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Abstract A simple systematic approach is presented for
designing a spatial link mechanism with partially rigid
joints. A linear programming (LP) problem to find an
infinitesimal mechanism that maximizes the output dis-
placement is first formulated. The objective function of this
LP problem has a penalty term to obtain a sparse solu-
tion including small numbers of hinges and members to be
removed. It is shown that the dual of this LP problem can be
regarded as a plastic limit analysis problem that maximizes
the load factor under the equilibrium condition and upper-
and lower-bound constraints on the member-end forces of a
given frame structure. A heuristic approach is presented to
obtain a finite mechanism by solving the LP problem after
updating the nodal locations in the direction of inextensional
deformation. It is shown in the numerical examples that
various planar and spatial mechanisms can be easily found
using the proposed method.
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1 Introduction

Link mechanism (also called linkage) is an assembly of
rigid bodies, i.e., links, connected by joints. For design-
ing mechanisms, many methods have been proposed mainly
based on analytical formulations that are applicable to pla-
nar mechanisms with small numbers of links and joints
(Artobolevsky 1977; Freudenstein 1995; Erdman 1981).
Numerical methods have also been developed to design me-
chanisms systematically, and the process of mechanism de-
sign, or synthesis, is naturally formulated as an optimization
problem. Use of numerical optimization methods can date
back to 1960s; see the survey by Root and Ragsdell (1976).

The procedure of synthesis of mechanism consists of
type synthesis, number synthesis, and path (dimensional)
synthesis. Type synthesis determines the type and connec-
tivity of links (rigid parts), number synthesis determines the
numbers of links and joints to obtain a mechanism with the
desired degree of kinematical indeterminacy, and path syn-
thesis finds the locations of nodes so that the prescribed path
is followed by the mechanism. Early studies of systematic
procedures for type synthesis can be found in the surveys by
Olson et al. (1985) and Erdman (1995).

The type synthesis and number synthesis can be com-
bined and formulated as a topology optimization prob-
lem, which is intrinsically a combinatorial problem and
systematically solved using an optimization approach
(Zhang et al. 1984; Krishnamurty and Turcic 1992), a
graph theoretical enumeration method (Kawamoto et al.
2004a), or enumeration within bar-and-slider frameworks
(Katoh and Tanigawa 2009). Some methods based on

@ Springer


mailto:ohsaki@hiroshima-u.ac.jp
mailto:kanno@mist.i.u-tokyo.ac.jp
mailto:tsuda@dgn.oka-pu.ac.jp

946

metaheuristics, including genetic algorithm (GA), have
been developed for dealing with this combinatorial issue
(Liu and McPhee 2004).

In contrast to type synthesis and number synthesis, which
have combinatorial property, path synthesis problem can
be easily formulated as a nonlinear programming (NLP)
problem for minimizing the error of the path from the pre-
scribed path (Collard and Gosselin 2011). The kinematical
properties of rigid body or link can be incorporated in the
constraints, or in the objective function so that the error
of the geometry from the prescribed shape is minimized
(Minnaar et al. 2001). Another well-known approach in path
synthesis is to model the structure as an elastic truss or
finite elements and minimize the stored strain energy or the
external load in the course of the deformation (Vallejo et al.
1995; Jiménez et al. 1997; Avilés et al. 2000; Ohsaki and
Nishiwaki 2009; Avilés et al. 2010). Fernandez-Bustos et al.
(2005) used elastic finite element analysis for kinematic
analysis and also presented a GA-based synthesis method.

The three steps of mechanism synthesis can be com-
bined and solved by a so-called generalized ground structure
approach for topology and geometry optimization of trusses,
i.e., a ground structure that has many bars and joints is
prepared, and the unnecessary bars and joints are removed
and the nodal locations are updated through optimization. A
gradient-based approach is preferred to a heuristic approach
to find the geometry accurately. However, a feasible solu-
tion, where the output displacement is in the specified
direction, is found only if the initial solution is selected
appropriately, and only a limited number of initial solutions
lead to mechanisms that exhibit the desired deformation as
mentioned by Sedlaczek and Eberhard (2009) and Ohsaki
and Nishiwaki (2009). It is difficult to apply an graph enu-
meration approach (Kawamoto 2005) to ground structures
with moderately large number of degrees of freedom (DOFs).

