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Abstract Damping performance of a passive constrained
layer damping (PCLD) structure mainly depends on the
geometric layout and physical properties of the viscoelastic
damping material. Properties such as the shear modulus of
the damping material need to be tailored for improving the
damping of the structures. This paper presents a topology
optimization method for designing the microstructures in
2D, i.e., the structure of the periodic unit cell (PUC), of cel-
lular viscoelastic materials with a prescribed shear modulus.
The effective behavior of viscoelastic materials is derived
through the use of a finite element based homogenization
method. Only isotropic matrix material was considered and
under such assumption it is found that the effective loss
factor of viscoelastic material is independent of the geomet-
rical configuration of the PUC. Based upon the idea of a
Solid Isotropic Material with Penalization (SIMP) method
of topology optimization, the relative material densities of
the elements of the PUC are considered as the design vari-
ables. The topology optimization problem of viscoelastic
cellular material with a prescribed property and with con-
straints on the isotropy and volume fraction is established.
The optimization problem is solved using the sequential lin-
ear programming (SLP) method. Several examples of the
design optimization of viscoelastic cellular materials are
presented to demonstrate the validity of the method. The
effectiveness of the design method is illustrated by compar-
ing a solid and an optimized cellular viscoelastic material
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as applied to a cantilever beam with the passive constrained
layer damping treatment.
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1 Introduction

Passive constrained layer damping (PCLD) is recognized as
an effective technique to reduce resonant noise and vibra-
tion of structures (Kerwin 1959; Nakra 1998). PCLD has
been used widely in surface damping treatments in many
engineering fields, including land based vehicles, airplanes,
and ships. The efficiency of a constrained layer damping
treatment relies on the shear deformation in the viscoelas-
tic layer (Mead and Markus 1969; Rao and Shulin 1993),
and this state of shear deformation is the main mechanism
by which the vibration energy is dissipated and transformed
into heat or other forms of energy. The stiffness, mass and
damping of the viscoelastic structure and material have sig-
nificant effects on the shear deformation in the viscoelastic
layer. Thus, design optimization of the structural and mate-
rial properties plays a very important role in improving the
behaviors of PCLD treatments.

Many researchers have suggested different design opti-
mization formulations for damping layout of structures.
Studies have primarily focused on designing a constrained
layer damping treatment in which the layout of the damp-
ing layer is optimized to achieve high damping efficiency
for the structure. Zheng et al. (2005) used the Genetic Algo-
rithm (GA) to find optimal locations of damping patches for
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minimizing the structural vibration response of a cylindrical
shell structure. Alvelid (2008) studied the optimal positions
and shapes of PCLD patches for minimizing the frequency-
averaged response. Several researchers (Ro and Baz 2002;
Moreira and Rodrigues 2006; Ling et al. 2011) sought the
optimal design of damping treatment for maximizing the
modal damping ratios, which was found with a modal strain
energy (MSE) approach. More recently, Kim (2011), Kim
et al. (2013) proposed topology optimization approaches in
order to find an effective partial placement of damping treat-
ment within a given amount of damping material. Kang et al.
(2012) studied the optimal distribution of damping material
in vibrating structures subject to harmonic excitations by
using a topology optimization method.

Despite layout design of damping layer is effective to
enhance structural damping performance, the property of
viscoelastic materials (i.e. stiffness, damping of viscoelas-
tic material) is another critical factor affected the structural
damping performance. Lall et al. (1987) carried out multi-
parameter optimum design studies for a sandwich plate
with constrained viscoelastic core. Design variables were
chosen as shear modulus and thicknesses of viscoelastic
layer, with objective functions as modal loss factor and
displacement response. They found out that the maximum
obtainable modal system loss factor exists at different val-
ues of shear modulus for the different modes and for the
higher modes it occurs at higher shear modulus values.
Then, Al-Ajmi (2004) also indicated that there is a specific
value of the shear modulus that maximizes the modal loss
factor of damped structures under given mechanical envi-
ronment. However, different working conditions of structure
implies different requirements for optimal damping mate-
rial properties, and it is very difficult, if not impossible,
to implement optimal material properties by choosing the
existing viscoelastic damping materials. In fact, this spe-
cific shear modulus can be achieved by design optimization
of material microstructure through a topology optimization
method. Therefore, microstructural design of viscoelastic
materials with specially desired properties is a new con-
cept for improving the structural damping effect. Up to now,
most of the research regarding any optimal design of PCLD
treatment concentrated on the macro scale, i.e. the macro
structural layout or damping material distribution, and little
work has been devoted to design the micro-structures of the
damping materials.

