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Abstract It is impractical to implement arbitrary-shaped
piezoelectric patches from the view point of manufacturabil-
ity of fragile piezoelectric ceramics, thus using designable
electrode layers to deliver desired actuation forces pro-
vides a more realistic option in engineering applications.
This study develops a topological design method of surface
electrode distribution over piezoelectric sensors/actuators
attached to a thin-walled shell structure for reducing the
sound radiation in an unbounded acoustic domain. In the
optimization model, the sound pressure norm at specific
reference points under excitations at a certain excitation fre-
quency or in a given frequency range is taken as the objec-
tive function. The pseudo densities for indicating absence
and presence of surface electrodes at each element are taken
as the design variables, and a penalized relationship between
the densities and the active damping effect is employed. The
vibrating structure is discretized with finite element model
for the frequency response analysis and the sound radia-
tion analysis in the unbounded acoustic domain is treated
by boundary element method. The applied voltage on each
actuator is determined by the constant gain velocity feed-
back (CGVF) control law. The technique of the complex
mode superposition in the state space, in conjunction with a
model reduction transformation, is adopted in the response
analysis of the system characterized by a non-proportional
active damping property. In this context, the adjoint-variable
sensitivity analysis scheme is derived. The effectiveness
and efficiency of the proposed method are demonstrated by
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numerical examples, and several key factors on the optimal
designs are also discussed.

Keywords Topology optimization · Piezoelectric
structure · Sound radiation · Active control · Electrode

1 Introduction

Sound reduction has gained great attention in both theo-
retical research and practical engineering application. In
particular, active control of acoustic radiation from vibrat-
ing structures is an important issue in the design of aircrafts,
ships, submarines, etc. Active structural acoustic control
(ASAC) and active noise control (ANC) are considered
as two main approaches and have been widely studied
(Fuller et al. 1991). The former approach employs con-
trol transducers (e.g. piezoelectric patches) attached to the
vibrating structure to implement a classical control strategy
(Gardonio et al. 2004) or the optimal control strategy (Wang
et al. 1991); while the latter generates antiphase noises to
suppress the sound radiation.

It has been shown that the performance of ASAC can
be significantly improved by optimizing configuration of
the actuators/sensors, including their numbers, positions
and sizes (Sors and Elliott 1999; Lee and Chen 1999).
Therefore, many studies have been devoted to find the opti-
mal placement of piezoelectric actuators/sensors in sound
control applications. Among others, Kim et al. (1995) opti-
mized the size, thickness and applied voltage of piezoelec-
tric actuators embedded into a plate at specified locations
to attenuate the structural sound radiation. Genetic algo-
rithms have also been employed to optimize the locations
and sizes of the piezoelectric actuators/sensors for reduc-
ing the vibration and sound level (Jha and Inman 2003).
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Despite of these efforts, it remains a challenging task in
real world applications to treat optimal placement of dis-
crete piezoelectric components with conventional sizing or
parameter optimization formulations. For instance, it is very
difficult to formulate mathematically explicit non-overlap
constraints among the piezoelectric patches as their num-
ber becomes large. However, such a design problem can be
suitably cast into a topology optimization problem.

Over the last two decades, several topology optimization
methods have become popular (Rozvany 2001; Eschenauer
and Olhoff 2001). Many studies on topology optimiza-
tion of piezoelectric layers/patches for various types of
smart structures (Silva and Kikuchi 1999; Kögl and Silva
2005; Kang and Tong 2008) and energy harvesters (Zheng
et al. 2009; Rupp et al. 2009; Chen et al. 2010; Takezawa
et al. 2013) have also been reported. Material distribution
concept-based approaches are often used in topology opti-
mization of structures incorporating piezoelectric materials.
In these methods, similarly as in the solid isotropic material
with penalization (SIMP) approach (Bendsøe 1989; Zhou
and Rozvany 1991), artificial piezoelectric material models
with penalization on piezoelectric coefficients or polariza-
tion are usually employed, see e.g. (Kögl and Silva 2005;
Kang and Tong 2008). In this way, intermediate densities
can be effectively suppressed to achieve crisp black and
white designs.

Topology optimization of structures for mitigating sound
radiation has been widely studied. Most studies focus on
optimizing the distribution of stiffness (Du and Olhoff 2007;
Yoon et al. 2007; Shu et al. 2011) and damping effects
(Dühring et al. 2008; Zhang and Kang 2013). Several works
considered topology optimization of piezoelectric layers to
achieve desired active control performance for reducing the
vibration level, e.g. (Wang et al. 2006). From the view point
of manufacturability of fragile piezoelectric ceramics, how-
ever, it is impractical to implement piezoelectric patches
with arbitrary complex shapes in engineering applications
(Frecker 2003). One way to overcome this limitation is to
optimize the layout of the surface electrode coverage rather
than that of the piezoelectric layer itself. In fact, shape opti-
mization for surface electrode coverage has been proved
effective for maximizing the actuation displacement of the
piezoelectric actuators (Nguyen et al. 2013) or finding an
ideal modal sensor (Donoso and Bellido 2009a, b) in theo-
retical and experimental research. However, there have been
few studies on topology optimization of surface electrodes
of piezoelectric sensor and actuator layers for achieving the
best control performance.