In this respect, some two stage algorithms have been
developed for carrying out the number synthesis by solving
a combinatorial problem, and the path synthesis by tun-
ing the nodal location using an NLP. Ohsaki et al. (2009)
enumerated statically determinate trusses with non-crossing
members, which are used as initial ground structures of
path synthesis. Kawamoto et al. (2004b) noted that a simple
ground structure approach for truss topology optimization
may result in a spurious mechanism, and added constraints
on compliance and numbers of nodes and members within
the framework of small displacement. Optimization meth-
ods based on rigid blocks connected by springs have been
developed by Kim et al. (2007) and Nam et al. (2012).
Pucheta and Cardona (2013) combined graph theoretical
enumeration for number synthesis and GA for path synthe-
sis for finding mechanism undergoing two tasks.

When number synthesis is formulated as an optimiza-
tion problem, it is not trivial how to avoid solutions with
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large degree of kinematical indeterminacy. Kim et al. (2007)
incorporated a fictitious load and gave a small upper bound
for the strain energy. In the method of Stolpe and Kawamoto
(2005), solutions with two or more degrees of kinemati-
cal indeterminacy are pruned during the branch-and-bound
procedure.

Furthermore, most of the existing numerical approaches
can be applied to planar mechanisms. For spatial mecha-
nisms, it is not practically acceptable to assign ideal pin-
joints for all nodes to rotate around three axes. Therefore,
it is desired to design a spatial mechanism with joints that
can rotate around limited number of axes, such as revolute
and universal joints, which are called partially rigid joints
in this paper. The authors developed a method for generat-
ing deployable structures composed of bars connected with
partially rigid joints (Tsuda et al. 2013).

In this paper, we generate planar and spatial mechanisms
by releasing the member-end forces and removing members
from the initial ground structure modeled as rigidly-jointed
frame. A minimization problem is formulated as a linear
programming (LP) problem for finding a link mechanism
that has moderately small numbers of released member-end
forces and removed members. The problem is regarded as
a plastic limit analysis problem, which is to be solved to
obtain an infinitesimal mechanism that has single degree
of kinematical indeterminacy. A heuristic approach is pre-
sented to solve the LP problem again after updating the
nodal locations in the direction of inextensional deforma-
tion. It is shown in the numerical examples that various
planar and spatial mechanisms can be easily found using the
proposed method.

2 Design problem of link mechanisms as partially rigid
frames

Like a conventional ground structure approach to topol-
ogy optimization of trusses and frames, we prepare a frame
structure with many nodes and members in the two- or
three-dimensional space. This initial frame structure con-
sists of m members, which are modeled by the Euler—
Bernoulli beam elements. We use this structure as an initial
solution for design of link mechanisms.

Mechanisms are classified into infinitesimal mecha-
nisms and finite mechanisms. An infinitesimal mechanism
deforms without internal force if the deformation is assumed
to be small. By contrast, a finite mechanism has no internal
force even under large deformation.

Small deformation is assumed in the course of the fol-
lowing design procedure. Hence, a structure obtained by the
proposed method is not necessarily a finite mechanism. We
present a heuristic approach in Section 4 to find a finite
mechanism.



Linear programming approach to design of spatial link mechanism

Fig. 1 Definition of a member and nodal displacements

Let u € R? denote the displacement vector of the frame
structure, where d is the number of DOFs. We use ¢ =
(c1,...,cn)T € R* to denote the generalized strain vector,
where n = 3m for a planar frame consisting of extension
and two bending components for each member, and n = 6m
for a spatial frame consisting of extension, torsion, and four
bending components. The compatibility relation between c;
and u can be written as

ci=h'u, 1)

where h; € R? is a constant vector. Note that matrix H €
R?*" defined by

H = [h] hy --- hn] (2)

is the equilibrium matrix that gives relation between the
independent components of member-end forces and nodal
loads.

For example, for a single member in Fig. 1, ¢y, ¢, and ¢3
represent member extension and rotations of hinges at the
ends 1 and 2, respectively, which are defined by the nodal
displacement vector u = (ux1, Uy1, @1, Ux2, Uy2, ¢2)T as

c1 = (ux2 — uy1) €086 + (uyy — uy1)sin6, (3a)
1 .
c=¢1— L [—(ux2 —ux1) sin€ + (uy2 —uy1) cos6], (3b)

1 .
3= ¢ — I [—(ux2 —uy1) Sin® + (uy2 —uy1) cos ], (3c)
The following relations are obtained from (1) and (3):
hy = (—cosf, —sin0, 0, cos0, sinb, O)T, (4a)
hy=(—sin6/L,cos6/L, 1,sinf/L,—cosf/L, O)T, (4b)

h3=(—sin6/L,cos6/L,0,sinf/L,—cosb/L, l)T. (4¢)
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Let Py, Py1, Ry, Px2, Py, and R, denote the nodal forces
corresponding to uy 1, uy1, @1, Uy2, Uy2, and ¢, respectively.
The axial force and bending moments of the hinges at the
ends 1 and 2 are denoted by N, M, and M>, respectively.
Then the following relation holds:

