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Abstract This paper is focused on structural static reanal-
ysis problem with modification of supports. An efficient
reanalysis method is proposed. The method is based on
the introduction of the modified master stiffness matrices,
the rank-one decomposition of the corresponding incre-
mental stiffness matrix, and the sparse Cholesky rank-one
update/downdate algorithm. Adding and deleting of sup-
ports with arbitrary orientations can be dealt with. Numer-
ical examples show that exact results can be obtained by
the proposed method, and the computational times can be
significantly reduced in comparison with the direct analysis
method.

Keywords Structural static reanalysis · Modification
of supports · Inclined supports · Rank-one decomposition ·
Sparse Cholesky factorization

1 Introduction

In the fields of aerospace engineering, civil engineering,
mechanical engineering and off-shore engineering, many
large scale structures are required to be designed or opti-
mized. If a design is based on an optimization process,
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many structure parameters such as the cross-sections of the
elements, the shape of the structure and the supports of
the structure will be selected as design variables. The opti-
mum solution is related to these variables, and a change
in any of them will cause the variations in displacements
as well as stresses. Thus, a finite element analysis (FEA)
may be required and a great deal of time has been spent on
the numerous repeated analyses. For this reason, structural
static reanalysis has been proposed. The purpose of static
reanalysis is to evaluate accurately structural responses of
the modified structure subjected to a given load by utiliz-
ing the existing original information as much as possible
so that the computational cost can be greatly reduced (Abu
Kassim and Topping 1987). Static reanalysis techniques are
very significant for design and optimization of large struc-
tures, especially for the case where only a small part of the
structure is progressively modified (Terdalkar and Rencis
2006).

To date, many static reanalysis methods have been pro-
posed, especially for the case of the modifications where
the supports of the structure keep unchanged. The various
reanalysis methods for modifications of a structure with
fixed layout can be divided into two categories: direct meth-
ods and approximate methods. Direct methods give exact
closed-form solutions and are suitable for the modifications
where the changes in design variables only affect a relative
small part of the structure. The computational costs of these
methods are associated with the number of the modified ele-
ments, but not with the extent of the change. Most of these
methods are based on the Sherman-Morrison-Woodbury
formulae (Sherman and Morrison 1949; Woodbury 1950).
Various improvements have been made and the readers may
refer to Akgün et al. (2001). Approximate methods provide
an estimate of the response of the modified structure and
they are efficient for the minor modifications to a large part
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or the whole of the structure. The computational costs are
closely related to the number of the modified elements and
the extent of the change. The corresponding methods can be
classified into four categories: local approximations, global
approximations, combined approximations (CA), and pre-
conditioned conjugate gradient (PCG) approximations. For
the details of above four methods, we refer the readers to Li
and Wu (2007) and Kirsch (2008).

Generally, the structural modifications can be classified
into cross-sectional modifications, material modifications,
geometrical modifications, layout modifications and sup-
port modifications, etc. (Olhoff and Taylor 1983). The
reanalysis of the first four modifications have been exten-
sively studied, and some efficient methods have been pro-
posed, for examples, we refer readers to Li and Wu (2007)
and Kirsch (2008) and cited therein. Structural supports
as the design variables have been brought into wide use
(Akesson and Olhoff 1988; Wang and Chen 1996; Takezawa
et al. 2006; Tanskanen 2006; Zhu and Zhang 2010; Wang
et al. 2004), especially in the field of building construction,
aircraft structures and printed circuit boards (Wang et al.
2004). However, the reanalysis methods on support modi-
fications are relatively few. Thus, it is necessary to study
the reanalysis method for such modifications. The changes
in the supports include the variations of the location, the
number, and the type of the support (Olhoff and Taylor
1983). A small change in the supports may influence the
structural performance to a great extent, especially in the
displacements of the nodes and the natural frequency. Mean-
while, these modifications often lead to the variations of
the number of the degrees of freedom (DOFs). Therefore,
the reanalysis on the support modifications is a challenging
problem.

In this paper, the structural static reanalysis problem for
support modifications is studied, and an efficient reanalysis
method is presented. The method is based on the introduc-
tion of the modified master stiffness matrices (Wu et al.
2008) and the rank-one decomposition of the corresponding
incremental stiffness matrix. The sparse Cholesky rank-one
update/downdate algorithm (Davis and Hager 1999, 2001;
Davis 2006) is finally employed to calculate the displace-
ments vector with a little cost and the corresponding stresses
can then be achieved.