Topology optimization provides a powerful tool for
the creative design of structural configurations, which has
been used to design the material microstructure for pre-
scribed properties. Topology optimization of microstruc-
ture/material was first proposed by Sigmund (1994, 1995).
Since then, plenty of work on the basis of this technique has
been carried out for different application areas to obtain a

material with prescribed or extreme effective material prop-
erties (Gibiansky and Sigmund 2000; Huang et al. 2011,
2012; Nomura et al. 2009; Radman et al. 2013). Examples
of these materials are elastic composites with maximum
bulk or shear modulus, elastic composites with a negative
Poisson’s ratio and thermo-elastic composites with nega-
tive or zero thermal expansion coefficients, et cetera. The
upper bounds on open-cell foam homogenized moduli have
been given by Dimitrovová (2005). Furthermore, topology
optimization of the microstructure has also been applied to
the design of microstructures of viscoelastic composites for
optimal damping characteristics (Yi et al. 2000).

This paper focuses on the design of a periodic vis-
coelastic cellular material with prescribed properties using
the topology optimization method and includes an exam-
ple of the methodology applied to a cantilever beam. It
is assumed that the microstructure of the cellular material
is composed of regular periodic unit cells (PUCs) and the
PUC is discretized into finite elements with periodic bound-
aries. In Section 2 the homogenization theory is used to
calculate the effective properties (i.e., stiffness, damping)
of the material. We find that the effective loss factor of
the material is independent of the geometrical configura-
tion of the PUC when choosing an isotropic solid material
as the matrix material. In Section 3, based upon the SIMP
method of topology optimization, the material relative den-
sities of the PUC are considered as the design variables,
and the minimization of the difference between the effec-
tive and the desired storage shear modulus is selected as
the objective of the material design with the isotropy of
properties and the volume limit of matrix material as the
constraints. Next, the sensitivity analysis is conducted to
estimate the effect of individual elements on the variation
in objectives and the constraints. The optimization problem
is solved using the sequential linear programming (SLP)
method. Then in Section 4 several examples of an opti-
mized design are presented to demonstrate the validity of
the design approach and methodology. The effectiveness of
this design method that enhances the structural modal loss
factor and reduces the resonant response is shown by mak-
ing a comparison between a solid and an optimized cellular
viscoelastic material as applied to a cantilever beam with
a PCLD treatment. Finally, main conclusions are given in
Section 5.

2 Homogenization and linear viscoelasticity

2.1 Linear viscoelasticity in the frequency domain

Suppose that the viscoelastic structural 2-D problem is
under steady-state harmonic excitation with isothermal
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conditions. Using the Correspondence Principle (Christensen
2010), the viscoelastic problem at a fixed frequency ω is as
follows:

∂σ̄ij (x)

∂xj
= −ω2ρūi;

σ̄ij (x) = Gijkl(ω)ε̄kl(x);
ε̄ij (x) = 1

2

(
∂ūj (x)

∂xi
+ ∂ūi(x)

∂xj

)

(1)

where ω is the excitation frequency, xi , xj are Cartesian
coordinates, ūi , ε̄ij and σ̄ij are the spatial part of the
displacement, strain, and stress, respectively:

u(x, t) = ū(x)eiωt , εij (x, t) = ε̄ij (x)e
iωt ,

σij (x, t) = σ̄ij (x)e
iωt (2)

The complex modulus tensor Gijkl(ω) is given by

Gijkl(ω) = G′
ijkl(ω)+ iG′′

ijkl(ω) (3)

where G′
ijkl(ω) ∈ R, and G′′

ijkl (ω) ∈ R denote the storage
and loss modulus, respectively. For isotropic materials with
constant Poisson’s ratio, the loss modulus can be expressed
in terms of the storage modulus and loss factor as

G′′
ijkl(ω) = η0(ω)G′

ijkl(ω) (4)

where, the storage modulus is expressed in terms of shear
modulus C and Poisson’s ratio ν as

G′
ijkl(ω) = 2C(ω)

(
δikδjl + ν

1 − 2ν
δij δjlδmkδml

)
(5)

The complex modulus tensor Gijkl(ω) can be rewritten as
follow.