Py1 [ —cos® —sinf/L —sinf/L ]
Py —sinf cosf/L cosb/L
N
Ry | 0 1 0 M
Po | | cosf sinf/L sin@/L M]
Py sinf —cosf/L —cosbf/L 2
L Ry | L O 0 1 |
®)
Hence, the matrix
[ —cos® —sinf/L —sinf/L ]
—sinf cosf/L cos@/L
0 1 0
H = . .
cosf sinf/L sin6/L ©)
sinf —cosf/L —cos@/L
. 0 0 1 |

defines the relation between the nodal forces and general-
ized stresses.

Figure 2a shows an example of an initial frame, which
has m = 16 members and d = 21 DOFs, where the cross-
ing diagonal members are not connected at the center. Our
method generates a link mechanism by releasing some of
member-end forces and removing some members, which are
determined by solving an optimization problem that will be
formulated in Section 3. In Fig. 2, we attempt to design a
link mechanism that converts a horizontal input displace-
ment at node (A) to a vertical output displacement at node
(B). Specifically, suppose that node (A) called input node

u
out u:

()

(b)
Fig. 2 Schematic overview of the generation procedure of mecha-

nisms from a given frame; a ground structure, b a finite mechanism;
solid square: rigid joint, blank circle: rotational hinge
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is subjected to a prescribed displacement i, (> 0) in the
horizontal direction. We denote by uqy the vertical displace-
ment of node (B) called output node. Then we look for a
link mechanism that satisfies uoyt > lout, Where igye > 0 is
a specified lower bound for the output displacement. Such a
mechanism satisfies

ci=hlu, i=1,...,n, (7a)
Uin = Uip, (7b)
Uout = Uout- (7¢)

If a structure satisfies (7) and the requirements such that the
structure has single kinematical indeterminacy undergoing
the specified deformation, then it is regarded as a desired
mechanism. In Section 3, we will formulate a maximization
problem of u,, instead of specifying its lower bound.

Note that a system of linear equations in (7a) is under-
determined, because both ¢ = (cy,..., cn)T and u are
considered unknown variables. The generalized strain c;
represents the internal deformation corresponding to u. In
other words, if ¢; # 0, then the corresponding internal force
is released to generate the mechanism composed of links.
Conversely, if ¢; = 0, then the corresponding member-end
deformation is fixed rigidly. More precisely, if ¢; # O cor-
responds to extension of a member, then the member itself
is removed. Alternatively, if ¢; # O corresponds to member-
end rotation, then the constraint on the rotation around the
corresponding axis is released to make a partially rigid joint.
Figure 2b shows an example of a finite mechanism that can
be generated by the procedure presented in Section 3.

3 Norm-minimization problems for finding mechanisms

3.1 Mechanisms with small numbers of released
member-end forces and removed members

An infinitesimal mechanism can be generated from a given
frame structure by imposing constraints (7a)—(7c). How-
ever, the system of (7) has infinitely many, if any, solu-
tions, because (7a) is underdetermined. Suppose that, at
one of those solutions, many components of ¢ are nonzero.
This means that many degrees of member-end forces are
released and/or many members are removed to generate a
mechanism. Such a mechanism is not usually suitable for
practical use, because it has a large degree of kinematical
indeterminacy.

In the following, among the mechanisms satisfying (7),
we attempt to find the one with few rotational hinges. Such
a link mechanism corresponds to a solution with sparse c.
A mechanism with few rotational hinges might have the
following advantages:

@ Springer

M. Ohsaki et al.

— Use of many rotational hinges often leads to increase of
degree of kinematical indeterminacy of a mechanism.
From a practical point of view, it is desired that a mech-
anism has a small, preferably single, number of modes
of deformation.

— A rotational hinge usually needs careful handling in
manufacturing process. Also, movement of a rotational
hinge in a real world structure inevitably involves fric-
tion, although in our design procedure the effect of
friction is neglected. Therefore, manufacturability of a
mechanism is expected to be enhanced and the produc-
tion cost is reduced as the number of rotational hinges
is reduced.

The observation above motivates us to minimize the
number of nonzero components of ¢, simultaneously max-
imizing output displacement uqy, when ¢ and u are sub-
jected to (7a) and (7b). For vector x € R", define supp(x) C
{1,...,n}by

supp(x) = {i € {1,2,...,n} | x; # O}.

