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Abstract In this study, a two-stage optimization frame-
work is proposed for cylindrical or flat stiffened panels
under uniform or non-uniform axial compression, which are
extensively used in the aerospace industry. In the first stage,
traditional sizing optimization is performed. Based on the
buckling or collapse-like deformed shape evaluated for the
optimized design, the panel can be divided in sub-regions
each of which shows characteristic deformations along axial
and circumferential directions. Layout optimization is then
performed using a stiffener spacing distribution function to
represent the location of each stiffener. A layout coeffi-
cient is assigned to each sub-region and the overall layout
of the panel is optimized. Three test problems are solved
in order to demonstrate the validity of the proposed opti-
mization framework: remarkably, the load-carrying capacity
improves by 17.4 %, 66.2 % and 102.2 % with respect to the
initial design.
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1 Introduction

The extensive use of stiffened panels in aerospace indus-
try is mainly motivated by their high specific stiffness and
strength. Stiffened panels still play a significant role in fuel
storage and load-carrying components (see, for example, the
study on the new Chinese launch vehicle done by Hao et al.
2012). Metallic materials such as aluminum alloys are the
primary choice in the aerospace industry because these can
easily be tailored to create an adequate design even working
in the post-buckling field. With the advent of new composite
materials in aerospace applications, stiffened panels made
of composite material were also developed rapidly in the last
few decades (Nagendra et al. 1994; Huybrechts and Meink
1997; Noor et al. 2000; Park et al. 2001, 2012).

For thin-walled structures subjected to axial compres-
sion, buckling is the main failure mechanism (Calladine
1983; Wang et al. 2013). In general, launch vehicles may be
subject to uniform and non-uniform axial compression (see
Fig. 1). Stiffened panels in stage cores are usually subjected
to uniform compression. Inertia loads generated by acceler-
ation during ascent are transferred from core stages to the
noses of the boosters. These elements are hence subject to
concentrated forces, by most part axial, that generate a state
of non-uniform compression.

It is generally recognized that axially compressed cylin-
drical shells are very sensitive to initial geometric imperfec-
tions (Calladine 1995; Lindgaard et al. 2010; Wang et al.
2011; Hao et al. 2013), while flat plates are marginally
sensitive to small-amplitude imperfections (Schultz and
Nemeth 2010). Among various types of geometric imper-
fections, eigenmode-shape imperfection is expected to be
relatively conservative because it represents deformation
shapes with a high bias toward buckling (Lamberti et al.
2003). The newly developed European code for steel shell
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Fig. 1 Sources of stiffened panels subject to uniform and non-uniform
compressions in launch vehicle

structures also recommended that eigenmode-shape imper-
fection should be used, unless a different unfavorable
pattern can be justified (Eurocode 3 1999).

Several methods and programs are available for the anal-
ysis of stiffened panels, ranging from simple closed form
solutions to complicated discrete solutions (Timoshenko
and Gere 1961; Calladine 1983; Thompson and Hunt 1984;
Croll and Ellinas 1983). Several simple analysis methods,
such as Smeared Stiffener Method (SSM) and simple ana-
lytical models were utilized to calculate the critical buckling
load of stiffened shells for preliminary design (Kidane
et al. 2003). However, these methods cannot account for
the nonlinearity of buckling behavior. Moreover, the criti-
cal buckling mode shape in SSM is assumed to be in form
of a double Fourier series and thus distributed uniformly
along the shell length, which may be different from the
actual condition. FE analysis also can be used to evalu-
ate the load-carrying capacity of stiffened panels, including
linear eigenvalue buckling analysis, nonlinear implicit and
explicit dynamic methods. In the case of elastic buckling,
linear eigenvalue buckling analysis can predict the criti-
cal buckling mode shape and thus load-carrying capacity
accurately, which is commonly utilized in the preliminary
design stage due to the high computational efficiency. How-
ever, in the case of plastic buckling, since stiffness reduction
caused by yielding before buckling may affect significantly
load and equilibrium paths of stiffened panels, material
nonlinearity must be taken into account and nonlinear buck-
ling analysis is hence needed. Furthermore, accounting for
imperfections requires more detailed modeling of structures
and nonlinear analysis for predicting the load redistribution
due to pre-buckling bending. Nonlinear implicit methods,
such as the Newton-Raphson method (Crisfield 1979) and
the modified Riks method (Crisfield 1981), have been com-
monly employed to simulate the post-buckling behavior