Gijkl(ω) = G′
ijkl(1 + iη0(ω)) (6)

2.2 Homogenization method for linear viscoelasticity

In frequency domains, the macroscopic behaviors of a
viscoelastic cellular material can be characterized by the
effective stress tensor σ̃ij and strain tensor ε̃kl over a

homogenized medium. They are interrelated by the effective
complex modulus tensor, GH

ijkl(ω).

σ̃ij = GH
ijkl(ω)ε̃kl (7)

Where GH
ijkl(ω) depends upon the volume fraction of solid

material and the microstructure of the PUC, and can be
obtained by the homogenization theory (Hassani and Hinton
1998a, b; Yi et al. 2000).

A structure is composed of spatially repeated PUCs and
the PUC is very small compared with the size of the struc-
tural body as shown in Fig. 1. A micro-scale coordinate
system (Y) is introduced to describe the sharp variation of
responses and material properties in a near neighborhood
of a point (X). The coordinate in Y can be regarded as an
amplification of that in X with a positive real parameter
δ(y = x/δ, δ << 1). Based on the idea of homogenization
method for viscoelastic materials, the effective complex
modulus can be expressed as

GH
ijkl =

1

|Y |
∫
Y

Gpqrs(y, ω)

(
δkpδlq −

∂χkl
p

∂yq

)

×
(
δirδjs − ∂χ

ij
r

∂ys

)
dY (8)

where generalized displacement function χ(y) is the peri-
odic solution of the following micro-homogenization prob-
lem

∫
Y

Gijpq(y, ω)
∂χkl

p

∂yq

∂vi
∂yj

dY =
∫
Y

Gijkl(y, ω)
∂vi
∂yj

dY,

∀v ∈ VY = {u|y ∈ Y, u(y) = u(y + Y )}
(9)

By solving problem (9) and using (8) the effective com-
plex modulus at a given frequency is obtained. However,
the functions in (8) and (9) are complex, thus, to obtain
the numerical solutions of the effective complex modulus,
a finite element implementation with complex variables are
required.

In this paper, it is supposed that the viscoelastic material
is isotropic and Poisson’s ratio is real constant. Under this
assumption, the substitution of (6) into (9), gives

∫
Y

(1 + iη0(y, ω))G′
ijpq(y, ω)

∂χkl
p

∂yq

∂vi
∂yj

dY

=
∫
Y

(1 + iη0(y, ω))G′
ijpq(y, ω)

∂vi
∂yj

dY

∀v ∈ VY = {u|y ∈ Y, u(y) = u(y + Y )} (10)
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Fig. 1 A structure is composed
of PUCs

If y ∈ Yvoid(Yvoid denotes the domain of void),
G′

ijpq(y, ω) = 0. And if y ∈ Ysolid (Ysolid denotes the

domain of solid), η0(y, ω) = η0(ω). Therefore, (10) can be
simplified as

∫
Y

G′
ijpq(y, ω)

∂χkl
p

∂yq

∂vi
∂yj

dY =
∫
Y

G′
ijpq(y, ω)

∂vi
∂yj

dY

∀v ∈ VY = {u|y ∈ Y, u(y) = u(y + Y)} (11)

As the shear storage G′
ijpq(y, ω) is real, the solution of (11)

χkl
p must be real. Similarly, with the substitution of (6) into

(8), the effective complex modulus can be written as follows

GH
ijkl(ω) = 1

|Y |
∫
Y

(
G′

pqrs(y, ω)+ iG′′
pqrs(y, ω)