The cardinality of supp(x), i.e., the number of nonzero com-
ponents of x, is denoted by |supp(x)|. This optimization
problem is formulated as

min —Uoyt + o¢|supp(c)| (8a)
u,ci,...,Cpy
.. — T T
S. t. ci=hiju, i=1,...,n, (8b)
Uin = Uin. (8¢)

Here, uj, and uqy are variables that are components of u,
and @« > 0 is a constant parameter controlling weights
of two objectives: maximization of uq, and minimization
of the number of nonzero components of ¢. Problem (8)
is known to be NP-hard (Natarajan 1995). In Section 3.2,
we approximate this problem to an LP problem and intro-
duce weights on ¢ for generating a practically acceptable
mechanism.

3.2 Approximation via minimization of sum of absolute
values

We expect that an approximation of the solution of prob-
lem (8) is achieved by replacing |supp(c)| with |c]|;.
Using minimization of the ¢;-norm is actually a well-
known approach for finding a sparse solution of an under-
determined system of linear equations (Matousek and
Girtner 2007). Applications of the ¢;-norm minimization
include noise removal from images (Rudin et al. 1992),
the basis pursuit for signal processing (Chen et al. 1998;
Candes et al. 2008), a regression analysis called LASSO
(Tibshirani 1996; 2011), and portfolio selection with fixed
transaction costs (Lobo et al. 2007).



Linear programming approach to design of spatial link mechanism

Consider a weighted £-norm of ¢ given by ||diag(w)c||1,
where w; > 0 (i = 1, ..., n) are constant weights. If w; has
a large value, then ¢; often becomes O at the optimal solu-
tion. In Section 4, we assign a large value to w; for member
extension, compared with that for hinge rotation, to avoid
too many members to be removed. Also, if there exists a par-
ticular member for which the release of member-end force
is avoided, then the corresponding w; is to be increased. By
replacing |supp(c)| in (8) with ||diag(w)c||1, we obtain the
following problem:

n
min — o w; ¢ a
wer Uout + Zl iCil (9a)
i=1
_ 73T :
s.t ci=hju, i=1,...,n, (9b)
Uin = Uin. (9¢)

Problem (9) is much easier to solve than (8), because
problem (9) is equivalent to an LP problem. To see this, we
introduce additional variables yy, ..., ¥, that serve as upper

bounds for |cq], ..., |cy|, and rewrite (9) as
n
min —Uout + & w;Yi 10a
e out Z]: iVi ( )
s. t. —y,-fhl-Tufy,-, i=1,...,n, (10b)
Uin = Uip- (10c)
This is clearly an LP problem in variables u and yy, ..., y;.

Problem (9) is always feasible, because we can define ¢
by (9b) for any u satisfying (9c). However, it is not nec-
essarily bounded below. Boundedness of problem (9) will
be discussed in Section 3.3 based upon the duality theory
of LP.

3.3 Plastic limit analysis problem based on lower-bound
theorem

In this section, we show that the dual problem of problem
(10) is a conventional plastic limit analysis problem based
on the lower-bound theorem, which is actually solved in
Section 4.

For notational convenience, define f;, € R? and f, €
R? as vectors such that the components corresponding to
uin and uqy, respectively, are equal to 1 and all other
components are 0.
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The dual problem of problem (9) is formulated as
max UinAin (11a)

Vlseees Ynsin
n
5. t. > vihi = fou+ kinfins (11b)
i=1

aw; > |y, i=1,...,n, (11c)

where Aij, € Rand y = (yq,..., y,,)T e R” are the vari-
ables to be optimized. The details of deriving dual problems
are shown in Appendix.

Problem (11) is regarded as the conventional plastic limit
analysis problem based on the lower-bound theorem; see,
e.g., Jirdsek and Bazant (2002). Constraint (11b) is regarded
as the force-balance equation, because H defined by (2) is
the equilibrium matrix. Here, y; corresponds to the member-
end force that is work-conjugate to c;.

The vector on the right-hand side of (11b) is considered
the external load, where f,, corresponds to the fixed part,
Ain fin corresponds to the proportionally increased part, and
Ain is the load factor. Constraint (11c) is analogous to the
yield condition, where ow; corresponds to the absolute
value of the generalized yield stress. This way, problem
(11) can be viewed as the maximization of the load factor
under constraints of the force-balance equation and the yield
conditions.

From the observation above, the primal problem (10) is
also interpreted as the plastic limit analysis based on the
upper-bound theorem. The objective function in (9) can be
viewed as the sum of the external work —f1 u = —uou
corresponding to the fixed part of the load, and the inter-
nal plastic work Y /_, awjlc;|. Here, ¢; corresponds to the
generalized plastic strain. Since (9b) is the compatibility
relation, u is considered the collapse mode. It follows from
the standard principle of plastic limit analysis (or directly
from the complementarity theorem of LP) that non-yielding,
ie., aw; > |y;|, implies no internal deformation, i.e.,
¢; = 0. Thus we may naturally understand that # optimal
for problem (9) corresponds to the motion of a mecha-
nism, where plastic hinges in the limit analysis are inter-
preted as rotational hinges and axially yielded members are
removed.