of stiffened panels (Bushnell 1981, 1985, 1987; Wu et al.
2010). However, the convergence of an implicit analy-
sis is difficult to guarantee, especially after skin buckling
occurs. Compared to nonlinear implicit methods, explicit
dynamic method allows to investigate the evolution of the
deformed shape of a stiffened panel from pre-buckling
to post-buckling field until collapse (Lanzi and Giavotto
2006). In other words, the position where collapse occurs
can be captured accurately by the explicit dynamic analy-
sis. The deformed shape of stiffened panels at the collapse
load varies considerably from the critical buckling mode
shape, especially in the position where buckling or collapse
occurs. Specifically, the deformed positions are assumed to
distribute uniformly along the shell length in SSM, while
the collapse mostly occurs at either the intermediate sec-
tion or both two shell ends. In the case of elastic buckling,
the collapse mainly occurs at the intermediate section of
the shell, referred to as ”diamond shaped” buckling mode.
Conversely, in plastic buckling, the collapse usually evolves
from the both ends of the shell, referred to as ”elephant foot”
buckling mode (Mazzolani et al. 2004). Thus it is a logi-
cal way to adjust the stiffness of a structure along the axial
direction and then increase the load-carrying capacity.

Many optimizations have been carried out for metallic
and composite stiffened panels against buckling. In the case
of uniform axial compression, Leriche and Haftka (1993)
demonstrated the efficiency of genetic algorithms (GA) in
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Fig. 2 Two-stage computational framework for size-layout optimiza-
tion of stiffened panels
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dealing with global optimization and discrete design vari-
ables for composite stiffened panels. A design strategy for
optimum design of stiffened shells subject to global and
local buckling constraints as well as strength constraints
based on GA was developed by Jaunky et al. (1998). In order
to reduce the computational cost of the optimization pro-
cess, surrogate models (Mack et al. 2007) were also adopted
into the optimizations of stiffened panels (Vitali et al. 2002;
Lamberti et al. 2003; Venkataraman et al. 2003; Queipo
et al. 2005). In the previous work, the variables involved
in the optimizations were stiffener size, stiffener spacing,
skin laminate sequence and ply-angle, etc. (Leriche and
Haftka 1993; Hao et al. 2012). Layout optimization of stiff-
ened panels that allows buckling strength to be increased
with no weight penalty is rarely reported in literature.
Sadeghifar et al. (2010) performed a multiobjective opti-
mization of stiffened panels for minimum weight and
maximum axial buckling load. In their study, size vari-
ables and layout variables were optimized simultaneously
using GA based on SSM. However, nonlinearity of buck-
ling behavior was not taken into account, which might
influence the value of collapse load significantly. More-
over, only critical buckling mode shape, rather than collapse
shape, can be obtained by SSM. The critical buckling
mode shape, which is assumed to be in form of a dou-
ble Fourier series, is distributed uniformly along the shell
length. Therefore, the optimal design may not be suitable
for resisting the collapse. Design optimization of panels
for non-uniform axial compression neither is very common
in literature. For example, Greenberg and Stavsky (1995)
analyzed the buckling response of composite cylindrical
shells subject to circumferentially non-uniform axial loads.
Another study was carried out by Ahmed (2009). Hao et
al. (2012) developed a two-stage optimization framework
with adaptive sampling including relatively high-fidelity
surrogate models of stiffened panels under non-uniform
compression.

A two-stage sizing-layout optimization framework is
proposed in this study. In the first stage of the process,
sizing optimization is performed with respect to skin thick-
ness, ply-angles, uniform stiffener spacing, stiffener width

and height. Based on the buckling or collapse-like deformed
shape evaluated for the design optimized in this first stage,
the panel can be divided in sub-regions each of which shows
characteristic deformations along axial and circumferential
directions (e.g. general trend, monotonicity). In the sec-
ond stage of the process, layout optimization is performed
by using a stiffener spacing distribution function to repre-
sent the location of each stiffener. A layout coefficient is
assigned to each sub-region and the overall layout of the
panel is optimized.

