0.48 0.015 −
X4 Weibull 0.28 0.014 −
X5 Normal 0.31 0.014 Clayton

X6 Weibull 0.68 0.013 τ = 0.5
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Table 3 Partial output variances of Hartmann 6-D example

Random variable Design sensitivity Sensitivity -variance Variable screening Accurate Sens.-Var./accurate Variable Scr. /accurate

X1 −5.88E−02 2.80E−07 2.24E−06 2.25E−06 12.4 % 99.6 %

X2 −1.36E−02 9.04E−09 6.12E−07 6.17E−07 1.5 % 99.2 %

X3 7.15E−02 1.15E−06 1.11E−05 1.07E−05 10.7 % 103.7 %

X4 2.63E−01 1.35E−05 8.88E−05 8.67E−05 15.6 % 102.4 %

X5 −1.36E−01 3.61E−06 1.86E−04 1.86E−04 1.9 % 100.0 %

X6 1.17E+00 2.29E−04 1.65E−04 1.66E−04 138.0 % 99.4 %

Selected 2.29E−04 4.40E−04 4.39E−04 – –

All 2.48E−04 4.54E−04 4.52E−04 – –

Selected / All 92.3 % 96.9 % 97.1 % – –

Criterion (μ0) 4.13E−05 7.42E−05 7.54E−05 – –

induced by multiple input random variables can be calcu-
lated as well. The true total output variance is calculated
using 1,000,000 realizations of all input random variables
and the calculated value is 4.23E−04 as shown in Table 4.
Recalling the approximated result in Table 3, the vari-
able screening method (4.54E−04) and the accurate method
(4.52E−04) well approximate the true total output vari-
ance, whereas the sensitivity-variance method (2.48E−04)
is not able to do so. In Table 4, true captured output vari-
ance by the selected variables is also calculated. To calculate
the true captured output variance, the realizations, which
are generated to calculate the true total output variances,
are used. Among them, the realizations of the screened-
out variables are fixed at their mean values. Then, the
variance of Hartmann 6-D is calculated using the mod-
ified realizations. The true captured output variance in
X6 is 1.66E−04, which is the same as the partial out-
put variance of X6 found by the accurate method (see
Table 3). Hence, the sensitivity-variance method captures
only 39.2 % (1.66E−04/4.23E−04) of the true total output
variance in its selection X6. This will lead a reliability prob-
lem not to estimate the probability of failure correctly. By
contrast, the captured output variance in X4, X5 and X6 is
4.10E−04, and this is 96.9 % (4.10E−04/4.23E−04) of the
total output variance. This indicates that a reliability prob-
lem could be solved accurately utilizing X4, X5 and X6.
From this example, it can be seen that the variable screening
method works as it is intended.

4.1.2 Dixon-Price 12-D

The second analytical example is the Dixon-Price 12-D, and
again a constant term is added to its original function. The
analytical expression is shown as (Lee 2007)

G(X) = (X1 − 1)2+
m∑

i=2

i
(

2X2
i −Xi−1

)2−3.5575×10−3

(29)

where −10 ≤ xi ≤ 10, i = 1, 2, . . ., m and m = 12.
Input random variables shown in Table 5 are used for the
test. They have five different marginal distribution types of
normal, lognormal, Weibull, Gumbel, and Gamma. X1 and
X2 are correlated with the Frank copula and Kendall’s tau
of 0.7. Also, X5 and X6 are correlated with the FGM copula
and Kendall’s tau of 0.2.

The test result of the Dixon-Price 12-D example is shown
in Table 6, and selected variables in each method are marked
with bold font. In this example, the value of γ is low-
ered to 0.7 to contain at least 85 % of output variance
in the selected variables. And it is shown that 86.6 %
of output variance is estimated using the variable screen-
ing method in Table 6. Design sensitivities with respect to
X9 ∼ X12 are zero, and accordingly the partial output vari-
ances of X9 ∼ X12 using the sensitivity-variance method
are zero. Hence, the sensitivity-variance method misses
X9 and X12 even though they have large partial output

Table 4 True total and captured Output variances of Hartmann 6-D example

Sensitivity-variance Variable screening & accurate True total output variance

Selected variables X6 (1-D) X4, X5, X6 (3-D) All (6-D)

Captured output variance 1.66E−04 4.10E−04 4.23E−04

Ratio to total out. var. 39.2 % 96.9 % 100.0 %
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Table 5 Input random
variables for Dixon-Price 12-D
example

Random variable Distribution type Mean STDEV Correlation (Copula)

X1 Normal 1.00 0.025 Frank

X2 Normal 0.71 0.02 τ = 0.7

X3 Lognormal 0.59 0.02 –

X4 Lognormal 0.55 0.02 –

X5 Weibull 0.52 0.02 FGM

X6 Weibull 0.51 0.02 τ = 0.2

X7 Gumbel 0.51 0.015 –

X8 Gumbel 0.50 0.015 –

X9 Normal 0.50 0.015 –

X10 Normal 0.50 0.01 –

X11 Gamma 0.50 0.01 –

X12 Gamma 0.50 0.015 –

variances. Moreover, the other partial output variances using
the sensitivity-variance method have poor accuracy com-
pared to the accurate method (see the sixth column in
Table 6). Hence, X2 and X3 are selected instead of X6

even though X6 actually has larger partial output variance
than X2 and X3. On the contrary, the variable screening
method reasonably estimates partial output variances and
correctly identifies important variables compared to the
accurate method. Therefore, it is confirmed that at least
quadratic approximation is needed for the 1-D surrogate
model to calculate partial output variances.

