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Abstract Triple Friction Pendulum Bearing (TFPB) as a
novel seismic isolator, provides different combinations of
stiffness and damping during its course of motion. The
adaptive behavior of TFPBs is one of the practical solu-
tions for unsuitable performance of seismic isolation sys-
tems under near-fault ground motions. Selecting the TFPB’s
design variables (curvature radii, friction coefficients and
displacement capacity of sliding surfaces) is complicated
process while finding the optimized combination of these
variables depends on input ground motion characteristics
and seismic performance objectives of the superstructure.
Here first, comprehensive nonlinear dynamic analyses are
performed to identify influence of the design variables on
superstructure response (roof acceleration and displacement
of isolated level). Next, a specific numerical optimization
method based on Genetic Algorithms (GA) is applied to
determine the optimum values of the design variables that
minimize superstructure demands. In this process, near-
fault ground motions are employed with ranges of pulse
periods and hazard levels as input excitations. According
to GA results, the derived optimum design variables of
TFPB have significantly distinct intervals for different tar-
get responses such as story drift and TFPB displacement.
Therefore response targets (single objective functions) are
combined to make a new fitness function. The proposed
optimization method for determining design variables and
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design intervals can be used for investigating many other
types of superstructures with similar behaviors.

Keywords Seismic isolation · Triple friction pendulum ·
Near-fault ground motion · Genetic algorithm ·
Optimization

1 Introduction

After extensive damages observed in engineering designed
structures due to vicinity of seismic sources (Bertero et al.
1978; Alavi and Krawinkler 2001; Yang et al. 2005), many
researches have been conducted to study the nature of
ground motion in close distances of causative faults (Hall
et al. 1995). Indeed, there are varieties of characteristics for
these kinds of ground motions that have encouraged engi-
neers to find advance technologies to improve seismic resis-
tance of structures against such kinds of vibrations. One of
the applicable technologies is seismic isolation that has wide
range of well-known applications and different construction
methods. Among different types of implemented isolators,
Friction Pendulum System (FPS), a first generation of fric-
tion concave isolators, is one of the famous systems that was
invented by Zayas in 1986 (Zayas et al. 1990). It consists of
a spherical concave sliding surface and a slider as an inno-
vative bearing that exerts friction as supplemental damping.
Because of the gravitational load of superstructure transmit-
ted to the concave surface, FPS can provide a restoring force
that reduces the residual displacement. The spherical con-
cave surface inevitably produces a constant vibration period
for the isolated structure depending on the curvature radius
of the sliding surface. Nevertheless, under long periods of
near-fault ground motions the efficiency of FPS is doubt-
ful due to its large amplitudes of ground motion (Jangid
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2005). This problem can be solved by adding supplemental
dampers in isolation level. However supplemental dampers
increase floor acceleration and damages of sensitive equip-
ment even in low level earthquakes.

In this regard, multiple pendulums bearing such as Dou-
ble and Triple Friction Pendulum Bearing (DFPB, TFPB)
were invented in such a way to restrict the base displacement
and floor acceleration simultaneously by applying variable
stiffness and damping during their course of motion (Tsai
et al. 2004). TFPB (Fig. 1a) enables engineers to choose
a desirable combination of stiffness and damping in cer-
tain levels of excitation and to acquire multiple performance
objectives that were not accessible by using traditional
base isolation systems (Fenz and Constantinou 2008a, b, c;
Malekzadeh and Taghikhany 2012).

Selecting an optimum set of the design variables in
TFPB, such as radii of curvature, friction coefficients and
displacement capacities of each concave surface, is an
abstruse task since their optimum values depend on input
ground motion characteristics and seismic performance
objective of the superstructure.
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Fig. 1 a Section of a TFPB, b Different stages of sliding related to
adaptive TFPB

Herein, after a precise numerical modeling of TFPB,
sensitivity analysis was done to characterize effects of
variation of design variables on seismic response of the
superstructure. The variation of design variables was deter-
mined according to practical ranges for common buildings
(not special structures like bridges). In next step, design
variables and their combinations that can minimize super-
structure demands (such as floor acceleration, drift ratio and
base displacement) were obtained. In this procedure, near-
fault strong ground motions with different characteristics in
three hazard levels were used. During these procedures
optimum design variables for nonlinear implicit target func-
tions were acquired using Genetic Algorithm (GA) as
an evolutionary population-based meta-heuristic method of
optimization.

2 Adaptive triple friction pendulum bearings (TFPB)

Triple Friction Pendulum Bearing (Fig. 1a) consists of four
stainless steel concave surfaces separated by an internal
rigid slider. All four surfaces are coated with a non-metallic
sliding material. As shown in Fig. 1a, Ri is the radius
of curvature of the surface i, hi is the radial distance
between the pivot point and the surface i and μi is the
coefficient of friction at the sliding interface. Through-
out the course of motion, the internal construction of
these bearings induce sliding to occur on different com-
binations of surfaces that results in changes of stiffness
and damping (Fenz and Constantinou 2008c). Different
stages of sliding that are related to adaptive TFPB dur-
ing different levels of excitation are defined as follows
(Fig. 1b):

Stage I Sliding is on surface 2 and 3. This stage forms
only one pendulum mechanism and defines the
properties of the isolation system under low
levels of excitation (Service Level Earthquake:
SLE).

Stage II Stopping of motion on surface 2 and then slid-
ing on surfaces 1 and 3. This mechanism defines
the primary properties of the isolation system
under moderate levels of excitation (Design
Basis Earthquake: DBE).

Stage III Stopping of motion on surfaces 2 and 3 and then
sliding occur on surface 1 and 4.The friction
coefficient of upper concave surface 4 is suf-
ficiently large to prevent sliding until extreme
levels of excitations (Maximum Credible Earth-
quake: MCE).

Stage IV Contacting of slider to the restrainer on surface
1. Motion remains stopped on surface 3 and slid-
ing occurs on surfaces 2 and 4. This mechanism
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defines properties of isolation bearing beyond
MCE.