2 Problem formulation

Structural static reanalysis for modification of supports can
be stated as follows. Given an initial design, the displace-
ment vector y0 can be obtained by solving the following
equations

K0y0 = R0 (1)

where R0 ∈ Rn denotes the load vector, K0 ∈ Rn×n is the
modified master stiffness matrix (Wu et al. 2008) which is
symmetric and positive definite (SPD) and n is the number
of all node displacements. The introduction of the modified
master stiffness matrix enables us to retain the original order
of the general stiffness matrix, and the specified bound-
ary conditions on the displacements are printed as a part of
the solution. From the initial analysis, the sparse Cholesky
factorization (Davis 2006) of K0 has already been known

K0 = L0LT
0 (2)

where L0 is a lower triangular matrix, and LT
0 represents the

transpose of L0.
Assume a modification of supports occurs, the corre-

sponding modified master stiffness equations is

Ky = R (3)

where R ∈ Rn is the modified load vector and K ∈ Rn×n

is also SPD. The purpose of static reanalysis is to solve
(3) by utilizing the original information as much as pos-
sible so that the computational cost can be significantly
reduced. Once the displacement vector y is obtained, the
stresses can be readily determined by utilizing the explicit
stress-displacement relations.

Note that, due to the introduction of the modified master
stiffness matrices, the order of the modified master stiff-
ness matrix K for the modified structure is equal to that of
the modified master stiffness matrix K0 for the initial struc-
ture. This overcomes a difficult problem, i.e., the variation
of the numbers of DOFs resulting from the modification of
supports.

3 The proposed method for static reanalysis
with modification of supports

In this section, the rank-one decomposition of increment
of modified master stiffness matrix due to modification
of supports is constructed. The sparse Cholesky rank-one
update/downdate algorithm (Davis and Hager 1999, 2001;
Davis 2006) is then used to solve the corresponding static
reanalysis problems.

3.1 The definition of the modified master stiffness matrix

The modified master stiffness matrix is introduced by Wu
et al. (2008). The advantage of using the modified master
stiffness matrix is that its order keeps unchanged when the
displacement boundary conditions are modified since the
order of this matrix is only associated with the number of the
nodes, but not with the number of the supports. Therefore,
for a change in supports, the order of the modified master
stiffness matrix keeps unchanged.
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Consider the structure as shown in Fig. 1, the elas-
ticity modulus of material is E = 2 × 1011Pa, the
cross-sectional area of all the elements is 1 × 10−3m2,

four nodes are located at the vertices of a 2m × 2m
square. The modified master stiffness matrix for the
structure is

K0 = 108 ×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.000000 0 0 0 0 0 0 0
0 1.000000 0 0 0 0 0 0
0 0 1.353553 0.353553 0 0 0 0
0 0 0.353553 1.353553 0 0 0 −1.000000
0 0 0 0 1.000000 0 0 0
0 0 0 0 0 1.000000 0 0
0 0 0 0 0 0 1.353553 −0.353553
0 0 0 −1.000000 0 0 −0.353553 1.353553

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Note that the 1st, 2nd, 5th, and 6th diagonal elements can be
specified to any positive numbers. In general, a number of
the same order of magnitude as that of the diagonal elements
of K0 can be prescribed in order to not enlarge the condition
number of the coefficient matrix (Wu et al. 2008). If the
diagonal entries of K0 have sharp fluctuations, the average
value of these elements will be selected. In this example,
108 is used. The locations of the inserted rows and columns
depend on the serial numbers of constraint nodes only. Since
the newly added diagonal components are positive, K0 is
a SPD matrix. In addition, the corresponding load vector
should also be modified, see Wu et al. (2008) for details.

3.2 Decomposing of the modified master stiffness matrix
into sum of a series of rank-one matrices

Note that each of the modified master stiffness matrices K0

and K can be decomposed into a series of rank-one matri-
ces (Liu et al. 2012). The truss structure in Section 3.1

1 2

3 4

Fig. 1 A truss structure

is employed to illustrate the decomposition. The modified
master stiffness matrix K0 can be decomposed into sum of
nine rank-one matrices:

K0 =
9∑

i=1

ũi ũT
i

where

ũ1 = 104 × [
0 0 −1 0 0 0 0 0

]T
,

ũ2 = 104 × [
0 0 0 0 0 0 −0.594603 0.594603

]T
,

ũ3 = 104 × [
0 0 −0.594603 −0.594603 0 0 0 0

]T
,

ũ4 = 104 × [
0 0 0 −1 0 0 0 1

]T
,

ũ5 = 104 × [
0 0 0 0 0 0 −1 0

]T
,

ũ6 = 104 × [
1 0 0 0 0 0 0 0

]T
,

ũ7 = 104 × [
0 1 0 0 0 0 0 0

]T
,

ũ8 = 104 × [
0 0 0 0 1 0 0 0

]T
,

ũ9 = 104 × [
0 0 0 0 0 1 0 0

]T
.