Proper analysis methods must be selected for each load
(i.e. uniform or non-uniform axial compression) and opti-
mization stage (i.e. sizing or layout optimization) in order
to maximize the computational efficiency of the proposed
framework yet satisfying requirements on accuracy and
limitations on computational resources.

In the case of uniform axial compression, SSM com-
panied with Rayleigh-Ritz method is used to determine
the critical buckling load. In the second stage of the opti-
mization process, collapse loads and deformed shapes of
stiffened panels with non-uniformly spaced stiffeners are
determined via FE analysis with explicit dynamic analysis.
In this case, only the layout of circumferential stiffeners
needs to be optimized according to the position where FE
analysis predicted collapse load to occur.

Fig. 4 Main geometric parameters defined for an orthogrid stiffened
panel
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Fig. 5 Critical buckling mode
shape of the initial design for
test problem 1

In the case of non-uniform axial compression, FE anal-
ysis must be performed in both sizing and layout optimiza-
tions and the layouts of circumferential and axial stiffeners
should be simultaneously optimized.

The validity of the proposed optimization framework is
fully demonstrated by solving three test problems where the
objective is to maximize the load-carrying capacities of a
metallic orthogrid cylindrical shell and two composite stiff-
ened plates. Remarkably, collapse load (critical buckling
load) can be increased by 17.4 %, 66.2 % and 102.2 % with
respect to the initial structural configurations.

2 Analysis methods

2.1 Smeared stiffener method

In SSM, stiffened panel is converted mathematically into
an unstiffened uniform thickness panel with equivalent
orthotropic stiffness.

The total potential energy of the system is composed of
the strain energy Us and the work done by the external force
W:

� = Us +W (1)

Fig. 6 Deformed shape of the orthogrid stiffened panel corresponding
to the collapse load evaluated for the initial design of test problem 1

For a simply supported end condition, the displacement
components u, v and w can be defined as follows

u =
∞∑

m=1

∞∑

n=1

Amn cos(mαx) sin(nβy) (2)

v =
∞∑

m=1

∞∑

n=1

Bmn sin(mαx) cos(nβy) (3)

w =
∞∑

m=1

∞∑

n=1

Cmn sin(mαx) sin (nβy) (4)

where α = π/L, β = 2π/D, m is the number of axial half
waves, n is the number of circumferential full waves.

For the equilibrium to be stable, the total potential energy
must be a minimum. Appling the Rayleigh-Ritz method,
this can be satisfied by finding the first derivative of the
total potential energy with respect to Amn, Bmn, and Cmn

and equating to zero, which yields an eigenvalue equation.
The minimum eigenvalue is the global buckling load of the
structure.

In addition, the skin of per grid cell can be considered as a
simply supported rectangular plate. The local buckling load
of the structure can then be calculated (Lekhnitskii 1968).

Fig. 7 Deformed shape of the imperfect stiffened panel corresponding
to the collapse load evaluated for the initial design of test problem 1
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The minimum one between global and local buckling loads
is the critical buckling load.

2.2 Linear eigenvalue buckling analysis

Complex model details can be taken into account in a FE
analysis, such as cutouts, local enhancements, etc. A linear
buckling problem can be stated as
(
K0 + P

j
crG

)
ϕj = 0, j = 1, 2, ..., n (5)

where K0 and G are the geometric stiffness and stress stiff-
ness matrices, respectively. ϕj is the jth eigenvector, P j

cr is
the jth eigenvalue, and the lowest one is critical buckling
load factor.

Since displacements at the critical buckling configuration
are assumed to be small in the linear eigenvalue analysis,
it turned out to be inaccurate for these structures showed a
significantly nonlinear pre-buckling behavior.