Stage V Bearing of slider on restrainer of surfaces 1 and
4 and then sliding continues on surfaces 2 and 3.

The behavior of Triple Friction Pendulum Bearing is
termed “adaptive” if it progressively exhibits various hys-
teretic properties at all of stages shown in Fig. 1b. The
stiffness and damping can be changed to predictable val-
ues at different controllable amplitudes. These properties let
the design of isolation system to be separately optimized in
multiple levels of input excitation. As it is shown in Fig. 2
the hysteretic behavior of TFPBs is simulated by series
model consists of three independent single friction pendu-
lum bearings (SFPBs) according to the work reported by
Fenz and Constantinou (2008b). Each independent single
friction pendulum bearing in this model consists of three
parallel elements:

a) Linear elastic spring that creates the resistance force in
concave surfaces

b) Velocity dependent friction element with rigid plastic
nonlinear behavior

c) Gap element that accounts for the finite displacement
capacity of each sliding surface.

Each linear elastic spring has the stiffness of 1
�Reffi

where
�Reffi is the effective radius of curvature (Ri − hi) and
for each gap element �di is the displacement capacity.
In rigid plastic friction elements the velocity dependent
coefficient of friction for each element is �μi. The depen-
dency of coefficient of friction to the velocity is given by the
following equation (Constantinou et al. 1990; Mokha et al.
1990):

μ = fmax − (fmax − fmin) exp (−a |u̇|) , (1)

Wherefmax is the friction coefficient due to high
velocities, fmin is the friction coefficient in lowest (or neg-
ligible) velocities and a is the rate parameter that adjusts the
rate of the transition of friction coefficient between fmax

and fmin..
To obtain tri-linear adaptive behavior of TFPB (Fig. 1b),

the characteristics of three elements in each SFPB (�Reffi,�μi

and �di) should be selected according to Table 1. Consider-
ing other values for these parameters that are not consistent
with the formulations presented in Table 1 generates disap-
proval hysteretic behavior for TFPB with no advantage to
other sliding isolators.

3 Numerical modeling and verification

Figure 3 shows a schematic of a one story superstruc-
ture that is used for numerical modeling of TFPB in this
study. As shown, the superstructure is assumed to be
one degree of freedom model. The researches on behav-
ior of short and medium stories isolated buildings with
low damping bearings have been demonstrated that the
effect of dynamic characteristics of superstructure on seis-
mic performance of isolated systems is negligible (Kelly
and Naeim 1999). The only cases which dynamic char-
acteristics of superstructure influence on seismic isolation
behavior are tall buildings or structures using highly damped
bearings. In both cases, the purpose of application of
seismic isolation is dissipating energy than period elon-
gation. To optimize TFPB in common application of iso-
lation systems (medium stories isolated buildings with
medium damping), one degree of freedom model acceptably

Fig. 2 Three SFPB connected
in series to model a TFPB
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Table 1 The variables of
series model in terms of TFPB
variables in a fully adaptive
arrangement (Fenz and
Constantinou 2008b)

Coefficient of friction Radius of curvature Nominal displacement Rate parameter

capacity

Element 1 �μ1 = μ2 = μ3
�Reff1 = Reff2 + Reff3

�d1 = dtot − (�d2 +�d3) �a1 = 1
2

a2+a3
2

Element 2 �μ2 = μ1
�Reff2 = Reff1 − Reff2

�d2 = Reff1−Reff2
Reff1

d1 �a2 = Reff1
Reff1−Reff2

a1

Element 3 �μ3 = μ4
�Reff3 = Reff4 + Reff3

�d3 = Reff4−Reff3
Reff4

d4 �a3 = Reff4
Reff4−Reff3

a4

anticipates dynamic behavior of this systems and domi-
nates higher modes of vibration in multi degree of freedom
models. The differential equations of motion are used to pre-
dict motion of four masses of the isolated system in figure.
In each SFPB element of series model the transmitting force
is calculated by:

Fi = W
NTFPBReff i

ui+
μi

W
NTFPB

zi + kri (|ui | − di) sgn (ui)H (|ui | − di)
︸ ︷︷ ︸

Fri

(2)

WhereW is weight of structure and NTFPB is number of
TFPBs used in isolation system. The relative displacement
for each element is ui and Zi is the hysteretic variable that
varies between 1 and -1 governed by (3). kri is the stiffness
exhibited by the displacement restrainers in the ith element
and di is the displacement capacity of each gap element. In
this equation H is a Heaviside step function. The hysteretic
variable Zi is governed by following differential equation
(Fenz 2008):

dZi

dt
= 1

uyi

{

Ai − |Zi |ηi [γisign(u̇iZi)+ βi ]
}

u̇i (3)

Where u̇i is the sliding velocity in each element and uyi is
yield displacement parameter. γi, ηi, βi,Ai are dimension-
less parameters that control the shape of hysteretic loop.
Here consistent with Fenz et al (Fenz and Constantinou
2008b), the following values are assumed for these parame-
ters: uyi = 0.01,Ai = 1, γi = 0.9 and ηi = βi = 2. In a one
story superstructure supported by TFPB system as shown in

Fig. 3, the equations of motion are used to predict motion
of four different masses. The equations of motion for an
isolated system with four degrees of freedom (as shown in
Fig. 3) are obtained:

m4ü4 + cs(u̇4 − u̇3)− ks(u4 − u3) = −m4üg(t) (4)

m3ü3 +NTFPB

[

W
NTFPBReff 3

(u3 − u2)+ μ3
W

NTFPB
Z3

+kr3(|u3 − u2| − d3)sgn(u3 − u2)H(|u3 − u2| − d3)−
Cs

NTFPB
(u̇4 − u̇3)− Ks

NTFPB
(u4 − u3)

]

+ Cbu̇3 = −m3üg(t)

(5)

m2ü2 + W
NTFPBReff 2

(u2 − u1)+ μ2
W

NTFPB
Z2 + Fr2

− W
NTFPBReff 3

(u3 − u2)− μ3
W

NTFPB
Z3 − Fr3 = −m2üg(t)