Using (29), the true total and captured output vari-
ances of Dixon-Price 12-D example are calculated as shown

in Table 7. In Table 6, the variable screening (3.14E−03)
and the accurate methods (3.06E−03) reasonably approxi-
mate the true total output variance (3.30E−03 in Table 7),
while the sensitivity-variance method (1.95E−04) cannot.
In Table 7, the true captured output variance by selected
variables using the sensitivity-variance method is only
2.15E−03, which is 65.2 % of the true total output variance.
By contrast, the output variance of 2.80E−03 is contained
in X4 ∼ X9 and X12, which indicates that 84.8 % of the true
total output variance is captured. Hence, it is verified that
the variable screening method correctly finds the important
variables of the Dixon-Price 12-D example. Through analyt-
ical examples, it is shown that the partial output variance is

Table 6 Partial output variances of Dixon-Price 12-D example

Random variable Design sensitivity Sensitivity-variance Variable screening Accurate Sens.-var. /accurate Variable scr. /accurate

X1 −3.28E−02 6.72E−07 7.95E−06 7.71E−06 8.7 % 103.1 %

X2 1.76E−01 1.24E−05 1.41E−04 1.35E−04 9.2 % 104.4 %

X3 −3.15E−01 3.98E−05 1.56E−04 1.62E−04 24.6 % 96.3 %

X4 3.56E−01 5.07E−05 2.95E−04 2.81E−04 18.0 % 105.0 %

X5 −1.94E−01 1.50E−05 4.98E−04 4.45E−04 3.4 % 111.9 %

X6 −1.38E−01 7.61E−06 6.22E−04 5.51E−04 1.4 % 112.9 %

X7 4.51E−01 4.58E−05 5.27E−04 5.57E−04 8.2 % 94.6 %

X8 −3.20E−01 2.30E−05 3.10E−04 3.55E−04 6.5 % 87.3 %

X9 0.00E+00 0.00E+00 2.20E−04 2.15E−04 0.0 % 102.3 %

X10 0.00E+00 0.00E+00 5.31E−05 5.25E−05 0.0 % 101.1 %

X11 0.00E+00 0.00E+00 6.42E−05 6.32E−05 0.0% 101.6 %

X12 0.00E+00 0.00E+00 2.45E−04 2.39E−04 0.0 % 102.5 %

Selected 1.87E−04 2.72E−03 2.64E−03 – –

All 1.95E−04 3.14E−03 3.06E−03 – –

Selected / All 95.9 % 86.6 % 86.3 % – –

Criterion (μ0) 1.14E−05 1.68E−04 1.79E−04 – –
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Table 7 True total and captured output variances of dixon-price 12-D example

Sensitivity-variance Variable screening & accurate True total output variance

Selected variables X2 ∼ X5, X7, X8 (6-D) X4 ∼ X9, X12 (7-D) All (12-D)

Captured output variance 2.15E−03 2.80E−03 3.30E−03

Ratio to total out. Var. 65.2 % 84.8 % 100.0 %

a well-performing measure for variable screening purposes,
and the proposed variable screening method successfully
finds important variables as it is intended.

4.2 Engineering example

A car noise, vibration, and harshness (NVH) and crash
safety problem is considered to demonstrate the perfor-
mance and efficiency of the proposed method. The problem
includes full frontal impact, 40 % offset frontal impact, and
NVH as constraints. There are a total of 11 performance
measures as shown in Table 8: nine safety measures and two
NVH measures.

In this example, it is assumed that the only source of
uncertainty is the thickness of the body plates. The 44 ran-
dom variables shown in Table 9 are used to represent the
thicknesses. All random variables follow normal distribu-
tion and are statistically independent. The baseline design
dB is the mean vector of the 44 random variables, and there
is no random parameter in this example. Among those ran-
dom variables, six random variables (X1 ∼ X5 and X8) are
common variables for both safety and NVH measures, two
(X6 and X7) are variables only for safety, and the other 36
random variables are only for NVH measures.

This problem requires three and a half hours for the
impact dynamic analysis for crash safety and the modal
analysis for NVH. Thus, the actual analysis takes too
much time to test the proposed method thoroughly. Ford
Motor Company provided full-dimensional global (consid-
ering the entire design domain) surrogate models so that

we could use them to demonstrate the proposed method
of variable screening. The full-dimensional surrogate mod-
els may not be accurate, since 44-D is too high to create
accurate surrogate models, especially for RBDO. How-
ever, to test the proposed method of variable screening, the
responses from the 44-D global surrogate models are treated
as true responses in this example. The maximum dimen-
sion at which accurate surrogate models can be generated
depends on the computational power and nonlinearity of a
given problem. In this paper, the DKG method (Zhao et al.
2011) is used to generate an accurate surrogate model using
the Iowa Reliability-Based Design Optimization (I-RBDO)
code (Choi et al. 2012), and 18-D is targeted as the max-
imum degrees of freedom of DKG models. The I-RBDO
code is also used to carry out RBDO in this paper.

4.2.1 Variable screening

At the baseline design dB , which is the initial design as
shown in Table 9, all 11 performance measures in Table 8
are active. That is, the value of every performance measure
at the baseline design is the same as the baseline values,
with Gi = Baselinei , i = 1 ∼ 11. Therefore, the proposed
variable screening method is performed for the problem at
the baseline design. Parameters ns, nr0, α, β, and γ are set
as 50, 50, 0.05, 0.05, and 1.0, respectively. Four hundred
eighty-four (44 design variables × 11 performance mea-
sures) 1-D surrogate models with quadratic interpolation
are generated using 89 DoE samples (i.e., simulation sam-
ples). It is noted that 11 values of performance measures

Table 8 Performance measure
description Mode Function Value Feasibility decision

Safety Full frontal impact G1 Chest G ≤ Baselinei

G2 Crush displacement

40 % offset impact G3 Brake pedal

G4 Footrest

G5 Left toepan

G6 Center toepan

G7 Right toepan

G8 Left IP

G9 Right IP

NVH G10 Torsion mode

G11 Vertical bending mode
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Table 9 Input random variables