The present study aims to develop a topological design
method for surface electrode coverage over the piezoelec-
tric sensors/actuator layers of a shell structure under har-
monic excitations for reducing the sound radiation. Here,
the piezoelectric actuator layer and sensor layer are bonded

to the top and bottom of the host structure but with oppo-
site poling directions. The surface electrodes are designable
and share the same distribution on both piezoelectric lay-
ers, as illustrated in Fig. 1. Each electrode element on the
sensor is connected to a charge amplifier, and then the sen-
sor output is converted to feedback control voltage with
the constant gain velocity feedback (CGVF) control law.
It is assumed that the coupling interactions of the acous-
tic waves exerted on the vibrating structure are so weak
as can be neglected. The structure is discrete with finite
element method in structural dynamic analysis, while the
sound radiation analysis is performed by the boundary ele-
ment method. The discretized model is characterized by
a non-proportional active damping property in the global
level. Thus, the complex mode superposition technique in
the state space is employed for the steady-state response
analysis after model reduction with real eigenvectors of
the corresponding undamped system. In the optimization
model, the sound pressure norm of the reference point under
a specified excitation at a certain frequency or in a frequency
range is to be minimized. The sensitivity analysis scheme is
derived with the adjoint-variable method and the optimiza-
tion problem is solved with a gradient-based mathematical
programming algorithm.

The remainder of this paper is organized as follows. In
Section 2, structural vibration analysis with the finite ele-
ment method and sound radiation analysis with the bound-
ary element method are described. Section 3 presents the
topology optimization formulation, the sensitivity analysis
scheme and numerical implementation issues. In Section 4,
numerical examples are given to demonstrate the valid-
ity of the proposed method and the influences of several
key factors on the optimal solution are discussed. Finally,
conclusions are drawn in Section 5.

2 Vibration and sound radiation analysis of structures
under piezoelectric active control

2.1 Governing equations for active control of piezoelectric
laminated shells

Consider shell structures with piezoelectric sensor and actu-
ator layers, as schematically shown in Fig. 1. The constitu-
tive relation for the piezoelectric material is expressed by

T = cP : S − eT · E (1)

Here, T and S are the mechanical stress tensor and the
mechanical strain tensor, respectively; cP is the elasticity
tensor of the piezoelectric material, e is the piezoelectricity
tensor and E is the vector of electric field.

Only the electric potential in the thickness direction is of
interest in the actuator layer and we assume that it varies
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Fig. 1 Configuration of
piezoelectric structures with
optimal electrode coverage
under active control

linearly across the thickness. Therefore, the electric field
Ei(i = 1, 2, ...,Ne) for the ith actuator is

Ei =
{

0, 0,−ϕi

ha

}T

(i = 1, 2, ...,Ne) (2)

where Ne is the total number of piezoelectric pairs (sensor
and actuator), ha is the thickness of the actuator layer, and
ϕi(i = 1, 2, ...,Ne) is the applied electric voltage in the ith
actuator patch. The applied voltage in the actuator layer can

be written in the vector form ϕa =
{
ϕ1, ϕ2, ..., ϕNe

}T
.

After finite element discretization, the dynamic equation
of the structure subject to the harmonic external excitation
f (t) and piezoelectric control force fa(t) reads

Mÿ (t)+ Cẏ (t)+ Ky (t) = f (t) + fa (t) (3)

where M ∈ Rn×n, C ∈ Rn×n and K ∈ Rn×n are the
mass matrix, damping matrix and stiffness matrix of the
structural model, respectively; y(t) ∈ Rn×1, ẏ (t) ∈ Rn×1

and ÿ (t) ∈ Rn×1 are the vectors of dynamic displacement,
velocity and acceleration, respectively; n is the number of
degree of freedoms. The control force fa(t) generated by the
piezoelectric actuator is

fa(t) = Kuϕϕa(t) (4)

in which

Kuϕ =
∫
�a

BT
u eTBϕd� (5)

Here, Kuϕ is the structural piezoelectric matrix for the actu-
ator layer, Bu and Bϕ are the strain-displacement matrix
and the electric field–potential matrix, �a is the volume
occupied by the actuator layer. The applied actuator voltage
ϕa(t) is determined by the CGVF control law as

ϕa(t) = −Gaϕs(t) (6)

where Ga is a constant gain diagonal matrix, and ϕs(t) is
the output voltage of the piezoelectric sensor. In real appli-
cations, the electrode of the sensor is connected to a charge
amplifier, thus the sensor charge output is converted to the

voltage output ϕs(t). The voltage output from the sensors
has the form

ϕs(t) = GsKϕuẏ(t) (7)

where Gs is the diagonal gain matrix (with the unit V/A)
of charge amplifiers, and Kϕu=

∫
�s

BT
ϕeBud� represents

the mechanoelectronic coupling effects of the sensor layer,
with �s denoting the volume occupied by the sensor layer.
Substituting (6) and (7) into (4) gives

fa(t) = −KuϕGaGsKϕuẏ(t) (8)