3.3 The sparse Cholesky rank-one update/downdate
algorithm

Let A ∈ Rn×n be a sparse and SPD matrix. Given the sparse
Cholesky factorization A = LALT

A. Supposing Ā is also
SPD and is formed by a symmetric rank-one modification
of matrix A, i.e.,

Ā = A + ηwwT (η ∈ R, η �= 0)

where w ∈ Rn is a column vector. The algorithm for
modifying the Cholesky factorization of a matrix follow-
ing a rank-one update was given by Gill et al. (1974).
This algorithm, however, did not explore the sparseness of
matrix.

The algorithm mentioned above was studied in a deep-
going way by making full use of the sparsity of the matrix
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(Davis and Hager 1999, 2001; Davis 2006), and the cor-
responding optimal sparse techniques for updating the fac-
torization after adding a series of rank-one matrices to A
or deleting a series of rank-one matrices from A were pre-
sented. The method was named as the sparse Cholesky
rank-one update/downdate algorithm (Davis 2006). It is
based on an analysis and manipulation of the underlying
graph structure, and the computational cost is proportional
to the number of entries in LA that change (Davis 2006).
For details of this algorithm, we refer readers to Davis
(2006). For an exact reanalysis algorithm based on the
sparse Cholesky factorization for a crack growth modeling,
we refer readers to Pais et al. (2012).

3.4 The proposed method

3.4.1 The case of adding some supports

A model of space truss structure is taken as an example to
illustrate our method for the modification of adding some
supports. For the initial structure in Fig. 2, a support is added
at node 9, as showed in Fig. 3. The orientation of the sup-
port can be arbitrary. Assume P is the transformation matrix
from the local coordinate system for describing the support
to the global coordinate system, i.e.,

P =
⎡
⎣

cosα1 cosα2 cosα3

cosβ1 cosβ2 cosβ3

cos γ1 cos γ2 cos γ3

⎤
⎦ (4)

where αi, βi, γi (i = 1, 2, 3) denote the inclined angles
between the local coordinate axes and the global coordinate
ones, respectively; and the corresponding details are given
in Table 1.

Suppose the orientation of the added support at node 9 is
the same as the orientation of zL-axis of the local coordinate
system. Six truss elements, i.e., the elements connected by
nodes 5 and 9, nodes 9 and 10, nodes 9 and 11, nodes 9 and
12, nodes 9 and 13, nodes 9 and 14, are related to node 9.
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Fig. 2 A model of space truss structure
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Fig. 3 The modified model of space truss structure

The element connected by nodes 9 and 12 is employed to
illustrate the proposed method. It has been known that the
contribution of the element connected by nodes 9 and 12
to the modified master stiffness matrix K0 for the initial
structure is (Liu et al. 2012)
[
K(e)

0(9,12)

]
= u9,12uT

9,12 (5)

where

u9,12 =
√

EA

L9,12

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
...

cx
cy
cz
...

−cx
−cy
−cz
...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

← the 25th row
← the 26th row
← the 27th row

← the 34th row
← the 35th row
← the 36th row

(6)

cx = X12 −X9

L9,12
, cy = Y12 − Y9

L9,12
, cz = Z12 − Z9

L9,12
(7)

L9,12 =
√
(X12 −X9)

2 + (Y12 − Y9)
2 + (Z12 − Z9)

2 (8)

Table 1 The inclined angles between the local coordinate axes and
the global coordinate ones

The included angles x-axis y-axis z-axis

xL−axis α1 β1 γ1

yL−axis α2 β2 γ2

zL−axis α3 β3 γ3



Structural static reanalysis for modification of supports 429

E represents the elastic modulus of material, A is the
element cross-sectional area, L9,12 denotes the length of
truss element, (X9, Y9, Z9) and (X12, Y12, Z12) are the
coordinate of nodes 9 and 12 in the global coordinate
system.