(6)

m1ü1 + W
NTFPBReff 1

u1 + μ1
W

NTFPB
Z1 + Fr1−

W
NTFPBReff 2

(u2 − u1)− μ2
W

NTFPB
Z2 − Fr2 = −m1üg(t)

(7)

Where the hysteretic variables Zi in above equations are
derived using following relationships:

dZ1

dt
= 1

uy1

{

A1 − |Z1|η1 [γ1sgn(u̇1Z1)+ β1]
}

︸ ︷︷ ︸

z1

u̇1 (8)

dZ2

dt
= 1

uy2

{

A2 − |Z2|η2 [γ2sgn((u̇2 − u̇1)Z2)+ β2]
}

︸ ︷︷ ︸

z2

(u̇2 − u̇1)

(9)

Fig. 3 Schematic of SDOF
system isolated with TFPB
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dZ3

dt
= 1

uy3

{

A3 − |Z3|η3 [γ3sgn((u̇3 − u̇2)Z3)+ β3]
}

︸ ︷︷ ︸

z3

(u̇3 − u̇2)

(10)

As shown in Fig. 3, mi is the mass of ith slider (i =
1, 2, 3) and m4 the mass of superstructure. Matrix notation

is employed as an alternative way of presenting above first
order ordinary differential equations of motion:
{

Ẋ
} = [A] {X} + {B} (11)

Where the state vector {x} is:

{x} = {u1 u2 u3 u4 u̇1 u̇2 u̇3 u̇4 Z1 Z2 Z3}T (12)

And matrix A and B are expresses as:

A =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0
W

NTFPBm1Reff 1
+ W

NTFPBm1Reff 2

W
NTFPBm1Reff 2

0 0 0 0 0 0 μ1
W

NTFPBm1
μ2

W
NTFPBm1

0

W
NTFPBm2Reff 2

−
[

W
NTFPBm2Reff 2

+ W
NTFPBm2Reff 3

]

W
NTFPBm2Reff 3

0 0 0 0 0 0 −μ2
W

NTFPBm2
μ3

W
NTFPBm2

0 W
m3Reff 3

−
[

W
m3Reff 3

+ ks
m3

]

ks
m3

0 0 −(cs+cb)
m3

cs
m3

0 0 −μ3
W
m3

0 0 ks
m4

ks
m4

0 0 cs
m4

− cs
m4

0 0 0

0 0 0 0 z1 0 0 0 0 0 0

0 0 0 0 −z2 z2 0 0 0 0 0

0 0 0 0 0 −z3 z3 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

B =
[

0; 0; 0; 0; Fr2
m1

− Fr1
m1

− üg(t); −Fr2
m2

+ Fr3
m2

− üg(t); Fr3
m3

− üg(t); −üg(t); 0; 0; 0;
]T

A code with MATLAB language was used to obtain
solutions of equations and the results were verified and
compared with numerical outcomes reported by Fenz and
Constantinou (2008b). The specifications of the one story
superstructure in experimental model are shown in Fig. 4.
For the verification the 180 degree component of the 1940
El Centro record with the PGA = 0.31 g was used in time
history nonlinear analysis. To induce isolator displacement
such that having all the sliding regimes in the TFPB’s behav-
ior, the record was multiplied by a factor of 2.15. The
variables of TFPB and its equal series model that was used
in our verification model are presented in Table 2 in com-
pliance with limitations shown in Table 1. In this study
“ode15” a built-in MATLAB function is applied to solve the
state equation.

Figures 5 and 6 show force-displacement diagrams of
TFPB and acceleration time history of roof respectively. In
these figures our results from numerical modeling are com-
pared with the outcomes reported by Fenz and Constantinou
(2008b). It is concluded that our results within a tolerable
error can be used to predict real responses of superstructure
and isolator.

4 Input ground motions

Doubtful behavior of traditional seismic isolators under
large absolute amplitude of velocity pulse and long period

of near-fault ground motions was the main reason to study
how to choose combination of stiffness and damping in
TFPB to acquire appropriate behavior. Due to complex hys-
teretic behavior of TFPB and role of design variables in
this behavior, time history analysis should be applied in
optimization procedure. Accordingly, selecting the ground
motions for this study that represents broad range of ampli-
tude and pulse period of near-fault ground motion is cru-
cial. Table 3 shows a list of pulse-like near-fault ground
motions selected in this study. In this Table, seven records
with pulse periods between 1 and 7 seconds have been
adopted to cover a wide range of pulse periods in near-fault
ground motions. These ground motions were selected from
PEER-NGA database according to Baker’s studies in 2007
(Baker 2007).

To have a right judgment regarding the sensitivity anal-
ysis and to observe all stages of nonlinear behavior of
adaptive TFPBs, input accelerograms have been normalized
to three levels of MCE, DBE and SLE. The design peak
ground acceleration for these levels were considered to be
0.759, 0.517 and 0.291 of gravity acceleration respectively
according to PSHA analysis for a case study region in Iran
(Qazvin City). In spite of the fact that these particular haz-
ard levels limits the generality of the obtained results for
optimum parameters, each level is not so different compar-
ing with hazard levels in other parts across the world. The
derived results support the decency of this assumption as
well.
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Fig. 4 The specification of
isolated superstructure used for
verification of model(Fenz and
Constantinou 2008b)

5 Sensitivity analysis

Sensitivity analysis is employed to determine how variations
of independent design variables impact dependent responses
under strong seismic motions. This technique is used within
specific boundaries for each design variable according to
practical ranges available for buildings and current products.
Sensitivity analysis is a way to decide about selecting those
design variables that have the key role in optimum design of
TFPB. This technique can determine how changes in design
variables of TFPB will impact the target variables such as
base displacement or roof acceleration of isolated struc-
tures. Here for sensitivity analysis seven independent design
variables of TFPB were selected to observe the response
of structure under seven pulse-like ground motions in three
earthquake design levels (MCE, DBE and SLE). The chosen
variables are:

Variable No 1: Effective radius of curvature of sliding
surfaces 1 and 4, Reff 1

Variable No 2: Effective radius of curvature of sliding
surfaces 2 and 3, Reff 2

Variable No 3: Coefficient of friction of sliding surface 1,
μ1

Variable No 4: Coefficient of friction of sliding surfaces 2
and 3, μ2

Variable No 5: Coefficient of friction of sliding surface 4,
μ4

Variable No 6: Displacement capacity of sliding surfaces
1 and 4, d1

Variable No 7: Displacement capacity of sliding surfaces
2 and 3, d2

There are several variables that could control the
response of TFPB or superstructure, however these can

Table 2 The properties of TFPB and alternative series elements(Fenz and Constantinou 2008b)

Properties of TFPB

Surface 1 Reff1 = 435 mm μ1 = 0.02−.04 d1 = 54 mm a1 = 0.1 sec/mm

Surface 2 Reff2 = 53 mm μ2 = 0.01−0.02 d2 = 19 mm a1 = 0.1 sec/mm

Surface 3 Reff3 = 53 mm μ3 = 0.01−0.02 d3 = 19 mm a1 = 0.1 sec/mm

Surface 4 Reff4 = 435 mm μ4 = 0.06−0.13 d4 = 64 mm a1 = 0.1 sec

Properties of series elements

Element 1 �Reff1 = 106 mm �μ1 = 0.01 − 0.02 �d1 = 53.6 mm �a1 = 0.05 sec/mm

Element 1 �Reff2 = 382 mm �μ2 = 0.02 − 0.04 �d2 = 56.2 mm �a2 = 0.05 sec/mm

Element 1 �Reff3 = 382 mm �μ3 = 0.06 − 0.13 �d3 = 56.2 mm �a3 = 0.05 sec/mm
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Fig. 5 TFPB
force-displacement: Comparison
of our results (left) with the
results reported by Fenz and
Constantinou(Fenz and
Constantinou 2008b) (right)

be limited to seven variables considering following
assumptions:

– The isolator is considered as “fully adaptive”. This term
is used (Fenz and Constantinou 2008a) for isolators
which their specifications (such as coefficients of fric-
tion and radii of curvature) are chosen in an arrangement
such that all sliding stages can occur in different levels
of excitation. According to this assumption, sliding sur-
faces 1 and 4 have equal radius of curvature as well as
sliding surfaces 2 and 3. Furthermore, the coefficient of
friction for sliding surfaces 2 and 3 are also considered
to be equal for adaptive TFPB.

– Due to practical limitations, displacement capacity (di)
of sliding surfaces 1 and 2 are considered to be equal

and also coefficient of friction for sliding surface 4 is
assumed to be the same as surface 3.

– Rate parameter “a” for all sliding surfaces is assumed to
be 0.1 sec/mm that is a reasonable value.

– Considering previously reported values and also to
limit the number of effective design variables, the
upper bound of coefficient of friction fmax is considered
twice larger than the lower bound fmin. So only fmin is
considered as the independent variable.

– The stiffness of restrainers, kr is considered to be a large
value (17,500kN/mm for all sliding surfaces).

In sensitivity analysis, one of the variables is consid-
ered to be changed in a specific range while other
design variables stay constant. The variation interval

Fig. 6 Absolute acceleration of
the superstructure roof:
Comparison of our results with
the results reported by Fenz and
Constantinou (Fenz and
Constantinou 2008b)
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Table 3 Specifications of Input ground motions

Record No. Name of earthquake Year Record No. in baker Station Pulse period Magnitude (Mw)

classification Tp(sec)

1 Morgan Hill 1984 24 Coyote Lake Dam (SW Abut) 1 6.2

2 Loma Prieta 1989 33 Alameda Naval Air Stn Hanger 2 6.9

3 Cape Mendocino 1992 38 Petrolia 3 7

4 Imperial Valley-06 1979 13 EI Centro Array #6 3.8 6.5

5 Imperial Valley-06 1979 14 EI Centro Array #7 4.2 6.5

6 Landers 1992 40 Lucerne 5.1 7.3

7 Chi-Chi, Taiwan 1999 64 TCU038 7 7.6

and constant values for seven selected design variable
are shown in Table 4. The interval for each variable
is specified according to values suggested by
manufacturers and also latest researches and tests (Fenz
and Constantinou 2008a; Moeindarbari et al. 2014).
It is clear that the optimum parameters are significantly
limited by the choice of ranges for bearing dimensions.
However, since the purpose of this study is optimizing
the parameters of TFPB in its common application
for medium stories isolated buildings (btw 8 and 12
stories), having an isolation system with maximum effec-
tive period between 2 and 3 seconds will be reasonable
(Mayes and Naeim 2001). The maximum curvature radius
of 1 meter for TFPB will produce a vibration period of
about 2.8 seconds that seems to be acceptable for this
study.

It is also important to mention that the coefficients of
friction is defined as a proposed range of values of the coef-
ficients for normal temperature and without any effects for
aging, contamination and history of loading, and are for a
fresh bearing at normal temperature.

The constant values are chosen equal to the values used
for verification model described in Section 3.

Table 4 The values of design variables for sensitivity analysis

Variation interval Constant value of

of each parameter each parameter

Reff1(m) 0.44 − 1 0.435

Reff2(m) 0.044 − 0.1 0.053

μ1 0.018 − 0.06 0.02

μ2 0.01 − 0.02 0.015

μ3 0.05 − 0.15 0.06

d1(m) 0.054 − 0.11 0.064

d2(m) 0.022 − 0.05 0.019

6 Results of sensitivity analysis

6.1 Maximum relative story displacement (MRSD)

Maximum Relative Story Displacement (MRSD) is
considered as one of the commonly used seismic demands
for evaluation of seismic performance of structures.
Accordingly investigating the influence of variation
of TFPB design variables on MRSD of superstructure
provides a general prospect of seismic performance
of an isolated structure. Figure 7 shows maximum rela-
tive story displacement of superstructure (MRSD) under
ground motion record No.1 versus variation of effec-
tive radius of curvature of sliding surfaces 1 and 4
(Reff 1) while other design variables of TFPB are con-
stant. In this figure MRSD is normalized to its maximum
value and its fluctuation has been plotted for three
hazard levels. As it is shown in this figure the variation
of normalized MRSD exhibits different trends for three
hazard levels which indicates different behavior of TFPB
under different levels of excitation. To summarize the sen-
sitivity of TFPB under seven ground motions, the relative
value of MRSD to its mean value in has been defined by
“γ ”:
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Fig. 7 Sensitivity of MRSD due to variation of Reff 1 for ground
motion number 1 in 3 hazard levels
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γ = MaxR −MinR
(