RVs Dist. type dB STDEV dL dU RVs Dist. type dB STDEV dL dU

X1 Normal 1.9 0.05 1.5 2.3 XN1 Normal 0.9 0.03 0.7 1.1

X2 Normal 1.91 0.05 1.5 2.3 XN2 Normal 1.1 0.03 0.8 1.4

X3 Normal 2.51 0.06 2.0 3.0 XN3 Normal 1.55 0.05 1.2 1.9

X4 Normal 2.4 0.06 1.9 2.9 XN4 Normal 0.9 0.03 0.7 1.1

X5 Normal 2.55 0.06 2.0 3.1 XN5 Normal 1.5 0.03 1.2 1.8

X6 Normal 2.25 0.06 1.8 2.7 XN6 Normal 1.2 0.03 0.9 1.5

X7 Normal 2.25 0.06 1.8 2.7 XN7 Normal 1.1 0.03 0.8 1.4

X8 Normal 1.5 0.03 1.2 1.8 XN8 Normal 1.52 0.05 1.2 1.9

X10 Normal 1.28 0.03 0.9 1.6 XN9 Normal 0.8 0.03 0.6 1.0

X11 Normal 1.4 0.03 1.0 1.8 XN10 Normal 0.8 0.03 0.6 1.0

X12 Normal 1.1 0.03 0.8 1.4 XN11 Normal 1.2 0.03 0.9 1.5

X13 Normal 2.2 0.06 1.7 2.7 XN12 Normal 0.75 0.03 0.6 0.9

X14 Normal 1.5 0.03 1.2 1.8 XN13 Normal 0.75 0.03 0.6 0.9

X15 Normal 1.25 0.03 0.9 1.6 XN14 Normal 0.75 0.03 0.6 0.9

X16 Normal 2.5 0.06 2.0 3.0 XN15 Normal 1.0 0.03 0.8 1.2

X17 Normal 2.0 0.05 1.5 2.5 XN16 Normal 1.14 0.03 0.9 1.4

X18 Normal 1.4 0.03 1.1 1.7 XN17 Normal 1.2 0.03 0.9 1.5

X20 Normal 1.22 0.03 0.9 1.5 XN18 Normal 1.4 0.03 1.1 1.7

X23 Normal 0.75 0.03 0.6 1.0 XN19 Normal 1.2 0.03 0.9 1.5

X24 Normal 1.9 0.05 1.5 2.3 XN20 Normal 1.4 0.03 1.1 1.7

X25 Normal 0.65 0.03 0.5 0.8 XN21 Normal 2.13 0.06 1.7 2.6

X26 Normal 0.85 0.03 0.6 1.1

X27 Normal 0.85 0.03 0.6 1.1

are obtained from one DoE analysis. The results of par-
tial output variances vi are listed in Tables 10 and 11 for
every performance measure. The partial output variances of
the important variables for each performance measure are
marked with bold font. It is noted that only partial output
variances of X1 ∼ X8 are listed in Table 10 since G1 ∼ G9

are only a function of X1 ∼ X8 as the variable screening
method identified the partial output variances to be zero for

other random variables. In Table 11, X6 and X7 have zero
partial output variances as G10 and G11 are not functions
of X6 and X7. In the last three rows of Tables 10 and 11,
the sums of partial output variances of selected variables,
the sums of all partial output variances, and their ratios
are listed. As explained earlier, this is the estimated ratio
between the captured output variance in selected variables to
the total output variance. It is estimated that a minimum of

Table 10 Partial output variances vi(G1 ∼ G9)

RVs G1 G2 G3 G4 G5 G6 G7 G8 G9

X1 2.37E−02 3.75E+00 4.06E+01 1.11E+01 1.94E+00 1.73E+00 6.21E−01 3.45E−01 5.75E−01

X2 1.88E−02 1.01E+00 3.55E−01 1.86E+00 2.07E+00 2.06E+00 1.09E+00 4.03E−01 2.69E−01

X3 5.08E−05 1.76E−02 1.05E+01 9.74E+00 5.95E+00 4.38E+00 2.00E+00 2.37E−01 2.24E−02

X4 1.66E−04 9.27E−02 3.91E+00 1.79E+00 2.65E−01 6.65E−02 1.73E−03 4.78E−03 9.65E−03

X5 1.12E−04 1.37E−04 2.74E+00 2.23E+00 4.90E−01 9.11E−01 9.30E−01 1.79E−01 7.94E−02

X6 4.58E−05 2.77E+00 1.64E−01 8.14E−02 8.18E−01 1.60E−01 1.70E−01 3.95E−02 3.27E−02

X7 2.32E−03 1.34E−01 1.91E−01 1.50E−01 2.75E+00 1.71E+00 5.66E−01 1.10E−01 2.77E−01

X8 1.23E−03 6.28E−02 4.39E−02 3.02E−01 5.35E−01 5.45E−01 3.27E−01 6.25E−02 4.87E−02

Selected 4.61E−02 7.53E+00 5.78E+01 2.67E+01 1.46E+01 1.13E+01 5.70E+00 1.38E+00 1.28E+00

All 4.64E−02 7.84E+00 5.85E+01 2.73E+01 1.48E+01 1.16E+01 5.71E+00 1.38E+00 1.31E+00

Selec./All 99.4 % 96.0 % 98.8 % 97.8 % 98.6 % 97.4 % 99.8 % 100.0 % 97.7 %
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Table 11 Partial output variances vi (G10 and G11)