2.3 Nonlinear explicit dynamic analysis

Nonlinear explicit dynamic analysis allows to investigate
the deformed shape evolution of a stiffened panel from pre-
buckling to post-buckling field until collapse. For a dynamic
analysis, the equation of motion can be expressed as

Mat = Fext
t − F int

t − CV t −KU t (6)

where M is the mass matrix, C is the damping matrix, K
is the stiffness matrix, a is the vector of nodal acceleration,
V is the vector of nodal velocity, U is the vector of nodal
displacement, t is the time, Fext

t is the vector of applied
external force, F int

t is the vector of internal force.
Using the explicit time integration with central difference

method to approximate velocity and acceleration by

at = (Ut−�t − 2Ut + Ut+�t ) /�t2 (7)

Vt = (Ut+�t − Ut−�t) /2�t (8)

where �t is the time increment, and substituting (7–8) into
(6), the equation of motion is then transformed as
(

M

�t2
+ C

2�t

)
U t+�t = F ext

t − F int
t +

(
2M

�t2
−K

)
U t

−
(

M

�t2
− C

2�t

)
U t−�t (9)

Referring to (9), it can be seen that U t+�t depends on
U t and U t−�t . The geometry of the structure is contin-
uously updated by adding the computed displacements to
the initial geometry. Consequently, the equations can be
solved directly, and no convergence checks are needed since
the equations are uncoupled. Since buckling and collapse
are considered as a quasi-static phenomena, load velocity

Table 1 Initial values and side constraints of design variables for test
problem 1

ts [mm] tr [mm] h [mm] Nc Na

Initial value 4.0 9.0 15.0 26 90

Upper limit 5.0 12.0 18.0 31 100

Lower limit 3.0 6.0 12.0 21 80

should be slow enough to eliminate the dynamic effects,
and damping should also be avoided for such a quasi-static
solution, as this could lead to significantly overestimated
buckling load.

3 Two-stage framework for size-layout optimization

The flow-chart of the two-stage sizing-layout optimization
framework developed in this study is shown in Fig. 2. In
the first stage of the process, sizing optimization is per-
formed with respect to skin thickness, ply-angles, uniform
stiffener spacing, stiffener width and height. Based on the
buckling or collapse-like deformed shape evaluated for the
design optimized in this first stage, the panel can be divided
in sub-regions each of which shows characteristic deforma-
tions along axial and circumferential directions (e.g. general
trend, monotonicity). In the second stage of the process, lay-
out optimization is performed by using a stiffener spacing
distribution function to represent the location of each stiff-
ener. A layout coefficient λ is assigned to each sub-region
and the overall layout of the panel is optimized.

In case of uniform axial compression, SSM companied
with Rayleigh-Ritz method is used to carry out linear

Fig. 8 Test problem 1: converge curves recorded in the sizing opti-
mization stage for different combinations of the MIGA internal
parameters
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Fig. 9 Critical buckling mode
shape of the first-stage optimum
design of test problem 1

buckling analysis for determining the buckling load in the
sizing optimization stage. This could be done because the
trends of critical buckling load and collapse load are sub-
stantially consistent and allowed computation cost of the
optimization process to be substantially reduced. In this
way it is possible to carry out large-scale optimization of
stiffened panels.

Sizing optimization is carried out to maximize buckling
load under a constraint on structural weight. The optimiza-
tion problem is stated as:

Find: X = [ts, tr , h, Na, Nc] (10)

Maximize: Pcr (11)

Subject to: W ≤ W0 (12)

Xl
i ≤ Xi ≤ Xu

i , i = 1, 2, ..., 5 (13)

where W0 is the structural weight corresponding to the ini-
tial design, ts is the skin thickness, tr is the stiffener width,
h is the stiffener height, Nc is the number of circumfer-
ential stiffeners, Na is the number of axial stiffeners, Xl

i

and Xu
i are the lower and upper bounds of the ith variable,

respectively.