MaxR+MinR
2

) (13)

where MaxR and MinR are the maximum and the
minimum of MRSD during variation of Reff 1 under
specific ground motion respectively. For exampleMaxR,
MinR and γ for record 1 in MCE level are 1, 0.6
and 0.5 respectively (See Fig. 7). The maximum and
minimum values of γ for seven records in three hazard
levels are summarized in Table 5. According to Table 5
Reff 1 can change the MRSD about 60 to 70 % of its
mean value which clearly demonstrates the importance of
Reff 1 on MRSD. This result indicates that for optimum
design of TFPB, Reff 1 should be considered as a controlling
variable.

6.2 Maximum horizontal floor acceleration (MHFA)

Maximum Horizontal Floor Acceleration (MHFA) is widely
used by engineers to estimate the vulnerability of sensitive
nonstructural elements or equipment. Since one of the main
applications of seismic isolation is protecting nonstruc-
tural components in structures, it is necessary to investigate
sensitivity of MHFA due to variation of TFPB vari-
ables. In this study, the superstructure assumed to be a
single degree of freedom structure. So regarding to the
fact that the rigid mode is the predominant vibration mode
of isolated superstructures, the floor acceleration is a lin-
ear function of relative story displacement of superstruc-
ture. This can be perceived from Fig. 8 that compares the
sensitivity of MRSD and the MHFA for Record No. 5.
Therefore, MHFA is not considered as an independent
object function and the effect of design variables on MHFA
was not considered in sensitivity analysis and optimization
process.

6.3 Maximum displacement in isolation level (MDIL)

In seismic isolated structures Maximum Displacement in
Isolation Level (MDIL) is a decisive criterion which con-
trols the size of surrounding trench of building. Conse-
quently the effect of variation of TFPB design variables on
MDIL is important. Figure 9 shows the sensitivity of MDIL
under ground motion record No.6 for three hazard levels,

Table 5 Minimum and Maximum of γ for variable Reff 1 according
to MRSD variation

Hazard levels MCE DBE SLE

Minimum ofγ (Percent) 8.9 9 27.1

Maximum of γ (Percent) 65.9 64.9 75
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Fig. 8 Comparison of sensitivity of MRSD (upper graph) and MHFA
(lower graph) to variation of Reff1 due to ground motion number 5 in
three levels of hazard

when Reff 1 varies and other design variables of TFPB are
constant. As shown in this figure increasing Reff 1 results in
growing of MIDL. The maximum and minimum levels of γ
for seven different records are presented in Table 6. Accord-
ing to these results and comparing them with Table 5,
variation of Reff 1 has lower influence on MDIL compared
to MRSD.

6.4 Summary of the results of sensitivity analysis

The sensitivity analysis for other six design variables
(Reff 2, μ1, μ2, μ4, d1, d2) is summarized in Table 7. In this
table the sensitivity of MRSD and MDIL due to the varia-
tion of design variables are shown using parameter γ . It can
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Table 6 Minimum and Maximum of γ for variable Reff 1 according
to MDIL variation

Hazard levels MCE DBE SLE

Minimum of γ (Percent) 1 1.6 16.4

Maximum of γ (Percent) 24.5 31.8 37.1

be concluded that all variables have inevitable effect on the
response of the structure. For Reff 2 the largest value of γ is
produced in MCE level. Varying Reff2, γ fluctuates between
4.1 and 36.1 % for MRSD and 0.8 to 16.7 % for MDIL

in 3 levels of hazard. It is clear that μ1 plays an impor-
tant role in controlling the value of MRSD and MDIL. For
μ1, MRSD has the largest value of γ = 52.9 % in DBE
level and the smallest value of γ = 3.1 % in MCE level.
μ1 also affects the variation of MDIL significantly but not
like MRSD. MDIL and MRSD exhibit lower sensitivity to
μ2 compared to μ1 but effect of μ2 is not negligible. μ4 has
the largest influence on variation of response of structure on
MRSD in SLE level by having a γ = 45.2 %.

Comparing the effect of displacement capacities of slid-
ing surfaces on response of structure, d1 exhibits larger
values of γ than d2. For MRSD, γ has a large value of
104.4 % in DBE level due to the variation of d1.