RVs G10 G11 RVs G10 G11 RVs G10 G11

X1 1.30E−03 1.48E−03 X17 4.24E−07 2.01E−04 XN8 2.06E−05 5.45E−05

X2 4.39E−05 3.44E−05 X18 9.71E−06 3.33E−05 XN9 1.61E−06 1.89E−05

X3 8.95E−04 3.05E−04 X20 2.21E−03 1.84E−03 XN10 5.11E−06 1.83E−06

X4 8.74E−05 2.63E−05 X23 2.67E−03 1.13E−03 XN11 1.56E−07 1.12E−07

X5 3.06E−04 4.23E−05 X24 2.35E−05 6.89E−05 XN12 1.83E−06 3.10E−05

X6 0 0 X25 4.85E−04 7.31E−03 XN13 1.69E−07 8.19E−07

X7 0 0 X26 4.59E−03 1.06E−02 XN14 9.08E−08 3.75E−05

X8 5.56E−04 1.89E−04 X27 3.43E−05 3.76E−04 XN15 1.84E−06 1.66E−05

X10 5.49E−04 3.87E−04 XN1 9.33E−05 6.38E−03 XN16 4.35E−08 2.88E−08

X11 3.32E−05 2.05E−04 XN2 4.49E−07 7.48E−05 XN17 3.24E−07 1.84E−06

X12 9.35E−05 3.98E−04 XN3 9.59E−08 2.00E−05 XN18 1.04E−07 1.18E−07

X13 7.23E−06 3.82E−04 XN4 6.04E−08 8.36E−05 XN19 3.03E−08 3.37E−07

X14 5.76E−07 1.17E−05 XN5 2.60E−07 1.42E−07 XN20 2.06E−07 2.98E−06

X15 1.16E−07 1.13E−05 XN6 1.29E−07 2.22E−07 XN21 2.44E−07 9.41E−06

X16 9.14E−08 1.63E−06 XN7 9.46E−08 7.94E−06

Selected 1.33E−02 2.87E−02

All 1.40E−02 3.18E−02

Selec./all 95.0 % 90.3 %

90.3 % of the total output variance is captured in the selected
variables. In total, 14 random variables: X1, X2, X3, X4,
X5, X6, X7, X8, X10, X20, X23, X25, X26, and XN1, are
selected as important variables. Accordingly, 14 design vari-
ables, which are the means of the selected random variables,
are considered as important design variables.

Sensitivity-variance introduced in Section 4.1 is applied
to performance measure G5, and the result is shown in
Table 12. Selected random variables for G5 (bold font
in Table 12) are X1 ∼ X3 and X5 ∼ X8 out of X1 ∼ X8.
Among X1 ∼ X8, variables X3 ∼ X7 have the largest stan-
dard deviation of 0.06. However, X4 is not selected among
them because it has small design sensitivity compared to
others. Here, the design sensitivities are calculated at the
design point using the forward finite difference method

(FDM) with 0.1 % perturbation. By contrast, X8 is selected
as an important variable even though it has smallest stan-
dard deviation of 0.03. Again, this is because it has relatively
large sensitivity and induces large output variance.

Interestingly, the partial output variances using the
sensitivity-variance method of G5 shown in Table 12 are
close to the result shown in the sixth column of Table 10.
In fact, the same variables as those in the variable screen-
ing method will be selected by using the sensitivity-
variance method throughout all 11 constraints. However, the
sensitivity-variance method has the possibility of choosing
undesirable variables as shown in the analytical examples
in Section 4.1. In Fig. 3, the shape of G5 when each Xi

is random is shown. It is easily anticipated that the design
sensitivity of G5 with respect to Xi could be very small or

Table 12 Result of
sensitivity-variance method in
G5

RVs STDEV (σXi
) Design sensitivity (αi ) Partial output variance

(
α2
i σ

2
Xi

)

X1 0.05 27.9105 1.95E+00

X2 0.05 29.2723 2.14E+00

X3 0.06 −40.7490 5.98E+00

X4 0.06 8.7917 2.78E−01

X5 0.06 −11.6078 4.85E−01

X6 0.06 14.1289 7.19E−01

X7 0.06 27.8533 2.79E+00

X8 0.03 24.3000 5.31E−01
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Fig. 3 Shape of G5 when each
Xi is random
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even zero so that the sensitivity-variance method may pro-
vide inaccurate partial output variance; this can be prevented
if the variable screening method is used.

The sensitivity-variance method requires accurate design
sensitivity. In practical engineering problems, design sensi-
tivity might be calculated using FDM. To use FDM, a user
determines perturbation method (forward, backward or cen-
tral) and perturbation size, and the result of the sensitivity-
variance could depend on the user’s choice. In Table 13,
partial output variance of X2 in G6 at DDO optimum design
with various methods is shown. It can be seen that X2 is not
selected as an important variable when design sensitivity is
calculated using forward FDM with 1 % perturbation. The
partial output variance is only 56.6 % of that found using
the accurate method with 100,000 realizations of X2. To
obtain more accurate design sensitivity with forward FDM,

small perturbation is required as shown in Table 13. How-
ever, small perturbation does not always provide accurate
design sensitivity, and determining appropriate perturbation
size would require extra DoE samples. Central FDM pro-
vides more accurate design sensitivity, and it is insensitive
to perturbation size. However, the partial output variance
with central FDM sensitivity shows at most 76.7 % accuracy
compared to the accurate method. It is noted that the vari-
able screening method would not require perturbation size
determination. Moreover, a user can perform the proposed
variable screening method using only one more DoE sample
than the sensitivity-variance method with central FDM.