In the numerical examples, problem (11) is solved
using a simplex method. The nodal displacements u and
generalized strains ¢ are obtained from the dual vari-
ables of constraints (11b) and (llc), respectively. We
suppose the nodes of the ground structure are located
at generic positions with no regularity; i.e., the nodes
of ground structure are not located on a grid, and
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members have different lengths. Furthermore, loading con-
dition is assumed to be generic. The following properties are
satisfied for problems (9) and (11):

— A nodal displacement vector u of a infinitesimal mech-
anism with single degree of kinematical indetermi-
nacy can be obtained using a simplex method. The
degree of kinematical indeterminacy may be larger
than 1 if the structure has regularity and/or symmetry
property.

— If o in problem (9) becomes smaller with constant
values of wj, then the penalty term becomes smaller
and ugy can have a large value; i.e., the objective
value of problem (9) is not bounded below, and its
dual problem (11) has no feasible solution. This sit-
uation corresponds to the fact that smaller « leads to
smaller fully-plastic moments and yield axial forces in
the left-hand side of the inequality constraint (11c);
accordingly, the structure can not support even the fixed
force f oy

— By contrast, if « in problem (9) becomes larger, then the
penalty term becomes larger, and uqy tends to have a
small value; consequently, a local mechanism in which
only the input node moves is obtained to satisfy the
equality constraint (9b) without displacement at the out-
put node. This property can be explained also from
problem (11). When « is large, Aj;, can have a large
value, and the effect of f, becomes small compared
with that of Ai, f;,; consequently the structure collapses
locally near the input node.

— Distribution of hinges and removed members can be
controlled by varying the values of the weights w;,
which correspond to the penalty for the generalized
strains in problem (9), or the upper bounds for the fully-
plastic moments and the yield axial forces in problem
(11). If removal of a member is to be avoided, then a
large value should be assigned to w; for extension of the
member.

—  The mechanism obtained for a symmetric structure sub-
jected to symmetric deformation conditions sometimes
turns out to be asymmetric. If a symmetric mecha-
nism is preferred, then the asymmetric mechanism can
be easily converted to a symmetric mechanism, as fol-
lows, although the degree of kinematical indeterminacy
may increase. Let u' and ¢! = HTu' denote the vec-
tors of nodal displacements and generalized strains of
the asymmetric mechanism. The vectors of nodal dis-
placements and generalized strains of the mechanism,
which are obtained through a symmetry operation from
u! and ¢! = HT4!, are denoted by u!! and ¢! Then
the pair of ! + uH)/Z and (¢! + cH)/2 represents a
mechanism.
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In the numerical examples, the following problem is
first solved to estimate the range of « for which feasible
solutions exist in problem (11):

max  iinit (12a)
M, Y1550
n
5. t. > yiki = 1 f ous (12b)
i=1
w; > |yil, i=1,...,n, (12¢)

where 1 € R is the load factor, which is a variable. Let
(i1, y) denote the optimal solution of problem (12). Then
y = (1/)y and i, = O satisfy the constraint (11b) and
(1lc)bya = 1/a. If o > 1/ 1, then the constraints (11c) are
satisfied with strict inequality as cw; > |y;| (i =1, ..., n).
Therefore, o > 1/ ensures existence of a feasible solution
with nonnegative value of Ajj.

Note again that the mechanism obtained by solving an
LP problem is not always a finite mechanism. Moreover,
regularity of ground structure often leads to existence of
redundant members. Therefore, in the numerical examples,
we obtain finite mechanism using the following algorithm:

1. Define a ground structure that contains all members and
joints that can exist.

2. Assign loading condition in accordance with the desired
function of the mechanism.

3. Assign appropriate values for w;; e.g., large values for
member extension, and small values for bending and
torsion.

4. Solve problem (12) to find the lower bound for «, and
assign an appropriate value for «.

5. Solve problem (11) to obtain the locations of hinges
and members to be removed to generate an infinitesimal
mechanism.

6. Assemble a structural model of an infinitesimal mecha-
nism.

7. Carry out large-deformation analysis for the mecha-
nism. Output the solution and terminate the process if
the current solution is found to be a finite mechanism.