As seen in (8), the control force fa(t) is proportional to the
velocity ẏ(t), thus it can be viewed as a damping force with
the active damping matrix being

CA = KuϕGaGsKϕu (9)

Here, the matrix CA is not positive definite nor symmetric.
This is because Kϕu �= KT

uϕ holds for the case that the sen-
sor and actuator are bonded to the bottom and top surfaces
respectively (Wang et al. 2001). Now the dynamic (3) can
be rewritten as

Mÿ (t)+ (C + CA) ẏ (t)+Ky (t)=f (t) (10)

2.2 Structural frequency response analysis

The external harmonic excitation is given as f (t) = Feiωft

(F and ωf are the amplitude and angular frequency). Thus
the steady-state displacement response y (t) and velocity
ẏ (t) can be expressed as y (t) = Yeiωft and ẏ (t) = veiωft ,
where v = iωfY. The dynamic equation (10) can be thus
rewritten as

WY = F (11)

with W=− ω2
f M + iωf(C + CA)+ K.

When solving this frequency response problem directly,
the computation cost will grow rapidly as the number of
degrees of freedom increases. For improving the computa-
tional efficiency, the structural displacement amplitude Y is
first transformed into a reduced order modal space, as

Y = �η (12)
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Here, the transformation matrix � ∈ Rn×nb consists of the
first nb(nb << n) normalized real eigenvectors of the orig-
inal undamped system and η ∈ Rnb×1 is the generalized
response vector.

Pre-multiplying �T to both sides of (10), one obtains the
reduced-order dynamic equation as

M̃η̈ + C̃η̇ + K̃η = F̃ (13)

Here, M̃ = �TM� and K̃ = �TK� are both nb × nb

diagonal matrices. The reduced-order equation with the
damping matrix C̃ = �T (C + CA)� is not a decoupled
one since the active damping matrix CA cannot be expressed
as a linear combination of the original stiffness matrix K
and mass matrix M.

The complex mode superposition method in the state
space is considered as an efficient approach for eval-
uating the frequency responses of a system with non-
proportional damping property. By introducing the state

vector z = {
η η̇

}T
, the dynamic equation in the state space

is written as
[

C̃ M̃
M̃ 0

]
ż +

[
K̃ 0
0 −M̃

]
z =

{
F̃
0

}
(14)

Equation (14) can be decoupled by pre-multiplying the
matrix of the generalized complex eigenvectors of the sys-
tem to both sides. Thus it can be readily solved with
the complex mode superposition method. The frequency
response can be then obtained using the transformation
given in (12). More details can be found in some other
papers (Igusa et al. 1984; Kang et al. 2012).

2.3 Sound radiation analysis

We consider the sound radiation of a vibrating structure
placed in an acoustic medium with an open boundary, as
shown in Fig. 2. The boundary element method, in which
the far-field boundary condition is satisfied automatically, is
employed for predicting the sound pressure.

Fig. 2 Exterior sound radiation problem

For a time-harmonic linear acoustic system, the sound
pressure p at any point P in the acoustic domain V satisfies
the Helmholtz equation:

∇2p + k2p = 0 (15)

where k = ωf/c is the wave number. Here ω is the angular
frequency of the external excitation and c the sound speed.
The first step in the boundary element method is to obtain
the fundamental solution of the adjoint operator.

In a three-dimensional free space, the fundament solu-
tion is ψ = e−ikR/4πR, where R denotes the distance
between the field point Q and the computational point P (not
necessarily located on the structural boundary). By apply-
ing the Green’s second identity to the two (15), after some
manipulations (see Wu 2000), one obtains

p(P ) = −
∫
S

(
iρAωf νnψ + p

∂ψ

∂n

)
dS, ∀P in V (16)

Here, ρA is the density of the acoustic media, and νn is the
normal velocity pointing backward acoustic domain.

The surface sound pressure p can be found from (see
Wu 2000)

C0(P )p(P ) = −
∫
S

(
iρAωfνnψ + p

∂ψ

∂n

)
dS,∀P on S

(17)

with

C0(P ) = 1 − 1

4π

∫
S

∂R

∂n
dS (18)

The boundary of the acoustic domain (the structural sur-
face S) is then modeled with nBN boundary nodes and
NBM boundary elements. For the sake of simplicity, these
nodes are placed at the same positions as the finite element
nodes. Helmholtz integral (17) can then be discretized as
(Wu 2000)

C0(P )p(P ) = −
NBM∑
i=1

⎛
⎝∫

Si

Ne
BN∑

l=1

Nlpl ∂ψ

∂n
dSi

+iρAω

∫
Si

Ne
BN∑

l=1

NlνlnψdSi

⎞
⎠
(19)

By adopting a general direct boundary element formu-
lation in acoustics, two ‘element coefficients’ hli(P ) and
gli (P ) are defined as (Wu 2000)

hli(P ) =
∫
Si

Nl ∂ψ

∂n
dSi, g

l
i (P )