Since we have 44-D global surrogate models for this
example, GSA can be carried out to verify effectiveness
of the proposed method. Among various GSA methods,
the global sensitivity index method, which can identify the

Table 13 Partial output variance of X2 in G6 at DDO optimum design

Method Perturbation Selection Design sensitivity Partial output variance Accuracy

Sensitivity-variance Forward, 1 % No −5.83E+00 8.49E−02 56.6 %

Forward, 0.5 % Yes −6.30E+00 9.94E−02 66.3 %

Forward, 0.1 % Yes −6.68E+00 1.12E−01 74.7 %

Central, 1 % Yes −6.79E+00 1.15E−01 76.7 %

Central, 0.5 % Yes −6.78E+00 1.15E−01 76.7 %

Central, 0.1 % Yes −6.78E+00 1.15E−01 76.7 %

Variable screening – Yes – 1.51E−01 100.7 %

Accurate – Yes – 1.50E−01 100.0 %
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Table 14 Global sensitivity indices Stot
i (G1 ∼ G9)

RVs G1 G2 G3 G4 G5 G6 G7 G8 G9

X1 4.16E−01 3.84E−01 5.23E−01 2.68E−01 1.74E−01 1.89E−01 2.07E−01 2.56E−01 4.35E−01

X2 3.46E−01 1.18E−01 1.04E−01 1.88E−01 1.98E−01 2.09E−01 1.66E−01 2.62E−01 2.07E−01

X3 7.83E−03 5.75E−03 3.28E−01 5.07E−01 5.18E−01 4.97E−01 4.92E−01 2.69E−01 4.96E−02

X4 1.89E−02 2.23E−02 7.92E−02 1.34E−01 1.25E−01 1.38E−01 1.42E−01 7.38E−02 2.87E−02

X5 7.50E−03 −7.22E−04 1.40E−01 2.10E−01 1.53E−01 1.76E−01 1.78E−01 1.90E−01 9.10E−02

X6 5.65E−02 2.67E−01 2.08E−02 5.01E−02 1.11E−01 1.15E−01 1.67E−01 5.13E−02 2.74E−02

X7 8.13E−02 5.65E−03 1.77E−02 4.52E−02 1.59E−01 1.60E−01 1.76E−01 6.73E−02 1.73E−01

X8 3.23E−02 2.06E−02 4.02E−03 2.33E−02 3.82E−02 4.09E−02 5.21E−02 7.13E−02 6.14E−02

Selected 9.32E−01 8.12E−01 1.17E+00 1.40E+00 1.48E+00 1.52E+00 1.58E+00 1.24E+00 1.07E+00

All 9.66E−01 8.23E−01 1.22E+00 1.43E+00 1.48E+00 1.52E+00 1.58E+00 1.24E+00 1.07E+00

Selec./all 96.5 % 98.7 % 95.9 % 97.9 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 %

global effect of the variables of interest on the output, is
used here. The main strength of the global sensitivity index
method is that it can find interactions between all variables
(not statistical correlation between random variables). All
random variables are assumed to follow uniform distribu-
tion in their corresponding design domain of dL and dU ,
and global sensitivity indices are calculated using the Monte
Carlo simulation (MCS) method with 1 million MCS sam-
ples (Sobol 2001). There are many global sensitivity indices
in this 44-D problem; the total sensitivity index S tot

i is used
for variable ranking and screening. The total sensitivity
index S tot

i is a “total influence of ith random variable” to

the output. That is, it indicates the main effect plus interac-
tions of the ith random variable with other random variables
(Chen et al. 2005). The results are listed in Table 14 and
Table 15. To identify important random variables, the mean
value of S tot

i is calculated for each constraint and the ran-
dom variable, which yields larger S tot

i than the mean value,
is selected as an important variable and marked in bold font
in these tables. In Table 14, only S tot

i for X1 ∼ X8 are listed
as S tot

i for other variables are zero. Also, the sum of S tot
i for

the selected random variables, the sum of S tot
i for all random

variables, and their ratios are listed in the last three rows,
respectively.

Table 15 Global sensitivity indices Stot
i (G10 and G11)

RVs G10 G11 RVs G10 G11 RVs G10 G11

X1 1.05E−01 7.09E−02 X17 3.30E−04 1.46E−02 XN8 −8.85E−04 −1.34E−03

X2 1.01E−03 2.38E−03 X18 −4.77E−04 −2.50E−04 XN9 8.54E−04 −1.71E−03

X3 5.72E−02 1.01E−02 X20 2.07E−01 9.17E−02 XN10 1.28E−04 −1.07E−04

X4 8.66E−03 2.65E−03 X23 1.34E−01 3.57E−02 XN11 −2.72E−04 −2.85E−05

X5 3.29E−02 5.69E−03 X24 −1.60E−03 −8.39E−04 XN12 −1.51E−04 −1.94E−04

X6 0 0 X25 1.12E−02 9.79E−02 XN13 −5.24E−05 1.59E−04

X7 0 0 X26 2.96E−01 3.80E−01 XN14 −3.88E−05 −6.91E−05

X8 4.73E−02 5.89E−03 X27 6.04E−03 2.38E−02 XN15 1.20E−04 4.59E−04

X10 5.98E−02 1.99E−02 XN1 5.62E−03 1.65E−01 XN16 8.87E−05 2.85E−04

X11 3.86E−03 1.67E−02 XN2 −1.11E−04 2.31E−03 XN17 −6.09E−05 −3.61E−04

X12 1.34E−02 2.88E−02 XN3 1.13E−04 1.33E−03 XN18 −1.12E−05 −9.18E−05

X13 3.20E−04 1.50E−02 XN4 1.54E−04 −2.50E−03 XN19 1.10E−04 1.23E−03

X14 2.24E−04 −4.65E−04 XN5 −2.96E−04 9.10E−04 XN20 −1.67E−04 −8.38E−04

X15 −1.33E−04 1.36E−03 XN6 2.34E−04 −2.32E−05 XN21 6.77E−05 −6.44E−04

X16 −1.94E−04 2.42E−03 XN7 −1.61E−05 −3.27E−04

Selected 9.39E−01 8.94E−01

All 9.87E−01 9.87E−01

Selec./All 95.1 % 90.6 %
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Table 16 Selected random variables