Table 7 Summary of sensitivity analysis for design variables

Hazard level MCE DBE SLE

Effective radius of curvature of sliding surfaces 2 and 3, Reff2

MRSD Minimum of γ (Percent) 4.8 4.1 5.7

Maximum of γ (Percent) 3 6.1 25.2 31.8

MDIL Minimum of γ (Percent) 0.8 1.8 2.4

Maximum of γ (Percent) 16.7 7.3 8.1

Coefficient of friction of sliding surface 1, μ1

MRSD Minimum of γ (Percent) 3.1 4.2 13.7

Maximum of γ (Percent) 42.6 52.9 33.7

MDIL Minimum of γ (Percent) 2.2 1.5 6.1

Maximum of γ (Percent) 19.9 26.8 44.6

Coefficient of friction of sliding surface 2 and 3, μ2

MRSD Minimum of γ (Percent) 1.9 3.6 9.1

Maximum of γ (Percent) 26.1 21.5 42.3

MDIL Minimum of γ (Percent) 0.3 1.1 4.2

Maximum of γ (Percent) 11.3 2 1.2

Coefficient of friction of sliding surface 4, μ4

MRSD Minimum of γ (Percent) 3.3 7.4 8.6

Maximum of γ (Percent) 24.8 44.2 45.2

MDIL Minimum of γ (Percent) 2.1 2.7 2.7

Maximum of γ (Percent) 9.5 14.8 27.3

Displacement capacity of sliding surface 1 and 4, d1

MRSD Minimum of γ (Percent) 9.4 0 0

Maximum of γ (Percent) 71.6 104.4 82.7

MDIL Minimum of γ (Percent) 2.1 0 0

Maximum of γ (Percent) 57.8 35.2 24.2

Displacement capacity of sliding surface 2 and 3, d2

MRSD Minimum of γ (Percent) 0 0 0

Maximum of γ (Percent) 32.3 25.1 0

MDIL Minimum of γ (Percent) 0 0 0

Maximum of γ (Percent) 13.4 5.8 0
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Table 8 Parameters of GA for optimizing process under 7 near-fault
earthquake records

Record No. Crossover fraction Population size Elite count

1 0.85 30 2

2 0.90 28 3

3 0.95 32 3

4 0.85 25 3

5 0.95 35 4

6 0.90 25 3

7 0.90 30 3

7 Optimum analysis of TFPB using genetic algorithm
(GA)

Genetic Algorithm (GA) is a search meta-heuristic opti-
mization tool that mimics the process of natural evolution.
It is based on the idea that the productions of natural
processes are optimum and also the method of reproduction
in natural evolution is optimum itself. In GA a collection
of feasible solutions (population or candidate solutions) is
considered and then better solutions are respectively cho-
sen using the sampling methods. The chosen chromosomes
(solutions) are not always the chromosomes with best fit-
ness function. Applying the same processes that governs
the natural systems like mutation and crossover (recombi-
nation) on the chosen answers, in next step new collection
of solutions will be generated as a new generation. These
steps are iterated to reach more progressed generations with
best mean fitness. At the end, the best chromosome of
the generations with maximum fitness to the problem will
be chosen as the optimum solution (Michalewicz 1995;
Goldberg 1989).

The purpose of this research is to find the optimum
design variables of TFPBs for near-fault ground motions.

This is an optimization problem for minimizing specific
implicit functions of design variables of a TFPB. Hence in
this section, target response functions of design variables are
defined as fitness functions for the GA optimization. The
assumptions that are considered for GA optimization analy-
sis are first described in the following section. Afterwards,
the results of optimization process using GA for three levels
of hazard are summarized using diagrams.

7.1 Defining problem and assumptions

In short and medium height isolated structures, the dynamic
response of system is not hugely influenced by the super-
structure specifications. The most effective parameter of
superstructures that directly influence on the vibration
period of first mode is total floor masses. But as it is known,
the only property of pendulum bearings which dominates
the vibration period of the first mode is radius of sliding
surface. This trait makes the friction concave bearings dif-
ferent from the other types of isolation systems such as
elastomeric ones where the vibration period of the structure
is function of total mass of superstructure and stiffness of
isolation system. Accordingly, the derived results from opti-
mum solution analysis of TFPB have minimum dependence
on superstructure characteristics and therefore it can be gen-
eralized for short and medium height isolated structures.
Herein the overall specifications are two different structural
demands: Maximum Relative Story Displacement (MRSD)
and Maximum Displacement in Isolation Level (MDIL). In
the first step of GA analysis fitness functions f1 and f2

are constructed as implicit function of TFPB seven design
variables.

f1
(

Reff 1, Reff 2, μ1, μ2, μ3, d1, d2
) = (StoryDrif t)max = MRSD

(14)

Fig. 10 a Convergence of mean
and best values of f2 after
several generations during GA
for implicit no.4 b optimum
values of 7 design variables of
TFPB
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Fig. 11 Optimum values of Reff 1 that minimize MRSD in three
ground motion levels of MCE, DBE and SLE

f2
(

Reff 1, Reff 2, μ1, μ2, μ3, d1, d2
) = (IsolatorLevelDispl.)max = MDIL

(15)

Afterwards to simultaneously minimize both fitness
functionsf1 (MRSD) and f2 (MDIL) a new function is
defined according to (16).

f
(

Reff 1, Reff 2, μ1, μ2, μ3, d1, d2
) =

n
∑

i=1

ai
fi

min(fi)

(16)

Where n is the number of single objective functions
(Here n = 2)and ai is the weight of each single objective
functions and is considered to be equal so a1 = a2 =
1
n

= 0.5. Hence function f is a summation of single
objective functions, it is known as a Combined Objective
function.

To satisfy the “fully adaptive” assumption consistent with
Table 1 and to consider modeling assumptions, a nonlinear
constraint function was used together with described inter-
val limitations. The population type of GA was considered
as a real vector and its size was initially chosen to be 20. The
“creation function” which is responsible for creating new
chromosomes (solutions) was considered as a “Constraint
Dependent” function and therefore the population in each
generation will be feasible for all chromosomes.

The “sampling mechanism” is assumed to be “linear
ranking” and the “selection” (which is responsible for
choosing the next productive generation for applying “muta-
tion” or “crossover”) is performed by “roulette wheel” using
the probabilities calculated by “linear ranking mechanism”.
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Fig. 12 Optimum values of Reff 1 that minimize MDIL in three
ground motion levels of MCE, DBE and SLE
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Fig. 13 The optimum values of Reff 1 for combined objective function
f in three levels of MCE, DBE and SLE

To produce new generation (reproduction), “Elite Count” is
assumed to be 2; this means that in “selection” process, two
of best answers will always be selected for the next genera-
tion. The “Crossover Fraction” is assumed to be 0.8 initially;
this leads to selecting of 80 % of the best answers for
“crossover” and the remaining 20 % for “mutation” to make
next generation. “Mutation Function” is considered as “con-
straint dependent” and “Crossover Function” as “Scattered”
type. “Stopping Criteria” was chosen as:

1- The number of generation passes 100 and
2- The tolerance of “Fitness Function” becomes less than

10−6

The initial values for GA parameters are the above men-
tioned values but during each round of simulation these
values are updated until achieving the best results. There-
fore due to different ground motions, for each optimization
process the values of parameters are not the same as initial
values.