= −iωρA

∫
Si

NlψdSi,
(
l = 1, 2, ..., Ne

BN

)
(20)
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By assembling hli and gli into the global-level matrices
HB ∈ RnBN×nBN and GB ∈ RnBN×nBN, one obtains the sound
pressure pS of the structural surface as

(CB + HB) pS = GBvn (21)

where CB ∈ RnBN×nBN is a diagonal matrix consisting of
corner coefficients (C0 in (18)). Here, nodal normal velocity
vector vn in the boundary element model has the form

vn = −Nsv = −iωNsY (22)

where Ns = diag
(
n1

s , n1
s , ..., nnBN

s
)

is the normal velocity
matrix and Y is the displacement response obtained in the
structural vibration analysis. Then the sound pressure p at
the specified reference point r (in the acoustic domain) can
be obtained with the structural surface sound pressure ps as

p(r) = −hrps + grvn (23)

where hr ∈ R1×nBN and gr ∈ R1×nBN are global-level vec-
tors obtained similarly as HB and GB in (21). Substituting
(22) into (23) and eliminating ps, it yields

p(r) =
(
−hr

[
(CB + HB)

−1 GB

]
+ gr

)
vn ≡ zrvn (24)

Formulating zr ∈ R1×nBN, which reflects the geometry of
the structural boundary and excitation frequency, is the most
expensive step in the BEM analysis, as well as in each indi-
vidual optimization iteration. However, this step needs to be
performed only once at the beginning of the optimization
process. The norm of the sound pressure ‖pr‖ can then be
determined by real and imaginary parts of sound pressure p
at the reference point r as

‖pr‖ =
√

Re [p(r)]2 + Im [p(r)]2 (25)

3 Topology optimization method

3.1 Problem formulation

The task of the considered optimization problem is to mini-
mize the sound pressure at a specified reference point r with
a given amount of electrode coverage in the design domain.
For describing the surface electrode layout of the piezoelec-
tric actuator and sensor layers, element-wise relative density
variables ρe (e = 1, 2, ..., Ne) are used to indicate absence

and presence of the electrode in the e th element. Thus the
topology optimization problem is mathematically stated as

min .
ρ

f (ρ)

s.t.
(
−ω2

f M + iωf(C + CA(ρ))+ K
)

Y = F

p(r) = zrvn (Y)

Ne∑
e=1

ρeVe − fv

Ne∑
e=1

Ve ≤ 0

0 < ρ− ≤ ρe ≤ 1 (e = 1, 2, ..., Ne) (26)

Here, ρ = {
ρ1, ρ2, ..., ρNe

}T
is the vector of density design

variables, whose lower bound ρ− is set as 10−6 in this study.

The material volume constraint imposes a restriction on
the total area of electrode coverage, which is necessary
for limiting the complexity of the control circuit in real
applications.

In problem (26), two types of objective function f (ρ)
can be considered. The first is to minimize the sound pres-
sure norm of a specified reference point r under a particular
frequency excitation:

f (ρ) = ‖pr‖ (27)

When the sound pressure in a specified excitation frequency
range is of concern, the second type of objective function
can be considered, which is defined as the maximum sound
pressure at Np sampling points ωi

f

(
i = 1, 2, ...,Np

)
within

the frequency range (ωi
f is usually uniformly distributed in

this range):

f (ρ) = max
(∥∥∥p1

r

∥∥∥ , ∥∥∥p2
r

∥∥∥ , ..., ∥∥∥pNp
r

∥∥∥)
(28)

The objective function in (28) is not a smooth one, which
poses a difficulty when a gradient-based algorithm is
adopted for solving the optimization problem. Therefore, an
envelope function, namely KS (Kreisselmeier-Steinhauser)
function is employed to approximate the maximum sound
pressure in a frequency range as

f (ρ) = KS
(∥∥∥p1

r

∥∥∥ ,

∥∥∥p2
r

∥∥∥ , ...,
∥∥∥pNp

r

∥∥∥)
= 1

η
ln

⎛
⎝

Np∑
i=1

eη
∥∥pi

r

∥∥
⎞
⎠ (29)

Here, η denotes the aggregation parameter of the KS func-
tion and it should be given an adequate value. Since the
sound pressure will not be zero at the specified reference
points, (29) provides a smoothed approximation of the orig-
inal objective function. In principal, a larger aggregation
parameter usually leads to a more compact envelop approx-
imation but an extremely large value may give rise to
numerical instability.
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The topologies of the base material layer, piezoelectric
actuator and sensor layers are fixed in the design opti-
mization (26). The electrode layers are typically very thin
and we therefore neglect their stiffnesses and masses. Thus
the global stiffness matrix K and mass matrix M remain
unchanged during the course of optimization. The structural
damping matrix C is assumed to be a proportional one with
damping coefficients α and β, that is C = αM + βK.