Method Selected variables

Proposed method X1, X2, X3, X4, X5, X6, X7, X8, X10, X20,

X23, X25, X26, XN1 (14 RVs)

Global sensitivity X1, X2, X3, X4, X5, X6, X7,X8, X10, X12,

index X20, X23, X25, X26, X27, XN1 (16 RVs)

Using the global sensitivity index method, 16 random
variables are selected as shown in Table 16. Those 16 ran-
dom variables include all 14 random variables selected
using the proposed method as shown in Table 16. Moreover,
if we set a limit of 14 random variables to be selected, X12

and X27 will not be selected as they have least S tot
i among

the selected variables for G11 as shown in Table 15. Thus,
the 14 random variables selected by both methods are iden-
tical. The ratio between the sensitivity indices of selected
variables and all variables has no physical meaning. How-
ever, it is an indicator that shows how much variance is
captured by the selected random variables. The results are
quite similar to those of the proposed method as shown
in Tables 10 and 11 and Tables 14 and 15, respectively.
Hence, it is demonstrated that the proposed variable screen-
ing method is quite effective even though it does not require
global surrogate models unlike the global sensitivity index
method.

4.2.2 Reliability-based design optimization

For this example, RBDO is formulated as

minimize Weight (d)

subject to
P [Gi (X)>Baselinei ]≤10 %, i=1, . . . , 11
dL≤d≤dU , d ∈ R

44, and X ∈ R
44

(30)

For a comparison study, we considered three cases: (1) a
set of 14 random variables is selected based on experi-
ence without using the proposed variable screening method,
(2) another set of 14 random variables is selected using
the proposed variable screening method as shown in
Section 4.2.1, and (3) in addition to the 14 random variables
selected in case 2, four more random variables are selected
using the cost function sensitivity for a total of 18 design

variables to test the effectiveness of the proposed variable
screening method and the accuracy of the I-RBDO code.
The selected design variables are listed in Table 17.

Because the cost function, which is weight in this prob-
lem, is a function of design variables d, not random vari-
ables X, the function is deterministic. Therefore, the design
sensitivity of the cost function with respect to the design
variable is calculated by FDM, and the four design vari-
ables (and related random variables XN4, XN9, XN10, and
XN11) that show the largest sensitivity among the unse-
lected design variables are chosen. Then, RBDO is carried
out with three sets of selected random variables. The opti-
mum design results are summarized in Table 18. The bold
font indicates chosen design variables, and others are fixed
at the baseline design value. Also, probabilities of failure,
cost function values, and design iteration details are listed
in Table 19. All RBDOs are carried out using I-RBDO
code with 500,000 MCS samples. For the three cases, I-
RBDO generates DKG surrogate models, using the DoE
sample responses obtained from the 44-D global surrogate
models, which are treated as true responses, for RBDO.
Since I-RBDO is able to carry out RBDO using the surro-
gate models generated by other methods (i.e., the surrogate
models generated by Ford in this example) without having
information on how the surrogate models are generated, the
full-dimensional RBDO is performed as well using the 44-
D surrogate models. The 44-D RBDO result is treated as the
true RBDO optimum and used for the purpose of validation
of RBDO results obtained for the three reduced-dimensional
cases.

Indeed, the optimum design values for d1 ∼ d8 are
very close to the full-dimensional 44-D case, as shown in
Table 18, which shows that the DKG surrogate models gen-
erated in the I-RBDO code are accurate. In the three cases,
the random variables X1 ∼ X8 are selected because they
have large partial output variance for performance measures
G1 ∼ G9. This means that they contribute a large portion
of the output variance. Hence, finding optimum values for
them is the most effective way to reduce the probabilities
of failure of G1 ∼ G9. Similarly, d22 (corresponding to
X26) moves to the upper bound of 1.1 when it is selected
because it has the largest partial output variances of G10

and G11. The design variables d27, d32, d33, and d34 (cor-
responding to XN4, XN9, XN10, and XN11), which are

Table 17 Selected random variables for RBDO

Cases Common selection Different selection

(1) Based on experience X1, X2, X3, X4, X5, X6, X7, X8, XN9, XN10, XN11

(2) Variable screening X20, X25, XN1 (11 RVs) X10, X23, X26

(3) Variable screening + cost function X10, X23, X26

+ XN4, XN9, XN10, XN11
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Table 18 RBDO optimum design