Fig. 10 Deformed shape of the orthogrid stiffened panel correspond-
ing to the collapse load evaluated for the first-stage optimum design of
test problem 1

The suitability of the optimized design must be checked
with finite element analysis. For that purpose, in the sec-
ond stage of the optimization process, the panel is divided
in sub-regions along the axial direction according to the
tendency of deformed shape to resemble buckling or col-
lapse. This can be done if axial load does not vary in
the circumferential direction. A stiffener spacing distri-
bution function is used herein to represent the location
of each circumferential stiffener along the shell length
(Sadeghifar et al. 2010), and the location of the ith stiffener
in jth sub-region can be stated as

Zi =
{
Lj

(
i

Nj+1

)λ
i = 1, 2, ..., Nj − 1

Lj i = Nj

(14)

where λ is the layout coefficient governing only the lay-
out of circumferential stiffeners. In most cases, collapse
deformed shape is almost axisymmetric, thus the layout
of circumferential stiffeners may be assumed axisymmet-
ric with respect to the mid-bay of the panel. For λ = 1,
the circumferential stiffeners are evenly spaced. For λ < 1,
the circumferential stiffeners in the intermediate section
are more close to the adjacent ones than those in the two

Fig. 11 Deformed shape of the imperfect stiffened panel correspond-
ing to the collapse load evaluated for the first-stage optimum design of
test problem 1
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Fig. 12 Convergence curve of
the second-stage optimization
for test problem 1

sides. For λ > 1, the circumferential stiffeners in the two
sides are more close to the adjacent ones than those in the
intermediate section, as shown in Fig. 3. In this stage, FE
analysis simulated the buckling behavior and collapse load
of stiffened panels with uneven spacing. The layout of cir-
cumferential stiffeners can be optimized according to the
position where FE analysis predicts the collapse load to
occur.

The optimization formulation set for the second stage of
the proposed framework is:

Find: λ (15)

Maximize: Pco (Pcr ) (16)

Subject to: λl ≤ λ ≤ λu (17)

where λl and λu are the lower and upper bounds of λ,
respectively.

In case of non-uniform axial compression, finite ele-
ment analysis must be performed in both sizing and layout
optimizations. The first stage (sizing optimization) of the
optimization process is similar to the case of uniform axial
compression. However, surrogate models must be used in
order to reduce the computational cost of the optimization.

Panels must be subdivided along the circumferential direc-
tion and layout optimization must be carried out in each
sub-region to obtain the final optimum design.

4 Test problems and results

4.1 Cylindrical stiffened shell subjected to uniform
compression

The first test problem regards the cylindrical orthogrid stiff-
ened shell described in Wang et al. (2011). This model is
representative of a large lightly loaded launch vehicle cylin-
der section, with diameter of D = 3000.0 mm, length of
L = 2000.0 mm. In Fig. 4, a portion of the cylinder outer
skin is removed to show the stiffener layout. The skin thick-
ness ts is 4.0 mm, and the stiffener width tr and height h
are 9.0 and 15.0 mm, respectively. The numbers of circum-
ferential and axial stiffeners are 26 and 90, respectively.
Typical properties of the aluminum alloy used for stiffened
panel are as follows: Young’s modulus E = 70 GPa, Pois-
son’s ratio υ = 0.33, yield stress σs = 410 MPa, ultimate
stress σb = 480 MPa, density ρ = 2.7E-6 kg/mm3. Accord-
ing to literature, the structural weight of the initial design is
358 kg.

Table 2 Comparison of initial
and optimized designs for test
problem 1

Collapse load Pco [kN] Structural

(with imperfection) weight W [kg]

Initial design 10107 358

First-stage optimum design 11216 357

Second-stage optimum design 11869 357
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Fig. 13 Deformed shape of the orthogrid stiffened panel correspond-
ing to the collapse load evaluated for the second-stage optimum design
of test problem 1

The bottom edge of the panel is simply-supported while
the translations of the top edge are constrained to 0 except
for axial displacements. The critical buckling load of stiff-
ened shell Pcr0 obtained with SSM is 13412 kN, and the
corresponding buckling mode shape includes 4 axial half
waves and 9 circumferential full waves.