8. Update nodal locations in the direction of an inexten-
sional deformation of the infinitesimal mechanism and
go to 4.

4 Numerical examples

Various mechanisms are found by solving problem (11)
using aprimal simplex method of the library SNOPT Ver. 7.2
(Gill et al. 2002). The generalized forces and load factor are
obtained as primal variables, and nodal displacements and
generalized strains are obtained as dual variables correspon-
ding to equality and inequality constraints of problem (11).
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All members of initial ground structures are connected
rigidly at joints. Note that the intersecting diagonal mem-
bers are not connected at their centers. The size of unit
square is 1 x 1 for the following examples, where the units
are omitted for simple presentation of the results. In the fig-
ures of planar mechanisms, a filled square represents a rigid
connection and a blank circle represents a rotational hinge
along the axis perpendicular to the plane.

To prevent too many members to be removed and to
obtain a mechanism dominated by hinge rotations, we set
weight w; to a large value 1 for member extension, and
to a small value 0.0001 for hinge rotation in Examples
I-IIT of planar mechanisms. The mechanism in Fig. 2 is
also obtained by solving problem (11) with these parameter
values and o = 0.8.

4.1 Example I

Consider first a simple planar 2 x 2 grid as shown in
Fig. 3. A mechanism is obtained so that the output node
(B) moves upward as a result of downward displacement of
the input node (A). Note that the solution of problem (11)
does not change when the directions of input and output
displacements are reversed simultaneously.

Problem (12) is first solved to estimate the range of «
for which problem (11) has a feasible solution. Since the
optimal load factor & is 2.415, problem (11) is feasible if
a > 1/2.415 = 0.414. The locations of hinges of the
infinitesimal mechanism obtained for 0.414 < o < 0.6301s
shown in Fig. 4a, where removed members are not shown.
If « > 0.631, then uqy turns out to be 0, and the local
mechanism as shown in Fig. 4b is obtained. These results

Tuout
(B)

(A)
iuin

Fig.3 Model I: Planar 2 x 2 grid

951

O-8-O-

(a) (b)

Fig. 4 Locations of hinges of infinitesimal mechanisms of the planar
2 x 2 grid; removed members are not shown: a 0.414 < o < 0.630, b
a > 0.631

confirm that the mechanism obtained by solving problem
(11) depends on the value of parameters. However, the solu-
tion does not depend strongly on w; for hinge rotation if
it is sufficiently small, e.g., we found the same solution as
Fig. 3a for w; = 0.001, 0.0001, and 0.00001. Furthermore,
only the parameter o should be adjusted when w; for mem-
ber extension is varied, e.g., the admissible range becomes
0.0414 < a < 0.0630 for w; = 10.0 for member extension.

We assume that possibility of obtaining finite mecha-
nism by solving an LP problem increases as the regularity
of the initial ground structure is relaxed. Let umax denote
the maximum absolute value among the components of the
inextensional deformation u of Fig. 4a. We update the nodal
locations by the vector (0.1/umax)u so that the maximum
difference in nodal coordinates between the original and
updated structure is 0.1. The value of i obtained by solv-
ing problem (12) is 2.657, which indicates that problem
(11) has a feasible solution if & > 1/2.675 = 0.374. The

Fig. 5 An asymmetric mechanisms obtained from updated nodal
locations
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A A

(a) (b)

Fig. 6 Symmetric finite mechanism of the 2 x 2 grid; removed mem-
bers are not shown: a locations of hinges, b inextensional deformation

solution of problem (11) for ¢ = 0.4 is shown in Fig. 5 at the
updated nodal locations. Note that this solution is asymmet-
ric with respect to the vertical axis. Locations of hinges of
a symmetric solution obtained from the asymmetric mecha-
nism using the procedure described in Section 3.3 is shown
in Fig. 6a. An asymmetric solution is often found even for
a symmetric problem, because the simplex method searches
the extreme points of admissible region sequentially, and
one of the optimal solutions is found if the solution is not
unique.

The mechanism has been confirmed to generate a finite
inextensional deformation as shown in Fig. 6b by carrying
out large deformation analysis using ABAQUS (Dassault
Systemes Simulia 2013). Note that the nodes of the mecha-
nism in Fig. 6 are located at the original positions in Fig. 3;
i.e., the nodal locations are updated in Fig. 5 only to obtain
a finite mechanism. No internal force is found even in the
large deformation range. Therefore, buckling behavior such
as snapthrough and bifurcation need not be considered.