Replacing global coordinates at node 9 only with the cor-
responding local coordinates yields the contribution of the
element connected by nodes 9 and 12 to the global stiff-
ness matrix in the new coordinate system for the modified
structure as follows

[
K̄(e)

(9,12)

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 · · · 0 · · · 0 · · · 0
...

...
...

...
...

...
...

0 · · · PTK9,9P · · · PTK9,12 · · · 0
...

...
...

...
...

...
...

0 · · · K12,9P · · · K12,12 · · · 0
...

...
...

...
...

...
...

0 · · · 0 · · · 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

← the 25th, 26th, 27th row

← the 34th, 35th, 36th row

↑
the 25th, 26th,
27th column

↑
the 34th, 35th,
36th column

(9)

where 0 denotes the zero matrix of order 3 × 3, P is given
in (4), K9,9,K9,12,K12,9,K12,12 ∈ R3×3, and

[
K9,9 K9,12

K12,9 K12,12

]
= EA

L9,12

⎡
⎢⎢⎢⎢⎢⎢⎣

c2
x cxcy cxcz −c2

x −cxcy −cxcz
cxcy c2

y cycz −cxcy −c2
y −cycz

cxcz cycz c2
z −cxcz −cycz −c2

z

−c2
x −cxcy −cxcz c2

x cxcy cxcz
−cxcy −c2

y −cycz cxcy c2
y cycz

−cxcz −cycz −c2
z cxcz cycz c2

z

⎤
⎥⎥⎥⎥⎥⎥⎦

(10)

For the meanings of the symbols, we refer readers to (7).
The following equation can be readily verified

[
K̄(e)

(9,12)

]
=

⎡
⎢⎢⎢⎢⎢⎢⎣

I
. . .

PT

. . .

I

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 · · · 0 · · · 0 · · · 0
...

...
...

...
...

...
...

0 · · · K9,9 · · · K9,12 · · · 0
...

...
...

...
...

...
...

0 · · · K12,9 · · · K12,12 · · · 0
...

...
...

...
...

...
...

0 · · · 0 · · · 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

I
. . .

P
. . .

I

⎤
⎥⎥⎥⎥⎥⎥⎦

(11)
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where I represents the identity matrix of order 3 × 3. Note
that⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 · · · 0 · · · 0 · · · 0
...

...
...

...
...

...
...

0 · · · K9,9 · · · K9,12 · · · 0
...

...
...

...
...

...
...

0 · · · K12,9 · · · K12,12 · · · 0
...

...
...

...
...

...
...

0 · · · 0 · · · 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= u9,12uT
9,12 (12)

Substituting (12) into (11), the following equation can be
obtained

K̄(e)
(9,12) = ū9,12ūT

9,12 (13)

where

ū9,12 =

⎡
⎢⎢⎢⎢⎢⎢⎣

I
. . .

PT

. . .

I

⎤
⎥⎥⎥⎥⎥⎥⎦

u9,12 =
√

EA

L9,12

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
...

c̄x
c̄y
c̄z
...

−cx
−cy
−cz
...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

← the 25th row
← the 26th row
← the 27th row

← the 34th row
← the 35th row
← the 36th row

(14)

and

⎡
⎣
c̄x
c̄y
c̄z

⎤
⎦ = PT

⎡
⎣
cx
cy
cz

⎤
⎦ (15)

Based on (13)–(15), it can be seen that after imposing the
support at node 9 in the orientation of zL-axis of the local
coordinate system, the contribution of the element con-
nected by nodes 9 and 12 to the modified master stiffness
matrix K for the modified structure is

[
K(e)

(9,12)

]
= EA

L9,12

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 · · · 0 0 0 · · · 0 0 0 · · · 0
...

...
...

...
...

...
...

...
...

...
...

0 · · · c̄2
x c̄x c̄y 0 · · · −c̄xcx −c̄xcy −c̄xcz · · · 0

0 · · · c̄x c̄y c̄2
y 0 · · · −cxc̄y −c̄ycy −c̄ycz · · · 0

0 · · · 0 0 0 · · · 0 0 0 · · · 0
...

...
...

...
...

...
...

...
...

...
...

0 · · · −c̄xcx −cxc̄y 0 · · · c2
x cxcy cxcz · · · 0

0 · · · −c̄xcy −c̄ycy 0 · · · cxcy c2
y cycz · · · 0

0 · · · −c̄xcz −c̄ycz 0 · · · cxcz cycz c2
z · · · 0

...
...