Design Corresponding Baseline Based on Variable Variable screening Full

variables RVs design experience screening + Cost function dimension

d1 X1 1.9 1.8343 1.8366 1.8336 1.8491

d2 X2 1.91 2.1810 2.1804 2.1806 2.1692

d3 X3 2.51 2.8528 2.8561 2.8540 2.8803

d4 X4 2.4 1.9817 1.9810 1.9856 1.9507

d5 X5 2.55 2.7195 2.7228 2.7261 2.7296

d6 X6 2.25 2.2543 2.2497 2.2558 2.2408

d7 X7 2.25 2.3199 2.3185 2.3207 2.3284

d8 X8 1.5 1.7904 1.7966 1.7860 1.8

d9 X10 1.28 1.28 0.9 0.9 1.5336

d10 X11 1.4 1.4 1.4 1.4 1.0038

d11 X12 1.1 1.1 1.1 1.1 0.9868

d12 X13 2.2 2.2 2.2 2.2 1.7006

d13 X14 1.5 1.5 1.5 1.5 1.2

d14 X15 1.25 1.25 1.25 1.25 0.9

d15 X16 2.5 2.5 2.5 2.5 2.0

d16 X17 2.0 2.0 2.0 2.0 1.5033

d17 X18 1.4 1.4 1.4 1.4 1.1

d18 X20 1.22 0.9 0.9 0.9 0.9

d19 X23 0.75 0.75 0.6 0.6 0.6

d20 X24 1.9 1.9 1.9 1.9 1.5

d21 X25 0.65 0.6897 0.5429 0.5871 0.8

d22 X26 0.85 0.85 1.1 1.1 1.1

d23 X27 0.85 0.85 0.85 0.85 1.1

d24 XN1 0.9 0.7 0.7 0.7 0.7

d25 XN2 1.1 1.1 1.1 1.1 0.8

d26 XN3 1.55 1.55 1.55 1.55 1.2039

d27 XN4 0.9 0.9 0.9 0.7 0.7

d28 XN5 1.5 1.5 1.5 1.5 1.2

d29 XN6 1.2 1.2 1.2 1.2 0.9

d30 XN7 1.1 1.1 1.1 1.1 0.8

d31 XN8 1.52 1.52 1.52 1.52 1.6925

d32 XN9 0.8 0.6 0.8 0.6 0.6

d33 XN10 0.8 0.6 0.8 0.6 0.6

d34 XN11 1.2 0.9 1.2 0.9 0.9

d35 XN12 0.75 0.75 0.75 0.75 0.6

d36 XN13 0.75 0.75 0.75 0.75 0.6

d37 XN14 0.75 0.75 0.75 0.75 0.6

d38 XN15 1.0 1.0 1.0 1.0 0.8

d39 XN16 1.14 1.14 1.14 1.14 0.9083

d40 XN17 1.2 1.2 1.2 1.2 0.9

d41 XN18 1.4 1.4 1.4 1.4 1.1

d42 XN19 1.2 1.2 1.2 1.2 0.9

d43 XN20 1.4 1.4 1.4 1.4 1.1

d44 XN21 2.13 2.13 2.13 2.13 1.7



An efficient variable screening method for RBDO 735

selected by the sensitivity of the cost function, move to their
lower bounds of 0.7, 0.6, 0.6, and 0.9, respectively, to reduce
the cost function without significantly affecting the reliabil-
ity of the optimum design. On the other hand, even though
some design variables are selected due to the partial out-
put variances of some constraints, they move to their lower
bounds. For example, d24 (corresponding to XN1) moves to
the lower bound of 0.7 because it has the largest sensitivity
for the cost function, even though it has the third-largest par-
tial output variance of G11. That is, via the trade-offs in the
optimization process, it is moved to the lower bound to min-
imize the cost function rather than to reduce the probability
of failure.

In Table 19, the number of black box calls is listed. I-
RBDO can deal with multiple samples simultaneously to
create a surrogate model to utilize parallel computing. That
is, one black-box call requests computational simulations
at a number of sampling points; thus, the black box call
indicates the clock time required for analyses for RBDO.
Therefore, the number of black box calls represents actual
computational cost more realistically than the number of
CAEs when parallel computing is used. In this example, five
samples are added to the DKG model at a time; therefore,
the total number of CAEs is roughly five times the number
of black box calls.

To verify once again that the surrogate model gener-
ated by DKG using I-RBDO is accurate, the same three
cases are performed using I-RBDO by using responses from
44-D global surrogate model directly while fixing screened-
out variables at their baseline design points. As shown in
Table 20, the optimums found using DKG and 44-D global
surrogate models are very close to each other. Hence, it
is confirmed that DKG in I-RBDO generated an accurate

surrogate model. Moreover, it is also verified that RBDO
can be conducted based on an accurate surrogate model
even for a moderately large-dimensional problem (14 and
18 dimensions).

For the three reduced-dimensional cases, the probabili-
ties of failure are calculated using only selected variables
as random variables, since the other design variables are
treated as deterministic as explained in Section 2.2 with
fixed values at the baseline design. As shown in Table 19,
it is noted that, in all cases, the target design constraints of
10 % probability failure are closely satisfied as expected at
these optimum designs since the RBDO considers only the
selected variables as random variables. On the other hand, to
check correct reliabilities, reliability analyses are carried out
at these optimum designs treating all variables as random
for the 44-D surrogate models and MCS with 1 million sam-
ples, as shown in Table 21. It is noted that the probabilities
of failure of the full-dimensional optimum in Table 19 and
Table 21 are different even though the discrepancy is negli-
gible. Theoretically, they should be the same; however, they
are not equal because different numbers of MCS samples
(500,000 and 1 million) are used and MCS error is induced.
At the baseline design, all constraints have approximately
50 % probability of failure, and this is reasonable because
all constraints are active at the baseline design. However,
they are not exactly 50 % because the constraint functions
are nonlinear. Probabilistic constraint results corresponding
to G1 ∼ G9 are active or feasible in both Table 19 and
Table 21. Due to the fact that G1 ∼ G9 are functions of
X1 ∼ X8, and all of them are selected as important vari-
ables, the RBDO result with reduced-dimension and the
reliability analysis result with full-dimension are very close
to each other, considering MCS errors. The constraint G10

Table 19 Cost, probabilities of failure at RBDO optimum design, and optimization details

Performance measure Based on experience Variable screening Variable screening + Cost function Full dimension

Cost 249.10 259.83 244.17 225.68

G1 10.06 % 9.94 % 9.96 % 9.96 %

G2 10.03 % 10.11 % 10.04 % 9.99 %

G3 0.00 % 0.00 % 0.00 % 0.00 %

G4 0.11 % 0.11 % 0.09 % 0.10 %

G5 1.96 % 1.95 % 2.04 % 1.91 %

G6 9.95 % 10.01 % 10.02 % 9.99 %

G7 9.89 % 9.93 % 9.95 % 10.01 %

G8 10.03 % 9.98 % 9.91 % 9.07 %

G9 10.04 % 9.99 % 9.87 % 9.92 %

G10 0.00 % 0.00 % 0.00 % 0.00 %

G11 10.02 % 9.97 % 9.93 % 10.02 %

No. of design iter. 20 30 20 21

No. of CAEs 2,666 4,358 3,306 –

No. of black box calls 473 727 573 –
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Table 20 RBDO optimum design with I-RBDO and true model

Design variables Corresponding RVs Based on experience Variable screening Var. screen. + Cost Fn.