As a usual practice in the material distribution concept-
based topology optimization, we use an artificial material
model with penalization on the active damping matrix CA

in (26), as expressed by

CA =
Ne∑
e=1

(ρe)
pp Ke

uϕGe
aGe

sKe
ϕu (30)

Here, pp > 1 is the penalty factor for suppressing interme-
diate density values by making gray elements uneconomical
under a constraint on the electrode coverage area (volume
constraint). Such a penalization model is only a pure numer-
ical treatment and has no definite physical meaning. The
choice of the penalty factor value for topology optimiza-
tion of piezoelectric structures has been discussed in the
literature (Noh and Yoon 2012; Kim et al. 2010).

3.2 Sensitivity analysis

For solving the optimization problem (26) with a gradient-
based mathematical programming algorithm, the sensitivity
analysis of the objective function with respect to the design
variables needs to be performed. In the discrete setting, for
a generic structural behavior function f (Y) (as seen in (22)
and (24), the sound pressure p(r) depends on the structural
displacement Y), we first introduce an adjoint vector μ to
form the real-valued Lagrangian function

And the adjoint vector by solving the following adjoint
equation

μTW = 1

2

(
− ∂f

∂YR + i
∂f

∂YI

)
, (31)

Then the derivative of the function f (Y) with respect to the
design variable ρe can be obtained as (for details the readers
are referred to Kang et al. (2012))

df

dρe
= 2Re

(
μT

(
−ω2

f
∂M
∂ρe

+ iωf
∂(C + CA)

∂ρe
+ ∂K

∂ρe

)
Y

)

= 2Re
(

μT
(
iωfpp (ρe)

(p1−1) Ke
uϕG

e
aG

e
sKe

ϕu

)
Y

)

× (e = 1, 2, ..., Ne) (32)

where YR and YI denote the real and imaginary parts of the
complex amplitude Y.

Specifically, for the first type of objective function
f = ‖pr‖, the derivatives ∂ ‖pr‖/∂YR and ∂ ‖pr‖/∂YI are

∂ ‖Pr‖
∂YR = ∂

√
Re [p(r)]2 + Im [p(r)]2

∂YR

= Re [p(r)]
‖Pr‖

∂Re [p(r)]
∂YR + Im [p(r)]

‖Pr‖
∂Im [p(r)]

∂YR

= 1
‖Pr‖

(
Re [p(r)]

∂Re(−iωzrNsY)

∂YR

+Im [p(r)]
∂Im(−iωzrNsY)

∂YR

)

= − 1
‖Pr‖

(
Re [p(r)]

[
Re(iωzrNs)

T
]

+Im [p(r)]
[
Im(iωzrNs)

T
])

(33)

∂ ‖Pr‖
∂YI = ∂

√
Re [p(r)]2 + Im [p(r)]2

∂YI

= 1
‖Pr‖

(
Re [p(r)]

∂Re(−iωzrNsY)

∂YI

+Im [p(r)]
∂Im(−iωzrNsY)

∂YI

)

= 1

‖Pr‖
(

Re [p(r)]
[
Re(ωzrNs)

T
]

+Im [p(r)]
[
Im(ωzrNs)

T
])

(34)

By substituting (33) and (34) into (31), the adjoint vector
can calculated by adopting the same method for evaluat-
ing the dynamic response described in Section 2.2. Thus
the derivative of the behavior function ‖pr‖ in (32) can be
readily obtained.

For the case of the aggregated sound pressure in a speci-
fied frequency range, the derivative of the objective function
becomes

df

dρe
=

Np∑
i=1

(
eη

∥∥pi
r

∥∥ d
∥∥pi

r

∥∥
dρe

)/ Np∑
i=1

eη
∥∥pi

r

∥∥
(35)

3.3 Optimization process

The solution of the considered topology optimization prob-
lem consists of the following steps:

Step 1: Initialize the design variables ρe (e = 1, 2, ..., Ne)

and form the structural stiffness matrix K, mass
matrix M and damping matrix C.

Step 2: Calculate zr in (24) for each excitation frequency.
Step 3: Form the active damping matrix CA in (30) with

current design variable values ρ.
Step 4: Form the reduced-order dynamic (13) using the

first nb eigenmodes of the undamped system.
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Fig. 3 A cantilever plate with
active control under a
time-harmonic load f (t) applied
at the mid-point of the free edge

Step 5: Solve the reduced-order dynamic (14) with the
complex mode superposition method in the state
space, calculate displacement response Y and nor-
mal velocity response vn.

Step 6: Calculate the sound pressure p (r) in (24) with the
boundary element method.

Step 7: Compute the sensitivities of the sound pressure
with respect to the design variables.

Step 8: Update the design variables with the GCMMA
optimizer (Svanberg 2002).

Step 9: Terminate the iteration process if the relative
difference of the objective function values falls
below a prescribed value. Otherwise, repeat the
iteration process from Step 3.