...
...

...
...

...
...

...
...

...

0 · · · 0 0 0 · · · 0 0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

← the 25th row
← the 26th row
← the 27th row

← the 34th row
← the 35th row
← the 36th row

↑
the

25th
column

↑
the

26th
column

↑
the

27th
column

↑
the

34th
column

↑
the

35th
column

↑
the

36th
column

(16)
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The following fact can be readily verified
[
K(e)

(9,12)

]
= v9,12vT

9,12 (17)

where

v9,12 =
√

EA

L9,12

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
...

c̄x
c̄y
0
...

−cx
−cy
−cz
...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

← the 25th row
← the 26th row
← the 27th row

← the 34th row
← the 35th row
← the 36th row

(18)

The increment of the modified master stiffness matrix is
defined as follows

�K = K − K0 (19)

Utilizing (5) and (17), the contribution of the element con-
nected by nodes 9 and 12 to the incremental matrix �K is

[
�K(e)

(9,12)

]
=

[
K(e)

(9,12)

]
−

[
K(e)

0(9,12)

]
= v9,12vT

9,12−u9,12uT
9,12

(20)

where u9,12 and v9,12 are given in (6) and (18), respectively.
In a similar way, the contributions of the truss elements con-
nected by nodes 5 and 9, nodes 9 and 10, nodes 9 and 11,
nodes 9 and 13, nodes 9 and 14 to the incremental matrix
�K are
[
�K(e)

(5,9)

]
=

[
K(e)

(5,9)

]
−

[
K(e)

0(5,9)

]
= v5,9vT

5,9 − u5,9uT
5,9

(21)

[
�K(e)

(9,10)

]
=

[
K(e)

(9,10)

]
−

[
K(e)

0(9,10)

]
=v9,10vT

9,10−u9,10uT
9,10

(22)

[
�K(e)

(9,11)

]
=

[
K(e)

(9,11)

]
−

[
K(e)

0(9,11)

]
=v9,11vT

9,11−u9,11uT
9,11

(23)

[
�K(e)

(9,13)

]
=

[
K(e)

(9,13)

]
−

[
K(e)

0(9,13)

]
=v9,13vT

9,13−u9,13uT
9,13

(24)

[
�K(e)

(9,14)

]
=

[
K(e)

(9,14)

]
−

[
K(e)

0(9,14)

]
=v9,14vT

9,14−u9,14uT
9,14

(25)

where the expressions of v5,9, v9,10, v9,11, v9,13, v9,14, u5,9,

u9,10, u9,11, u9,13 and u9,14 are similar to those of v9,12 and
u9,12. In order to save space, the details are omitted. The
incremental matrix �K can finally be written in the form

�K =
[
�K(e)

(5,9)

]
+

[
�K(e)

(9,10)

]
+

[
�K(e)

(9,11)

]
+

[
�K(e)

(9,12)

]

+
[
�K(e)

(9,13)

]
+

[
�K(e)

(9,14)

]
+ [�K27] (26)

where

[�K27] =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 · · · 0 · · · 0
...

...
...

...
...

0 · · · c · · · 0
...

...
...

...
...

0 · · · 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎦

← the 27th row

↑
the 27th column

(27)

and c > 0 is a prescribed constant. For the selection of c,
see the last paragraph in Section 3.1. The following equation
can be verified

[�K27] = f27fT
27 (28)

where

f27 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0
...√
c
...

0

⎤
⎥⎥⎥⎥⎥⎥⎦

← the 27th row (29)

Substituting (20)–(25) and (28) into (26) results in

�K = v5,9vT
5,9 + v9,10vT

9,10 + v9,11vT
9,11 + v9,12vT

9,12

+v9,13vT
9,13 + v9,14vT

9,14 + f27fT
27

−u5,9uT
5,9 − u9,10uT

9,10 − u9,11uT
9,11 − u9,12uT

9,12

−u9,13uT
9,13 − u9,14uT

9,14 (30)

Utilizing (19) and (20) yields

K = K0 + v5,9vT
5,9 + v9,10vT

9,10 + v9,11vT
9,11 + v9,12vT

9,12

+v9,13vT
9,13+v9,14vT

9,14+f27fT
27−u5,9uT

5,9−u9,10uT
9,10

−u9,11uT
9,11 − u9,12uT

9,12−u9,13uT
9,13−u9,14uT

9,14

(31)