)

×
(
δkpδlq −

∂χkl
p

∂yq

) (
δirδjs − ∂χ

ij
r

∂ys

)
dY

= 1

|Y |
∫
Y

(
G′

pqrs(y, ω)+ iη0(ω)G′
pqrs(y, ω)

)

×
(
δkpδlq −

∂χkl
p

∂yq

) (
δirδjs − ∂χ

ij
r

∂ys

)
dY

= 1

|Y |
∫
Y

G′
pqrs(y, ω)

(
δkpδlq −

∂χkl
p

∂yq

)

×
(
δirδjs − ∂χ

ij
r

∂ys

)
dY

+iη0(ω)
1

|Y |
∫
Y

G′
pqrs(y, ω)

(
δkpδlq −

∂χkl
p

∂yq

)

×
(
δirδjs − ∂χ

ij
r

∂ys

)
dY

(12)

As the solution of the (11) χkl
p is real, the real part and the

imaginary part of the effective complex modulus in (12) can
be expressed as follows.

G′H
ijkl(ω) = 1

|Y |
∫
Y

G′
pqrs(y, ω)

(
δkpδlq −

∂χkl
p

∂yq

)

×
(
δirδjs − ∂χ

ij
r

∂ys

)
dY (13)

G′′H
ijkl(ω) = η0(ω)

1

|Y |
∫
Y

(G′
pqrs(y, ω))

(
δkpδlq −

∂χkl
p

∂yq

)

×
(
δirδjs − ∂χ

ij
r

∂ys

)
dY (14)

G′′H
ijkl(ω), and G′H

ijkl(ω) denote the effective storage modu-
lus (i.e., real part) and loss modulus (i.e., imaginary part),
respectively. So, the relation between the effective storage
and loss modulus is given as follows:

G′′H
ijkl(ω) = η0(ω)G′H

ijkl(ω), or, ηH (ω) = G′′H
ijkl(ω)

G′H
ijkl(ω)

= η0(ω),

(15)

The effective complex modulus can be rewritten as:

GH
ijkl(ω) = (1 + iη0(ω))G′H

ijkl(ω) (16)

Obviously, the effective loss factor of viscoelastic cellular
material is same as that of viscoelastic solid matrix material.
In other words, the effective loss factor of cellular viscoelas-
tic material is independent of the geometrical configuration
of the PUC. As far as we know, it is an original contribution.

In this case, by solving the problem (11) and using (13)
the effective storage modulus is obtained. Then, the effec-
tive complex modulus of viscoelastic cellular material is
easily obtained by (16). Fortunately, the functions in (10)
and (12) are real. Thus, for the numerical solutions of the
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4 node iso-parametric 
finite element

i

Fig. 2 A discretized design domain of the PUC

effective complex modulus, we only require a finite element
implementation with real variables. Therefore, it is shown
that the troubles with the complex operations in (7) and (8)
can be avoided.

3 The optimization formulation and sensitivity analysis

This paper investigates the design of a periodic viscoelastic
cellular material with prescribed properties using the topol-
ogy optimization method. It is assumed that the microstruc-
ture of cellular material is composed of PUCs, and the PUC
can be discretized into finite elements as shown in Fig. 2.
The material distribution of the PUC can be described by the

element’s densities (ρ1, ρ2, ρ3, · · · , ρn), and n is the total
number of elements in the PUC. ρi = 1 (or 0) means that
the i-th element is filled by a solid material (or a void). Thus,
with the topology optimization process for each iteration,
elements within an initial unit cell may change from solid
(ρi = 1) to void (ρi = 0) or from void to solid. As a result,
the PUC topology will be gradually modified until both
volume constraint and the convergent criterion are satisfied.

Isotropic materials, in which the properties of the mate-
rials are invariant with respect to the material orientation,
are the most common materials used in industry and are
attractive for engineering applications. It is known that the
material is isotropic when the microstructural geometry has
60◦ symmetry. But this would require a rectangular basic
cell in a brick arrangement. It is computationally simpler
to work with a square basic cell in a lattice arrangement
(Fig. 2), and therefore the isotropy constraints are chosen as
a function with respect to modulus (Neves et al. 2000).

f
(
G′

ijkl

)
= 0 (17)

Nevertheless, it is necessary to point out that many potential
solutions are disregarded by this choice.