BT Uout

Cid

a

A

Uin

Fig. 7 Model II: Planar 4 x 4 grid

@ Springer

M. Ohsaki et al.

O———O-0—C

() (b)

Fig. 8 Locations of hinges of infinitesimal mechanisms of the 4 x 4
grid; removed members are not shown: a local mechanism for o = 0.5,
b global mechanism for @ = 0.405 and w; = 10000 for members a, b,
c,and d

4.2 Example II

Consider next a planar 4 x4 grid as shown in Fig. 7. A mech-
anism is obtained so that the output node (B) moves upward
as a result of the downward displacement of the input node
(A). The values of w; are the same as Example I.

Problem (12) is first solved to estimate the range of «
for which problem (11) has a feasible solution. Since the
optimal load factor & is 2.474, problem (11) is feasible if
o > 1/2.474 = 0.404. The locations of hinges of the local
infinitesimal mechanism obtained for @ = 0.5 are shown in
Fig. 8a, where the removed members are not shown.

In this example, no global mode could be found even
if o is reduced to 0.404. Therefore, we obtain a global
mechanism by assigning very large weights w; for mem-
bers that should not be removed. By assigning w; = 10000
for extension of members a, b, ¢, and d in Fig. 7, and let-
ting « = 0.405, we obtain a global mechanism as shown in
Fig. 8b, which is an infinitesimal mechanism. Therefore, the

Fig. 9 Asymmetric mechanism obtained from the updated nodal
locations
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(a) (b)

Fig. 10 Symmetric finite mechanism of the 4 x 4 grid; removed mem-
bers are not shown: a locations of hinges, b inextensional deformation

nodal location is updated in the same manner as Example I.
The value of i obtained by solving problem (12) is 2.584,
which indicates that problem (11) has a feasible solution if
o > 1/2.584 = 0.387. The solution of problem (11) fora =
0.388 obtained from the updated nodal locations is shown in
Fig. 9, which is asymmetric with respect to the vertical axis.
Locations of hinges of a symmetric mechanism generated
from the mechanism in Fig. 9 are shown in Fig. 10a, where
removed members are not shown, and the degree of kine-
matical indeterminacy is 2. A finite mechanism of single
degree of kinematical indeterminacy, to generate the defor-
mation as shown in Fig. 10b, is obtained by constraining the
horizontal displacement of the input node A.

4.3 Example III

We generate a spatial mechanism from the initial frame as
shown in Fig. 11, which is in the XY -plane. The displace-
ments in Y- and Z-directions are fixed at nodes 2 and 4, and
displacements in X- and Z-directions are fixed at nodes 3
and 5.

9

Fig. 11 Model III: A 2 x 2 grid in three-dimensional space
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Fig. 12 Locations of hinges of the 2 x 2 grid in three-dimensional
space: a asymmetric mechanism for ¢ = 0.5, b symmetric mechanism
generated from the mechanism in (a), ¢ finite mechanism obtained
from an updated nodal locations; short thick bar: rotational hinge
around y-axis, ‘x’: torsional hinge

The output nodes 6, 7, 8, and 9 move upward as a result
of input downward displacement at node 1. For this purpose,
problem (11) is solved to obtain the distribution of hinges
as shown in Fig. 12a, which is asymmetric and corresponds
to a infinitesimal mechanism. Here, we use w; = 10000.0
for member extension and w; = 1.0 for hinge rotation.
A smaller value w; = 0.1 is given for torsional hinge,
because a finite mechanism cannot be generated for this
model without torsional hinge.

A symmetric solution obtained from the solution in
Fig. 12a is shown in Fig. 12b, which is still an infinitesimal
mechanism. In Fig. 12a, a short thick bar represents a rota-
tional hinge around the bar. The nodal locations are updated
in the same manner as Examples I and II, and problem (11)
is solved again to obtain the locations of hinges of a finite
mechanism as shown in Fig. 12¢, where the symbol ‘x’

=)

Fig. 13 Finite mechanism of Model III

@ Springer
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Fig. 14 Model IV: A three-dimensional grid

indicates a torsional hinge. Symmetry conditions are uti-
lized in the same manner as Examples I and II; however, the
number of hinges at each corner node has been reduced so
that a node has one rotational hinge and one torsional hinge
to prevent local instability. Geometrically nonlinear analy-
sis has been carried out for the mechanism in Fig. 12¢ to
confirm that the structure deforms as shown in Fig. 13 with-
out external load. Note that rotations around X- and Y -axes
of node 1 are fixed during analysis to prevent local nodal
instability and to generate a mechanism with single degree
of kinematical indeterminacy.

4.4 Example IV

Finally, we generate a spatial mechanism from the initial
grid as shown in Fig. 14, where the size of the grid is 1
in X-, Y, and Z-directions. The displacements in X- and
Y -directions are fixed at nodes 1 and 10, displacements in
Y- and Z-directions are fixed at nodes 2 and 3, and dis-
placements in X- and Z-directions are fixed at nodes 4
and 5.