These values are presented in Table 8. The optimization
process has been done for seven design variables simultane-
ously for each of seven near-fault ground motions. Figure 10
shows the optimization process on the f2 fitness function
using GA algorithm. This figure shows the optimum values
of seven design variables due to record No.4 according to
Table 3. Figure 10a is a plot that shows the convergence of
the mean and best values of each generation during repro-
duction. According to this figure the minimum obtained
value of fitness function f2 (Maximum Displacement in
Isolation Level) is 251 mm.
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Fig. 14 Optimum values of Reff 2 that minimize MRSD in three
ground motion levels of MCE, DBE and SLE



Seismic optimum design of triple friction pendulum 713

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0 2 4 6 8

R
ef

f2
(m

)

Tp (sec.)

MCE
DBE
SLE

Fig. 15 Optimum values of Reff 2 that minimize MDIL in three
ground motion levels of MCE, DBE and SLE

7.2 Variation of optimum design variables

Optimum effective radius of sliding surfaces 1 and 4, Reff1

The results of optimization process for Reff 1 that minimize
the fitness function f1 (MRSD) are plotted in Fig. 11 for
three seismic hazard levels (MCE, DBE and SLE). As it is
shown, the X axis displays the pulse period of the ground
motion records according to Table 3. These pulse periods
varies from 1 to 7 seconds. It can be concluded that for
different hazard levels, the optimum values of Reff 1 are
in a close range and have a similar variation schema. The
optimum values of Reff 1 for wide range of pulse periods
(between 1 and 6 seconds) are limited between 0.8 and 1
meter. Hence choosing a radius of curvature between 0.8 to
1 meter for sliding surface 1 and 4, the relative displacement
of story will be minimized.

Figure 12 displays the optimum values of Reff 1 that
minimize fitness function f2 (MDIL). As it is shown,
for the periods less than 2.5 seconds, the optimum Reff 1

are proportionally increased by reducing the pulse period.
Moreover, it can be also concluded that the effect of ground
motion level on optimum value of Reff 1 is negligible. Reff 1

has almost same optimum values for three SLE, DBE and
MCE implicit levels. In this case the optimum values of
Reff 1 vary between 0.4 and 0.6 meter for a range of pulse
period more than 2.5 seconds.

There is no obvious range for optimum values of Reff 1

for minimizing function f according to Fig. 13, but it can
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Fig. 16 The optimum values of Reff 2 for combined objective function
f in three levels of MCE, DBE and SLE

be seen that the optimum values are so closed for differ-
ent hazard levels. An interval between 0.7 and 1 meter can
be recommended as optimum effective radius of sliding
surfaces 1 and 4.

Optimum effective radius of sliding surfaces 2 and 3, Reff2

For effective radius of curvature of sliding surfaces 2 and 3,
as it is shown in Fig. 14, there is no specific trend of vari-
ation for optimum values that minimize MRSD. According
to this figure, the optimum values of Reff 2 vary between
0.06 and 0.1 meter. For the ground motions with pulse peri-
ods greater than 4 seconds, it can be also concluded that the
levels of hazards do not affect the optimum values.

Figure 15 shows the optimum values of Reff 2 for fitness
function f2 (minimizing MDIL). The optimum values for
three levels of hazard have a dished shape of variation. It
can also be concluded that the displacement of isolator level
will be minimum if Reff 2 varies in a range between 0.05
and 0.07 meter.

For combined objective function f , as shown in Fig. 16,
there is no definite optimum range for Reff 2.However for
DBE hazard level it can be seen that the optimum values are
confined in a range between 0.05 and 0.06 meter.

Coefficient of friction of sliding surface 1, μ1 According to
Fig. 17a, for coefficient of friction of sliding surface 1 with
the variation interval between 0.06 and 0.018, no clear range
of optimum values could be found that minimize fitness
function f1. Having a close look at Fig. 17a, for earthquake
records with pulse periods smaller than 5 seconds, levels of
hazard do not affect the optimum values of μ1. The dia-
gram of Fig. 17b shows the optimum values of μ1 that
minimize fitness function f2. This diagram shows that for a
wide range of pulse period of ground motions, the optimum
values of μ1 are so close to each other at different hazard
levels. Due to convex shape of the diagram, the maximum
optimum coefficients of frictions are obtained for records
with approximate pulse periods of 4 second. For the earth-
quake records with pulse periods between 2 and 6 seconds,
the optimum values vary in a range between 0.04 and 0.06.

To minimize combined objective function f , in MCE and
DBE hazard levels and pulse period ranges between 1 to 6
seconds, the optimum values of μ1 vary between 0.04 and
0.06 according to Fig. 17c, but for SLE hazard level, there
is a high fluctuation and no range can be proposed.

Coefficients of friction of sliding surfaces 2 and 3, μ2 The
optimum values ofμ 2 to minimize fitness functions f1

and f2, are displayed in Fig. 17d and e. There is no specific
routine in the shape of variation of optimum values, but due
to less effect of μ2 on the response of structure (especially
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Fig. 17 Optimum values of TFPB variables (μ1, μ2, μ3, d1 and d2) that minimize MRSD (f1), MDIL (f2) and combined objective function (f ),
in three ground motion levels of MCE, DBE and SLE

on displacement in isolator level), choosing optimum val-
ues will not be an important issue. This also can be
seen in Fig. 17f that shows optimum values of μ2for
f function.