An objective function can be formulated to minimize the
difference between the effective storage shear modulus and

the prescribed shear modulus
(
� = (

G′H
1212 −G′∗

1212

)2
)

.

The topology optimization problem of viscoelastic cellular

Fig. 3 Flowchart of the
optimization procedure

Initialization

Define the design problem with prescribed volume, *V , filter radius 

minr and penalty factor p, (normally 3p ). Choose the design 

domain discretization and construct an initial design. In this paper, 
the design domain discretized by 40 40 elements, and the initial 
design with four corner elements for void material is shown in Fig.2.

Homogenization
Apply periodic boundaries on the PUC and the effective material 
properties are obtained by the Equations (13) and (15) by using the 
finite-element method (FEM). 

Sensitivity 
Analysis

The sensitivity analysis is important for optimal problem (28) and is 
derived in (30). To circumvent checkerboard pattern and 
mesh-dependency problems, a number filter is applied to the 
elemental sensitivity.

Optimization 
Algorithm

The sequential linear programming (SLP) is used, which was 
successfully used in optimization of a plenty structures and 
materials.

Converged?

Yes

No

Stop

The iterative design procedure is repeated until the change in each 
design variable from step to step is lower than 10-4.
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L

Constraining layer

Viscoelastic layer

Base beam

hc

hv

hs

y

x

Fig. 4 A three-layered sandwich beam structure

material with a prescribed property and with constraints on
the isotropic and volume fraction can be expressed as:

Find : ρ = [ρ1, ρ1, · · · , ρi, · · · ρn]T

Minimize :
(
G′H

1212 −G′∗
1212

)2 + 1

|Y |
n∑

i=1

ρi(1 − ρi)Vi

Subject to :
∫
Y

G′
ijpq

∂χkm
p

∂yj

∂vi
∂yj

dY

=
∫
Y

G′
ijkm

∂vi
∂yj

dY , ∀v, Y − periodic

G′H
ijkm = 1

|Y |
∫
Y

G′
pqrs

(
δriδsj − ∂χkm

r

∂ys

)

×
(
δpkδqm − ∂χkm

p

∂yq

)
dY

V ∗ −
n∑
i

ρiVi = 0

0 < ρmin ≤ ρi ≤ 1, i = 1, 2, ..., n

f
(
G′

ijkl

)
= 0 (18)

Where G′H
1212 is the effective storage shear modulus and

is the prescribed/target storage shear modulus. Vi is the
volume of the i-th element and V ∗ is the prescribed total
volume and n is the total number of elements in the PUC.
To avoid singularity in the stiffness matrix, a small value of
ρmin, e.g. 0.001, is used to represent the void elements. The

term 1
|Y |

n∑
i=1

ρi(1 − ρi)Vi corresponds to a penalization on

the intermediate volume fraction values. This penalty term
is intended to reduce the intermediate value of ρi on the final
solution.

In this work, the optimization problem in (16) is solved
by the gradient-based sequential linear programming (SLP)
method. The sensitivity of the objective function with
respect to the element density variable, ρi is expressed as

∂
(
G′H

1212 −G′∗
1212

)2

∂ρi
= 2

(
G′H

1212 −G′∗
1212

) ∂G′H
1212

∂ρi
(19)

Based upon the SIMP model (Bendsøe and Sigmund 1999,
2004), the sensitivity of the storage modulus can be written
as:

∂G′H
ijkl

∂ρi
= p

|Y |
∫
Y

ρ
p−1
i Ḡ′

pqrs

(
δkpδlq −

∂χkl
p

∂yq

)

×
(
δirδjs − ∂χ

ij
r

∂ys

)
dY (20)

which Ḡ′
pqrs is the storage modulus tensor of the viscoelas-

tic solid matrix material, and the exponent p is the penalty
exponent that is often chosen to be p = 3 or 4.