I-RBDO 44-D surrogate I-RBDO 44-D surrogate I-RBDO 44-D surrogate

d1 X1 1.8343 1.8371 1.8366 1.8359 1.8336 1.8425

d2 X2 2.1810 2.1799 2.1804 2.1807 2.1806 2.1771

d3 X3 2.8528 2.8578 2.8561 2.8576 2.8540 2.8654

d4 X4 1.9817 1.9807 1.9810 1.9851 1.9856 1.9525

d5 X5 2.7195 2.7222 2.7228 2.7233 2.7261 2.7209

d6 X6 2.2543 2.2488 2.2497 2.2501 2.2558 2.2464

d7 X7 2.3199 2.3173 2.3185 2.3169 2.3207 2.3265

d8 X8 1.7904 1.8 1.7966 1.7985 1.786 1.8

d9 X10 – – 0.9 0.9 0.9 0.9

d18 X20 0.9 0.9 0.9 0.9 0.9 0.9

d19 X23 – – 0.6 0.6 0.6 0.6

d21 X25 0.6897 0.6875 0.5429 0.5424 0.5871 0.5826

d22 X26 – – 1.1 1.1 1.1 1.1

d24 XN1 0.7 0.7 0.7 0.7 0.7 0.7

d27 XN4 – – – – 0.7 0.7

d32 XN9 0.6 0.6 – – 0.6 0.6

d33 XN10 0.6 0.6 – – 0.6 0.6

d34 XN11 0.9 0.9 – – 0.9 0.9

shows inactive results regardless of which selection design
variable set is used.

All probabilities of failure for the constraint G11 in
Table 19 satisfy the 10 % target probability of failure,
which makes it obvious that these are the reliability anal-
yses results of reduced-dimensional problems. However,
full-dimensional reliability analyses at optimum designs
show quite different values as shown in Table 21. Selec-
tion based on experience shows a 17.70 % probability of
failure, which violates the target reliability significantly.

The variables selected based on experience contain only
55.4 % (= 1.76E−02/3.18E−02×100 %) of the total out-
put variance of G11. Hence, it cannot find any safe design
once dimension is reduced. On the other hand, the probabil-
ities of failure for the proposed variable screening method
(Case 2) and also the one considering cost function (Case
3) are close to the target probability of failure. The selected
variables contain 93.4 %(= 2.97E−02/3.18E−02×100 %)

and 93.7 %(= 2.98E−02/3.18E−02×100 %) of the total
output variance of G11 for Case 2 and Case 3, respectively.

Table 21 Reliability analysis result using full-dimensional surrogate model

Performance measure Baseline design Based on experience Variable screening Variable screening + Cost function Full dimension

Cost 269.47 249.10 259.83 244.17 225.68

G1 48.25 % 10.06 % 9.96 % 10.00 % 10.05 %

G2 51.34 % 10.02 % 10.11 % 10.04 % 10.09 %

G3 54.14 % 0.00 % 0.00 % 0.00 % 0.00 %

G4 55.57 % 0.10 % 0.12 % 0.09 % 0.12 %

G5 58.94 % 1.96 % 1.93 % 1.98 % 1.91 %

G6 59.70 % 10.08 % 10.05 % 10.05 % 10.00 %

G7 59.86 % 10.20 % 10.04 % 9.91 % 10.06 %

G8 53.23 % 10.02 % 10.03 % 9.97 % 9.14 %

G9 51.15 % 10.02 % 9.96 % 9.96 % 9.96 %

G10 49.10 % 0.00 % 0.00 % 0.00 % 0.00 %

G11 52.46 % 17.70 % 11.23 % 11.17 % 10.05 %
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Hence it can find a correct optimum even with reduced
dimension.

5 Conclusion

A new efficient and effective variable screening method for
RBDO is proposed in this paper. For the proposed methods,
the output variance is used as a measure that can identify
important design variables. Thus, a partial output variance
based on the univariate DRM is proposed to approximate
the output variance efficiently and to identify the design
variables that affect output variance more significantly than
others. The univariate DRM and partial output variance
only require multiple 1-D surrogate models, which is much
more efficient than the full-dimensional surrogate models.
Hence, the proposed method has great merit in efficiency
as well as effectiveness. To reduce computational time and
maintain a user-specified statistical error level, hypothesis
testing is used in the variable screening process. Also, a
required minimum number of samples for calculating the
correct output variance is proposed using the user-specified
error level. In addition, the quadratic interpolation method
is tailored to be applied to efficient partial output variance
calculation.

Two analytical examples and a 44-D industrial exam-
ple are used to verify the performance of the proposed
variable screening method. Through the analytical exam-
ples, it is shown that at least quadratic approximation is
required for the 1-D surrogate model and that partial out-
put variance is a good measure that successfully identifies
important variables. In the industrial example, 14 design
variables out of 44 are selected by considering the out-
put variances of 11 constraints. For comparison, another 14
design variables selected based on experience are used. In
addition, 18 design variables are selected by adding four
design variables, which affect the objective function signif-
icantly while not affecting the output variances much, to the
14 design variables previously selected with the proposed
method. The selection based on experience shows a 7.6 %
reduced cost value, whereas the target probability of fail-
ure is violated by 77 %. However, selection by the proposed
method shows only a 12.3 % disagreement of target value
and a 3.6 % reduced cost value. Moreover, the selection
of 18 design variables shows 11.7 % target disagreement
as well as 9.4 % reduced cost value. Therefore, the per-
formance of the proposed variable screening method is
verified.
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