It can be seen that the modified master stiffness matrix K
for the modified structure is a low-rank modification of the
modified master stiffness matrix K0 for the initial structure.
The sparse Cholesky factorization of K0 has been com-
puted. Thus, the sparse Cholesky rank-one update/downdate
algorithm (Davis 2006) can be used to calculate the fac-
torization of K without directly factoring K. If several
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supports are added, the process above can repeatedly be car-
ried out, and the sparse Cholesky factorization of K can
thus be obtained. Once the factorization of K has been
known, the modified master stiffness equations for modified
structure can be solved by utilizing the forward and back
substitutions, respectively.

3.4.2 The case of deleting some supports

The above truss structures are also taken as an example to
illustrate our method for the case of deleting some supports.
The initial structure is showed in Fig. 3, and a support at
node 9 is removed, as showed in Fig. 2. The orientation of
the support can be arbitrary. Assume P is the transforma-
tion matrix from the local coordinate system to the global
coordinate system, the expression of P is given by (4).

Assume the modified master stiffness matrices for the
initial structure and the modified structure are K0 and K,
respectively. Exchanging the positions of K0 and K in (31)
yields

K = K0 + u5,9uT
5,9 + u9,10uT

9,10 + u9,11uT
9,11 + u9,12uT

9,12

+u9,13uT
9,13 + u9,14uT

9,14 − v5,9vT
5,9 − v9,10vT

9,10

−v9,11vT
9,11−v9,12vT

9,12−v9,13vT
9,13−v9,14vT

9,14−f27fT
27

(32)

Based on the equation above, the sparse Cholesky rank-
one update/downdate algorithm (Davis 2006) can be used
to calculate the factorization of K. If several supports are
deleted, the Cholesky factorization of K can be obtained
by implementing the above process repeatedly. Once the
factorization of K is obtained, the modified master stiff-
ness equations for the modified structure can be solved by
utilizing the forward and back substitutions, respectively.

Compared with the initial analysis, the proposed method
only requires to increase little memory space. Although

the order of the modified master stiffness matrix for ini-
tial structure is little larger than that of the corresponding
reduced stiffness matrix, it doesn’t need to be stored and
only its Cholesky factor is required. Meanwhile, the factor
of the modified master stiffness matrix for initial structure
is unnecessary and can be removed from the memory. The
updated or downdated vectors need to be stored, and little
memory is sufficient since their number is very small. Pais
et al. (2012) discussed the amount of memory regarding to
the direct reanalysis method.

4 Numerical examples

In this section, four examples are presented to illustrate the
effectiveness of the proposed method. Examples 1 and 2 are
focused on static reanalysis problem with added and deleted
some supports whose orientations are the same as the ori-
entations of some axes of the global coordinate system,
respectively. Examples 3 and 4 illustrate the cases where
some inclined supports are added and deleted, respectively.
All the computations are completed on a PC: Pentium 4,
quad-core CPU with 2.66 GHz, 4 GB RAM. Davis’s matrix
computation package CSparse is used, it is available from
www.siam.org/books/fa02. The CSparse is a stand-alone
sparse matrix package, it is written in C, and has an inter-
face with Matlab. The algorithms that the CSparse contains
are either asympotical optimal or fast in practice. For the
details of the CSparse, see Davis (2006).

4.1 The case of adding supports

Consider the tower crane structure as shown in Fig. 4 a.
Its bottom is zoomed in and is shown in Fig. 4 b. The
height of the tower is 10.97 m, the length of the cargo
boom is 37.7724 m. The cross-sections of all beams are
0.1 m × 0.1 m. The elasticity modulus of the material is

Fig. 4 The tower crane structure

(b)(a) (c)

www.siam.org/books/fa02
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Table 2 The maximum vertical displacements calculated by the pro-
posed method and the direct analysis method for the modified tower
crane structure in Section 4.1

Proposed method Direct analysis method

The maximum vertical –0.130195m –0.130195m

displacements

E = 3 × 1011Pa. The structure has 2920 space beam ele-
ments and 2626 nodes. Every node has 6 DOFs except the
4 constrained nodes and the total number of DOFs of the
structure is 15732. One node is subjected to a vertical load
P = −30000N . To reinforce the structure (modification),
one free node is constrained, as shown in Fig. 4 c where
‘�’represents the newly added constrained node, and 6 new
support constraints are added. Thus, the modified structure
has 5 constrained nodes and 15726 DOFs.