Fig. 5 Optimal shear modulus
of viscoelastic layer for
maximum modal loss factor
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Table 1 Geometric and physical parameters of beam structure

Layer Length (m) Thickness (mm) Density (kg/m3) Modulus (MPa) Poisson’s ratio

Base beam 0.5 10 2700 69000b 0.33

Viscoelastic layer 0.5 1 1000 20a 0.48

Constraining Layer 0.5 1 2700 69000b 0.33

a
Shear modulus, material loss factor η = 0.5; bYoung’s modulus

The whole optimization procedure can be described by
the flowchart in Fig. 3.

4 Numerical examples and discussions

4.1 Determination of the target shear modulus

In this section, in order to illustrate the influence of the
property of viscoelastic materials on the structural damp-
ing performance, a cantilever elastic beam covered with a
constrained damping layer is considered for the analysis, as
shown in Fig. 4. The base beam and constraining layer are
made of aluminum and a viscoelastic core is a material with

the properties similar to DyAD606 from SOUNDCOAT
Company. Thus, the geometric and material properties for
the numerical example are given in Table 1.

An energy formulation is used to estimate the modal loss
factor of the k-th mode of interest. The modal loss factor is
obtained by using MSE method (Ungar and Kerwin 1962)

ϕk =
∑n

i=1
ηi,kUi,k

Utotal,k

(21)

where ηi,k is the material loss factor of the layer i at mode
k, and Ui,k is the modal strain energy of the layer i at mode
k. Utotal,k is the total modal strain energy at mode k.

Utotal,k =
∑n

i=1
Ui,k (22)

Fig. 6 Unit cell, 3 × 3 cells and
effective complex modulus of
2D cellular materials with
prescribed shear modulus a
mode 1 and volume fraction is
0.5; b mode 2 and volume
fraction is 0.7; c mode 3 and
volume fraction is 0.9

a

b

c

4.77 2.34 0

1 0.5 2.34 4.77 0

0 0 1.21

i

19.70 8.14 0

1 0.5 8.14 19.70 0

0 0 5.78

i

50.50 21.68 0

1 0.5 21.68 50.50 0

0 0 14.41

i
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To study the effect of shear modulus on the modal loss fac-
tor of the sandwich beam, the shear modulus of viscoelastic
material is varied between 0.2 and 20 MPa. In Fig. 5, the
modal loss factor as a function of the shear modulus for the
first three modes is presented. For each mode, there is a cer-
tain value of the shear modulus that maximizes the modal
loss factor in the damping structure. For our research, we are
especially interested in the specific shear modulus at which
the optimal structural damping performance is achieved. At
mode 1, the optimal shear modulus C1

opt = 1.2MPa, and the

corresponding modal loss factor ϕ1
opt = 0.0374. At mode 2

with C2
opt = 5.8MPa, the modal loss factor has the optimal

value ϕ2
opt = 0.0441. The optimal shear modulus and modal

loss factor are C3
opt = 14.4MPa and ϕ3

opt = 0.0453 for
mode 3.

It is noticed that the optimal value of shear modulus is not
unique and it is dependent on the physical and geometrical
properties of the structure. Moreover, the MSE method is an
economical approach in dealing with the complex modulus
of the damping material. It assumes that the damped struc-
ture has similar resonance frequency and the mode shape
to those of the undamped structure, which means that the
damping material is relatively light and weak.

4.2 Microstructural design

We aim to find the microstructure of a viscoelastic mate-
rial with storage shear modulus equal to the optimal/target
shear modulus for the first three modes in Fig. 5 (i.e.,
C1

opt = 1.2MPa at mode 1, C2
opt = 5.8MPa at mode 2, and

C3
opt = 14.4MPa at mode 3). A square finite element model

of the PUC is discretized into 40 × 40, four-node quadri-
lateral elements. With the material properties in Table 1, the
complex modulus can be written as follows:

G = (1 + 0.5i)G′ = (1 + 0.5i)

⎡
⎣ 76.92 36.92 0

36.92 76.92 0
0 0 20.00

⎤
⎦
(23)

The initial design of the microstructure is given in
Fig. 2. A small disturbance of material volume den-
sity is introduced into the four corner elements of the
design domain to avoid the trivial solution that all ele-
ments have the same material volume density in the final
design. The volume constraints of solid material are set to
be 0.5, 0.7, 0.9 of the design domain for the first, sec-
ond and third mode respectively, considering the Hashin
and Strikman (H-S) upper bounds of the shear modulus(
C1
upper = 5.4MPa, C2

upper = 9.3MPa, andC3
upper = 15.3MPa

)
.