4 Numerical examples

Several numerical examples are presented to illustrate the
validity of the proposed topology optimization approach
as well as exploring the influences of key factors on the
optimal designs. In all the examples, four-node quadri-
lateral Mindlin shell elements are employed in the finite
element modeling of the vibrating structures, and four-
node quadrilateral boundary elements are used in the sound
radiation analysis. The optimization iteration will be ter-
minated when the relative difference between the objective
function values of two adjacent steps becomes less than
10−4

Table 1 Material properties of the host layer and piezoelectric layers

Host layer
(aluminum)

Young’s modulus Eh = 6.9 × 1010N/m2

Mass density ρh = 2700Kg/m3

Poisson’s ratio νh = 0.3

Piezoelectric layers
(PZT material)

Young’s modulus Epiezo = 7.1 × 1010N/m2

Mass density ρpiezo = 5000 Kg/m3

Poisson’s ratio νpiezo = 0.35

Piezoelectric stress coefficients e31 = e32

= −5.2C/m2,e33 = 15.1C/m2,

e15 = e25 = 12.7C/m2

4.1 Example 1: Topology optimization of electrode
coverage in a cantilever plate

4.1.1 Optimal solution

Firstly, we consider the topology optimization of electrode
coverage for a piezoelectric cantilever plate for imple-
menting active control, as shown in Fig. 3. The plate has
geometrical dimensions a = 0.6m, b = 0.4m and th =
6 × 10−4m for the host layer and ts = ta = 1 × 10−4mfor
the sensor and actuator layers. The plate is placed in a sur-
rounding acoustic medium (air). The material properties of
the host structure and the piezoelectric layers are summa-
rized in Table 1. The mass density and sound velocity of the
air are ρair = 1.21Kg/m3 and c = 340 × 103m/s. A time-
harmonic external force f (t) = F eiωft (with F = 20 N,
ωf = 2πfp and fp = 60Hz) is applied at the mid-point of
the free edge. The Rayleigh’s damping coefficients of the
structure are α = β = 1 × 10−4. The gain value of the
charge amplifier is given as Gs = 1 × 105V/A, and the
negative feedback control gain is Ga = 40.

The plate is modeled by 2400 (60 × 40) uniform-sized
shell elements, while the upper and bottom surfaces are dis-
cretized by 4800 uniform-sized square boundary elements
for sound radiation analysis. The volume fraction ratio of

Fig. 4 Iteration histories of objective function value ‖pr‖ and volume
fraction ratio fV for the cantilever plate with piezoelectric layers under
active control
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Fig. 5 Optimal solution for the
cantilever plate under
fP = 60 Hz excitation.
a Material density contour;
b Electrode layout (with low
density elements hidden)

the electrode in the design domain is restricted by fv = 0.5
and the initial values of the design variables are set as
ρe = 0.5 (e = 1, 2, ..., 2400). The first 60 eigenmodes are
involved in the computation (nb = 60). The penalty factor
pp is given as 3. The objective function is the norm of sound
pressure at the point 0.5m above the plate center. The opti-
mization process converged after 75 iterations. The iteration
history is given in Fig. 4, which shows that the objective
function value steadily decreases from ‖pr‖ = 3.266Pa in
the initial design to ‖pr‖ = 1.148Pa in the final optimal
design. The optimal density distribution and the suggested
electrode layout (with low density elements removed) are
shown in Fig. 5. Figure 6 shows that the vibration level and
surface sound pressure are both greatly reduced after opti-
mization. Here, the vibration contours have a similar but
not exactly identical tendency as the surface sound pressure

contours. As shown in Fig. 7, the maximum control volt-
age applied to the actuator layer is 1.39 kV and the control
voltages in the areas without electrode coverage are close to
zero.

For comparison, the optimal solution obtained by vibra-
tion analysis without model reduction is also given in Fig. 8.
It is almost exactly the same as that achieved by model
reduction (Fig. 5). Also, the predicted objective function
values are ‖pr‖ = 3.265 Pa for the initial design and
‖pr‖ = 1.144 Pa for the optimal design, both of which
have only less than 0.35 % differences compared with those
obtained with the model reduction technique.

The sound pressures sweep in the excitation frequency
range fP = 55 − 65Hz for the optimal design (obtained
under fP = 60Hz excitation) and the initial design
with/without active control are given in Fig. 9. It is seen

Fig. 6 Comparison of initial designs and optimal designs. a Vibration amplitude contour in the initial design; b Vibration amplitude contour in
the optimal design c Norm of surface sound pressure contour in the initial design; d Norm of surface sound pressure contour in the optimal design
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Fig. 7 Actuator voltage amplitude for the optimal design

Fig. 8 Optimal solution for the cantilever plate without model
reduction

Fig. 9 Sound pressure under different excitation frequencies for the
optimal design and the initial design with/without control

Fig. 10 The optimal designs obtained with different volume fraction.
a fv = 0.1; b fv = 0.3; c fv = 0.7; d fv = 0.9

that the sound pressure at the reference point in the opti-
mal design with active control is much smaller than that in
the initial design (with and without control) in the range
fP = 55 − 65Hz. However, this is not always the case, as
will be further discussed in Section 4.1.4.