Table 2 gives the maximum vertical displacements of
the modified structure calculated by the proposed method
and the direct analysis method, respectively. Here, direct
analysis means that the displacements vector is achieved
by calculating the sparse Cholesky factorization of the
modified master stiffness matrix for the modified structure
directly, and utilizing the forward and back substitutions. It
can be observed that, for the six-digit accuracy, the results
of the two methods are identical. The computational times
for the modified structure are shown in Table 3. It is obvious
from Table 3 that the computational time of the proposed
method is less than that of the direct analysis method.

4.2 The case of deleting supports

The initial structure is the same as the modified tower crane
structure in Section 4.1. One constrained nodes marked
by ‘�’ is released, and the corresponding 6 support con-
straints are deleted. The modified structure is identical with
the initial structure in Section 4.1. Table 4 presents the
maximum vertical displacements of the modified structure
calculated by the proposed method and the direct analy-
sis method, respectively. The computational times for the
modified structure are listed in Table 5.

4.3 The case of adding skew supports

The initial structure is the same as the initial tower crane
structure in Section 4.1. One inclined support is added, its

Table 3 The computational times for the modified tower crane
structure in Section 4.1

Proposed method Direct analysis method

The computational times 0.0265s 0.0673s

Table 4 The maximum vertical displacements calculated by the
proposed method and the direct analysis method for the modified tower
crane structure in Section 4.2

Proposed method Direct analysis method

The maximum vertical −0.129739m −0.129739m

displacements

Table 5 The computational times for the modified tower crane
structure in Section 4.2

Proposed method Direct analysis method

The computational times 0.0264s 0.0677s

Table 6 The maximum vertical displacements calculated by the
proposed method and the direct analysis method for the modified tower
crane structure in Section 4.3

Proposed method Direct analysis method

The maximum vertical −0.130195m −0.130195m

displacements

Table 7 The computational times for the modified tower crane
structure in Section 4.3

Proposed method Direct analysis method

The computational times 0.0211s 0.0677s

Table 8 The maximum vertical displacements calculated by the
proposed method and the direct analysis method for the modified tower
crane structure in Section 4.4

Proposed method Direct analysis method

The maximum vertical −0.129739m −0.129739m

displacements
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Table 9 The computational times for the modified tower crane
structure in Section 4.4

Proposed method Direct analysis method

The computational times 0.0213s 0.0676s

location is the same as that in Section 4.1. The orienta-
tion of the added support is the same as the orientation of
axis yL of the local coordinate system. Thus, the modi-
fied structure has 5 supporting nodes and 15731 DOFs. The
transformation matrix for the newly added support is

C =
⎡
⎢⎣

1 0 0

0
√

2
2 −

√
2

2

0
√

2
2

√
2

2

⎤
⎥⎦.

Table 6 gives the maximum vertical displacements of the
modified structure obtained by the proposed method and
the direct analysis method, respectively. The computational
times for the modified tower crane structure are displayed
in Table 7.

4.4 The case of deleting skew supports

The initial structure is the same as the modified tower crane
structure in Section 4.3. One inclined constrained node is
released, and the modified structure is identical with the ini-
tial structure in Section 4.3. Table 8 presents the maximum
vertical displacements of the modified structure obtained by
the proposed method and the direct analysis method, respec-
tively. The computational times for the tower crane structure
are exhibited in Table 9.

It can be seen from the above examples that exact results
can be obtained by the proposed method, and the computa-
tional time is remarkably reduced in comparison with those
of the direct analysis method.

5 Conclusions

A direct method for static reanalysis with modifications of
supports has been proposed. The modified master stiffness
matrices are first introduced. The rank-one decomposition
of the corresponding incremental matrix is then constructed.
The sparse Cholesky rank-one update/downdate algorithm
is finally used to solve such static reanalysis problems.
The method can deal with various modifications of sup-
ports and the orientations of the corresponding supports are
unrestricted. Exact results can be achieved and the com-
putational time is greatly reduced in comparison with the

direct analysis method. In addition, the sparse Cholesky
factorization of the modified master stiffness matrix for
the modified structure has been obtained, it can be cho-
sen as the initial information when the structure is further
modified. The further work is to generalize the proposed
approach to structural reanalysis problems with topological
modifications.
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