The output nodes 6, 7, 8, and 9 move toward node 10 as
a result of input downward displacement at node 1. We set
w; = 1.0 for bending and torsion. A small value w; = 5.01s
assigned for member extension, because a mechanism can-
not be obtained without removing some members. Problem

=

Fig. 15 Existing members and large deformation of mechanism 1 of
Model IV
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Fig. 16 Existing members and large deformation of mechanism 2 of
Model IV

(12) is solved to obtain ;o = 11.63, which ensures feasibil-
ity of problem (11) for « > 1/11.63 = 0.08598. Problem
(11) is solved with @ = 0.1 to obtain an infinitesimal mech-
anism. The nodal locations are updated to the inextensional
deformation, and problem (11) is solved again with @ = 0.1
to obtain a finite mechanism, called mechanism 1, as shown
in Fig. 15.

We next generate a mechanism so that the output node 10
moves upward as a result of input downward displacement
at node 1. In this example, only a local mechanism with
displacement at the input node could be found, although
we tried various values of the parameter « and weights w;.
Therefore, a large value 1.0 x 10* is assigned for w; of
member extension of each diagonal member connected to
the input node, so that they are not eliminated. The weight
coefficients for the remaining components are w; = 1.0 for
bending and torsion, and w; = 10.0 for member extension.
A finite mechanism 2 as shown in Fig. 16 is obtained by
carrying out the following procedure:

1. Solve problem (12) to obtain f.

2. Solve problem (11) for o = 1.1//x.

3. Update nodal locations in the direction of an inexten-
sional deformation of mechanism normalized so that the
maximum absolute value of displacement is 0.1.

4. Solve problem (12) to obtain ji.

5. Solve problem (11) foro = 1.1/jx.

5 Conclusions

A simple and systematic approach has been presented for
designing a spatial link mechanism with partially rigid
joints.

A problem to find an infinitesimal mechanism is formu-
lated as an LP problem to maximize the output displacement
with a penalty term to obtain a sparse solution including
small numbers of hinges and members to be removed. The
dual problem of this problem can be regarded as a plastic
limit analysis problem based on the lower-bound theorem
to maximize the load factor under the equilibrium condition
and upper- and lower-bound constraints on the member-end
forces.
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It has been shown in the numerical examples that the
mechanism found as a solution of the LP problem strongly
depends on the values of the parameters, namely, the
weights for hinge rotation and member extension as well as
the penalty parameter for the sum of generalized strains at
member ends. In the context of conventional plastic limit
analysis problem, the weights multiplied by the penalty
parameter are related to the upper bounds for the general-
ized yield stresses.

If the mechanism obtained by solving the LP problem
is not a finite mechanism, the nodal locations are updated
in the direction of inextensional deformation, and the LP
problem is solved again. It has been shown in the numerical
examples that various planar and spatial mechanisms can be
easily found using the proposed method.

Appendix

We can obtain problem (11) in Section 3.3 as a dual prob-

lem of problem (10) in Section 3.2 from any standard

duality theory of convex optimization. We here adopt the

Lagrangian duality theory for explaining the derivation.
For notational convenience, rewrite problem (10) as

n
min - — fouu + ;awi i (13a)
1=
s.t. yi > |hlul, i=1,...,n, (13b)
Ty = i, (13¢)
The Lagrangian of problem (13) can be defined by
L(us }’7 v, yv}"in) (14)

—f e+ Y (Qwiy — vy + yihw)
= — Min(fipu — i) ifvop > |yl =1.....n),
— 00 otherwise,
(15)

where v € R?, y € R" and Aj, € R are the Lagrange mul-
tipliers. Indeed, problem (13) can be expressed by using L
as

min  sup(L(®, ¥, v,y hin) | (¥, Y, Ain) € R},

because we have that

sup,, , {—vivi + yi(hju) | vi > |yil}

_ o if yi > |h]ul,
| 40 otherwise.
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Then the Lagrangian dual problem is defined by

max inf{L(u, y.v,y, hin) | (u,y) € RTT"}, (16)
V,Y,Ain

Observe that the relation

inf{L(u, y,v,y, Ain) | (u,y) € RIH"}
dinkin + >y inf{(aw; — vy | vi € R}
+inf{ Y7y kT — (fouct i fin) T | € R

ifv, >yl G=1,...,n),
—oo otherwise

Uinhin if v; = aw; > |yl (i =1,...,n),

n
= Zyihi :fou[+)"infin’
i=1
—00 otherwise

holds to see that problem (16) coincides with problem (11).
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