We now study the influence of the volume constraint on
the optimal design and control effort. Four other volume
fraction ratios fv = 0.1, 0.3, 0.7 and 0.9 are considered, and
the optimal designs are given in Fig. 10. The corresponding
objective function values are ‖pr‖ = 2.414, 1.441, 1.049
and 1.019Pa, respectively. It is clear that the objective func-
tion decreases only slightly (from ‖pr‖ = 1.144Pa for the
case fv = 0.5 to ‖pr‖ = 1.019Pa for the cases fv = 0.9)
as the volume fraction ratio further increases, but at the cost
of increased implementation complexity of the controller.
We also examined the case without the volume constraint,
but the optimization process could not achieve a stable
convergence.

4.1.2 Influence of penalty factor

The influence of the penalty factor pp in (30) on the optimal
design is discussed in this example. The same plate as pre-
viously treated is considered and the excitation frequency is
fixed at fP = 105 Hz. The optimal solutions with three dif-
ferent penalty factors pp = 2, 3 and 5 are given in Fig. 11. It
is shown that the optimal topology changes only slightly as
the penalty factor pp increases. From our numerical experi-
ences, pp = 3 is a suitable value for the penalty factor, and
it will be fixed at 3 hereafter.

4.1.3 Influence of excitation frequency

We now study the influence of the excitation frequency on
the optimal design. Again, the reference point is located
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Fig. 11 Optimal designs
obtained with different penalty
factors. a pp = 2; b pp = 3; c
pp = 5

0.5 m above the plate center. Six different excitation fre-
quencies (fp = 26, 31, 42, 60, 85 and 130 Hz) are consid-
ered, and the corresponding optimal designs are shown in
Fig. 12. As expected, as the excitation frequency increases,
the optimal layout of electrode becomes spatially more
complex to suppress localized vibration modes excited by
the external forces.

4.1.4 Optimal solution for a specified excitation frequency
range

In this example, topology optimization is performed by con-
sidering harmonic excitations within the frequency range
fp = 30 − 43 Hz. The objective function is the aggre-
gated maximum sound pressure given in (29) with the

Fig. 12 Optimal designs in different excitation frequencies. a fp =
26 Hz; b fp = 31 Hz; c fp = 42 Hz; d fp = 60 Hz; e fp = 85 Hz;
f fp = 130 Hz

parameter η = 10. The obtained optimal topology of the
electrode layer is given in Fig. 13. Obvious differences can
be observed between this solution and those obtained at
individual frequencies fp = 31Hz (see Fig. 12b) and fp =
42Hz (see Fig. 12c). The frequency response sweeps of the
sound pressure at the reference point for the three optimal
solutions and the initial design are compared in Fig. 14. As
shown in the figure, the optimal design obtained under a
specified frequency has the smallest sound pressure only in
the vicinity of this specific frequency. On the other hand, the
optimal design achieved with the aggregated objective func-
tion has a smaller peak value of the sound pressure over the
whole frequency range of concern.

4.2 Example 2: Topology optimization of electrode
coverage in a cylindrical shell

4.2.1 Optimal solution

Topology optimization of electrode coverage over the piezo-
electric layers of a laminated cylindrical shell is studied. The
structure has geometrical dimensions Rcy = 2.3m (radius),
Lcy = 2.0m (length) and θcy = 60◦ (central angle). It is
excited by an exterior harmonic force f (t) = F eiωft (with
F = 20N, ωf = 2πfp and fp = 60 Hz) at its center, as
shown in Fig. 15. The shell consists of three layers (host
layer, sensor layer and actuator layer) with the thicknesses
th = 2 × 10−3m and ts = ta = 1 × 10−4m. The material
properties are the same as in the first example. The struc-
tural damping coefficients are given as α = β = 1 × 10−4.
The gain value of the charge amplifier is Gs = 1×105V/A,
and the negative feedback control gain is Ga = 40. The
structure is discretized into 3000 four-node Mindlin shell
finite elements (50 elements in the axial direction and 60
elements in the circumferential direction) in the structural
vibration analysis, and 6000 square boundary elements are
used to discretize the upper and bottom surfaces of the struc-
ture in the sound radiation analysis. The objective function
is the sound pressure norm at the reference point (0.7 m
above the center point). The volume fraction ratio of the
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Fig. 13 Optimal layout of
electrode coverage for the
cantilever plate excited by
fP = 30 − 43 Hz excitation. a
Material density contour; b
Electrode layout (with low
density elements hidden)

electrode in the design domain is restricted by fv = 0.4
and the initial values of the design variables are set to
be ρe = 0.4 (e = 1, 2, ..., 3000). The first 60 eigenmodes
(nb = 60) are involved in the response and sensitivity
analysis.