Coefficient of friction of sliding surface 4, μ3 Figure 17 g
shows that the optimum values of μ3 in different levels of
hazard are very close when the fitness function is f1. As
it is shown, the optimum values of μ3 have a sinusoidal

Table 9 Proposed range for design variables to minimize fitness functions f1 andf2 and Combined Objective function f

Design variable Range for minimizing Range for minimizing Range for minimizing Proposed optimum

f 1(MRSD) f 2(MDIL) f (MRSD,MDIL) value

Reff1(m) 0.8 − 1 0.4 − 0.6 0.7 − 1 06 − 0.8

Reff2(m) 0.06 − 0.1 0.05 − 0.07 0.5 − 0.07 0.06

μ1 0.02 − 0.06 0.04 − 0.06 0.045 − 0.06 0.05

μ2 0.01 − 0.018 0.015 − 0.018 0.013 − 0.019 0.015

μ3 0.06 − 0.14 0.08 − 0.14 0.1 − 0.15 0.1

d1(m) 0.08 − 0.11 0.06 − 0.08 0.08 − 0.11 0.08

d2(m) 0.02 − 0.035 0.04 − 0.05 0.03 − 0.05 0.035
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Fig. 18 The minimum values of combined objective function f due
to optimum values of design variables in three hazard levels

shape for different pulse periods of ground motions. The
optimums values of μ3 for fitness function f2 are plotted
in Fig. 17h. It can be concluded from this figure that the
optimum values of μ3 are close in different hazard levels of
ground motions with pulse periods between 1 and 4 seconds.
For MCE hazard level, the maximum optimum values of μ3

are obtained in the ground motions with a pulse period of 3
seconds. The optimum values of μ3 for f function is plotted
in Fig. 17i. The optimum values fluctuate between 0.1 and
0.14.

Displacement capacity of sliding surfaces 1 and 4, d1

Figure 17j exhibits the optimum values of d1 for fitness
function f1 in three levels of hazard. The optimum val-
ues vary between 0.08 and 0.11 meter. However the shape
of optimum values in DBE and SLE levels are some-
how similar but there is a considerable difference between
the optimum values in different hazard levels. Considering
Fig. 17k, the optimum values of d1 that minimize the iso-
lator level displacement vary between 0.06 and 0.08 meter.
There is no specific schema in the variation of optimum val-
ues of d1 in three levels of seismic hazards. The optimum
values of d1 for combined objective function f are plotted in
Fig. 17l.

Displacement capacity of sliding surfaces 2 and 3, d2

Figure 17m, n and o show the optimum values of d2 that
minimize fitness functions f1, f2 and f . Due to the small
effect of d2 on the response of structure, the error in choos-
ing a range for optimum values will not significantly affect
the minimum values of fitness functions. Hence a variation
range between 0.03 and 0.05 meter will be reasonable.

7.3 Proposed ranges for the design variables to minimize
fitness functions

According to the figures and comments in the last section,
Table 9 proposes ranges of optimum values that mini-
mize maximum relative story displacement (MRSD) and
maximum story acceleration (MDIL). For more effective
variables such as Reff 1 andμ1, choosing the value in the
proposed ranges can significantly reduce the response of the

structure; however for less important design variables such
as μ4 and d2 these ranges are not so definite. In fact the
optimum values of such variables are influenced by more
effective ones due to satisfying the “fully adaptive” behavior
of the TFPB.

Figure 18 shows the minimum values of function f in
different hazard levels. As it is shown for some of ground
motions the minimum value of f is close to one. Accord-
ing to the definition of functionf , this means that both of
single-objective functions f1 andf2 are at their minimum
values. So the design variables can be arranged in a way that
minimizes both of structural responses simultaneously. This
shows the exclusive specification of TFPBs.

Table 9 also proposes a range of optimum values for
design variables in its 4th column. These ranges are so oper-
ative for more effective design variables such as Reff 1,
μ 1and d1. However these ranges are obtained due to an
engineering judgment on the results of optimization process
on combined objective function f .

At the 5th column of Table 9, an optimum range or
value is proposed considering all of the optimum ranges for
different fitness functions. These ranges and values can sig-
nificantly control the response of the short to medium height
structures.

8 Conclusion

The goal of this paper was to propose a method to design the
variables of TFPBs used in isolated structures imposed by
near-fault ground motions. In this process first the mechan-
ical behavior of the TFPBs was modeled by three single
FP elements in series and the variables of this series model
were obtained based on TFPB design variables. The state
equations for an isolated structure were derived parametri-
cally and solved numerically using MATLAB considering
the response history analysis. The obtained numerical solu-
tions were verified by comparing to other published works.
Next, the response of structure to fluctuations of design
variables was evaluated by sensitivity analysis. Seven differ-
ent records of near-fault ground motions with pulse periods
between 1 and 7 seconds in three hazard levels were con-
sidered for analysis. Finally, Genetic Algorithm was applied
to optimize the design variables for two single and one
combined objective functions. Consequently, to minimize
the structural responses, ranges of optimum values for
design variables were proposed. The conclusions are sum-
marized as following:

– Seven considered design variables do not exhibit the
same effect on structural response in optimization pro-
cess. For example the effective radius of curvature of
sliding surfaces 1 and 4 has more important role in
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changing the structural responses than the effective
radius of curvature of sliding surfaces 2 and 3. This is
the same for other variables such as coefficient of fric-
tions and displacement capacities of different sliding
surfaces, where the variables related to sliding surfaces
2 and 3 have much less effect on the values of maximum
structural responses.

– Except some cases the optimum design variables were
closed to each other in three levels of MCE, DBE and
SLE and therefore the influence of hazard levels is
negligible and the particular hazard levels which were
selected in this study does not limit the generality of the
obtained results for optimum parameters.

– For variables such as effective radius of curvatures of
surfaces 1 and 4, a close range is proposed for opti-
mum values. However this range is not the same for
minimizing different structural responses.

– For some ground motions, the obtained minimum val-
ues for combined objective function “f ” shows that
the maximum responses of structure can simultaneously
take their minimum values.

– An optimum range or values were proposed considering
all of the optimum ranges for different fitness functions.

– Due to the fact that the base isolation systems are mostly
designed for low and medium height buildings and the
serving superstructures have a rigid dynamic behavior,
and also considering the fact that the mass of superstruc-
tures does not affect the vibration periods of structures
isolated via friction pendulum bearings (unlike the ones
isolated with elastomeric isolators), the results of opti-
mization process in this research can be further applied
for different structures.
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