As the solid phase is isotropic with constant Posson’s
ratio, the damping properties of the designed material are
unrelated to the void material. By solving the optimization

problem (16), the optimal microstructures with the pre-
scribed shear modulus for the first modes can be achieved.
Figure 6 shows the optimal microstructures and correspond-
ing effective complex modulus for the first three modes. The
same microstructures in 3 × 3 cells for easier understanding
of the designed microstructure are also shown in Fig. 6. It
can be seen that the storage shear modulus of the designed
microstructures are very close to the optimal/target shear
modulus for each mode, and the isotropic requirements of
material properties are satisfied.

Consider that the sandwich beam in Fig. 4 is excited by
a point harmonic force p = Peiωt at the right end, with
P = 1 N (as shown in Fig. 7). The mean displacement
of the initial design (solid viscoelastic material layer) and
the optimum design (cellular viscoelastic material layer) are
compared in Fig. 8 with the unit dB transformed in the
following way

Ũ (dB) = 10 lg

(
U

Uref

)
(24)

where U is the mean displacement of the beam and Uref =
1 m is a reference displacement.

In this paper, it is supposed that a cellular viscoelastic
material is composed by a number of spatially repeated peri-
odic unit cell (PUC), and PUC is very small compared with
the size of the damping layer. The comparison is conducted
by introducing macroscopic properties in the damping layer.
For mode 1, the vibration reduction of the resonance peaks
is about nearly 5 dB between the initial design and the opti-
mal design, and the mean amplitude is reduced by 70 % by
using the optimal cellular damping material. For mode 2, the
vibration reduction of the resonance peaks is about nearly
3 dB between the initial design and the optimal design, and
the mean amplitude is reduced by 50 %. In mode 3 the vibra-
tion reduction of the resonance peak is about 1 dB and the
mean amplitude is reduced by 20 %. The frequency of the
resonance peaks with the optimal design is shifted down lit-
tle as the compliance of the whole structure is increased.
This confirms the possibility of the topology optimization
technique to find the material distribution of viscoelastic
microstructure with prescribed property that enhances the
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Viscoelastic layer

Base beam

hc

hv

hs

y

x

p

Fig. 7 The sandwich beam is excited by a point harmonic force at the
right end
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Initial design Optimal design
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Fig. 8 Comparison of initial design and optimal design results for a
cantilever beam for the first three modes. a, c, e Mean displacement;
b, d, f vibration amplitude contour of the eigenmode

modal loss factor and reduces the vibration response of the
structure under a given mechanical environment.

5 Conclusions

This paper proposes a topology optimization method for
designing a viscoelastic cellular material with prescribed
properties, aiming at improving the modal damping perfor-
mance of the PCLD. In the method, the homogenization
method is employed to derive the effective behavior of vis-
coelastic materials; a topology optimization formulation is
presented for microstructure design of the isotropic vis-
coelastic cellular material with prescribed properties. Based
upon the derivation and numerical results we can draw the
following conclusions.

1. The effective loss factor of the designed cellular mate-
rial is just equal to the one of the matrix material,
independent of its microstructure configuration, if the
matrix is isotropic solid material, thus, only stiffness
characteristics of the viscoelastic cellular material can
be designed by microstructural geometrical topology.

2. The topology optimization method can formulate the
design of a viscoelastic material with prescribed prop-
erties, and can determine interesting topological pat-
terns for guiding the viscoelastic cellular material
design. Furthermore, microstructure design of vis-
coelastic material with prescribed properties has a cru-
cial role in improving the damping properties of the
macrostructures.
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