The optimization process converged after 55 iterations.
The sound pressure decreases from ‖pr‖ = 5.608Pa in the
initial design to ‖pr‖ = 3.745Pa in the optimal design.
The iteration histories of the objective function and volume
fraction are shown in Fig. 16, and the optimal electrode
coverage are presented in Fig. 17. Figure 18 shows the actu-
ator voltage amplitude distribution in the optimal design,
which coincides well with the electrode coverage. The sur-
face sound pressure and the structural vibration level for the
initial and optimal designs are compared in Fig. 19. It is seen
that the overall surface sound pressure and vibration level
are both remarkably reduced. Clearly, the sound pressure
at the reference point is mainly dependent on the struc-
tural vibration amplitude, but also affected by the structural
geometry and the reference point location. Comparisons
between the sound radiation optimization and structural

Fig. 14 Sound pressure under different excitation frequencies for the
optimal and initial designs

Fig. 15 A four edge clamped cylindrical shell under a time-harmonic
load f (t) applied at the center

Fig. 16 Iteration histories of objective function value ‖pr‖ and vol-
ume fraction ratio fV for the cylindrical shell structure under active
control
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Fig. 17 Optimal layout of
electrode coverage for
minimizing sound radiation
from the vibrating cylindrical
shell structure. a Material
density contour; b Electrode
layout (with low density
elements hidden)

a

b

vibration optimization will be discussed in the following
subsection. In addition, the optimal design obtained by
the vibration analysis without model reduction is given in
Fig. 20, which is very similar to that obtained with the model
reduction technique.

4.2.2 Comparison of optimal solutions between dynamic
optimization and sound radiation optimization

The structural dynamic topology optimization is also per-
formed for comparison. Here, the dynamic compliance f =
FTY, which is widely used in structural dynamic opti-
mization (Yoon 2010), is to be minimized. The excitation
frequency is fp = 65Hz. The optimal density distribu-
tion and the suggested electrode coverage are shown in
Fig. 21. The structural vibration contour of the optimal
design is shown in Fig. 22. Further, the frequency sweeps for
the dynamic compliance of the initial and optimal designs
of sound radiation optimization and dynamic optimization
obtained under excitation frequency fp = 65Hz is shown in
Fig. 23. It can be seen that the dynamic optimization solu-
tion has the smallest dynamic compliance in the frequency
range fP = 60− 70 Hz. Moreover, the frequency sweeps of

the concerned sound pressure for the three designs are given
in Fig. 24. Clearly, the sound radiation optimization yields
the best sound radiation property over the frequency range
fP = 60 − 70 Hz.

4.2.3 Influence of reference point position

Now the structure is optimized under fP = 65 Hz excita-
tion and control gain Gc = 40, but for different locations
of the reference point. The optimization results are shown

Fig. 18 Actuator voltage amplitude distribution for the optimal design
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Fig. 19 Comparison of the initial design and optimal solution for
the cylindrical structure. a Vibration amplitude contour in the initial
design; b Vibration amplitude contour in the optimal design c Norm of

surface sound pressure contour in the initial design; d Norm of surface
sound pressure contour in the optimal design

Fig. 20 Optimal layout of
electrode coverage for the
cylindrical structure without
model reduction

Fig. 21 Optimal layout of electrode coverage for structural dynamic optimization. a Material density contour; b Electrode layout (with low
density elements hidden)
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Fig. 22 Vibration amplitude contour of final topology optimization
result for structural dynamic optimization

in Fig. 25. When the reference point is far away from the
vibrating structure, the optimal design shows only slight
dependence on the reference point position (see Fig. 25a
and b). This implies the structural global vibration play
an important role in the optimization when the reference
point is far away from the vibrating structure. However,
when the reference point is close enough to the vibrat-
ing structure, the local vibrations near the reference point
become dominant and thus the reference point position
exerts a notable influence on the optimal topology (see
Fig. 25c and d).

5 Conclusions

This paper presents an optimization formulation and numer-
ical techniques for topological design of the surface

Fig. 23 Comparison of dynamic compliance of initial design and opti-
mal designs obtained by sound radiation optimization and structural
vibration optimization

electrodes of the piezoelectric sensors/actuator layers
attached to a vibrating shell structure, with the aim to min-
imize the sound radiation under active control. A pseudo-
density model with penalization for indicating absence and
presence of surface electrode is used in the topology opti-
mization model, and the design objective is to minimize
the norm of sound pressure at a specific point under a cer-
tain excitation frequency or in a given frequency range. The
finite element method is employed in the structural vibration
analysis, while the boundary element method is used for the
sound radiation analysis in the unbounded acoustic domain.
For the CGVF control considered in this study, the overall
system exhibits a non-proportional active damping property.
To improve the numerical efficiency, the technique of com-
plex mode superposition in the state space, in conjunction
with a model reduction transformation, is adopted in the
dynamic response analysis. In this context, the correspond-
ing adjoint-variable sensitivity analysis scheme is derived.
Several numerical examples are presented to demonstrate
effectiveness of the proposed approach, and the influ-
ences of some key factors on the optimal design are also
discussed.

In this study, an artificial piezoelectric material model
with power-law penalization, similar as the penalized mate-
rial stiffness model in the SIMP approach, is employed
and the volume constraint is considered for imposing
a certain restriction to the circuit complexity of the
control system. It may be also interesting to explore
explicit penalization of gray elements (Borrvall and
Petersson 2001) and control energy constraints in the future
study.

Fig. 24 Comparison of sound pressure of initial design and opti-
mal designs obtained by sound radiation optimization and structural
vibration optimization
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Fig. 25 Optimal electrode layout obtained with different reference point positions under active control
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