The FE model was then developed in ABAQUS. The FE
model was discretized with shell elements including three
translational degrees of freedom and three rotational degrees
of freedom per node. A preliminary mesh sensitivity study
allowed to set the element size as 30 mm: hence, the FE
model included a total number of degrees of freedom equal
to 330480. An end-shortening displacement was imposed to
the panel top edge, and the reaction force developed in the
bottom end were extracted to express the loading-carrying
capacity of the panel.

The critical buckling load computed by ABAQUS is
13610 kN. The corresponding buckling mode shape, shown
in Fig. 5, is practically the same as its counterpart for SSM.
The collapse load Pco obtained by explicit dynamic analy-
sis is 16791 kN, and the deformed shape of stiffened shell
at the collapse load is given in Fig. 6. Since modeling
of initial imperfections is of great importance to evaluate

Fig. 14 Deformed shape of the imperfect stiffened panel correspond-
ing to the collapse load evaluated for the second-stage optimum design
of test problem 1

Fig. 15 Main geometric and load parameters defined for the orthogrid
stiffened plate optimized in test problem 2

the load-carrying capacity of cylindrical shells, eigenmode-
shape imperfection was introduced in the numerical model
of this test problem, with a maximum amplitude of 1.9 mm,
corresponding to one tenth of the sum of skin thickness and
stiffener height. The collapse load Pco of the imperfect shell
is 10107 kN, and the deformed shape at the collapse load is
shown in Fig. 7.

Although Multi-Island Genetic Algorithm (MIGA) is
less efficient than several new-developed metaheuristic
algorithms (e.g. particle swarm optimization, etc.), which
may be very sensitive to control parameters (Engelbrecht
2005), sizing optimization was performed with MIGA in
this study, because of its intuitiveness, ease of implementa-
tion, and the ability to effectively solve the highly nonlinear
problems (Panda and Padhy 2008). MIGA is a stochastic
search algorithm reproducing the mechanisms of natural

Fig. 16 Critical buckling mode shape of the initial design for test
problem 2
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Fig. 17 Critical buckling mode shape of the imperfect initial design
for test problem 2

selection and genetics. In MIGA, the population in each
generation is divided into several islands, and the genetic
operations are performed independently on each island. This
allows to avoid converge to local optima (Reiko 1989; Ooka
and Komamura 2009). MIGA internal parameters were set
as: the rates of crossover, mutation, migration are 1.0, 0.01
and 0.5, respectively. The interval of migration is 0.5. Three
sets of population parameters were compared: numbers of
islands NI , generations NG, and population per island NP

are (10, 20, 20), (20, 10, 20), (20, 20, 10), respectively.
Side constraints of design variables are listed in Table 1,

while convergence curves are shown in Fig. 8. As can be
seen, three optimum results are similar. In general, larger
sub-populations and a larger number of generations allow
a better design to be found. In the present case, the opti-
mized design (NP = 20, NI = 10, NG = 20) is as follows:
tr = 6.1 mm, h = 17.8 mm, ts = 4.9 mm, Nc = 22,
Na = 84. The corresponding structural weight is 357 kg.
The critical buckling load evaluated with the smeared model
is 16201 kN. The optimized design was then given in input
to a FE model to carry out buckling and collapse anal-
ysis. The critical buckling load of the optimized design
computed by ABAQUS is 16344 kN, which is close to
the result of SSM. The corresponding collapse load Pco

is 18646 kN. The critical buckling mode shape is shown
in Fig. 9, while the deformed shape at the collapse load

Table 3 Initial values and side constraints of design variables for test
problem 2

ts [mm] tr [mm] h [mm] Nc Na

Initial value 0.2032 3.048 12.7 5 7

Upper limit 0.2438 3.658 15.24 6 9

Lower limit 0.1626 2.438 10.16 4 5

Fig. 18 Converge curve (outer updates) recorded in the sizing opti-
mization stage of test problem 2

is shown in Fig. 10. The collapse load Pco of the imper-
fect panel with an imperfection amplitude of 1.9 mm is
11216 kN, and the corresponding deformed shape at the
collapse load is shown in Fig. 11.

In the layout optimization stage, sub-regions must be
defined according to the deformed shape of the optimum
design found in the sizing stage. Since deformed shape is
almost axisymmetric (see Fig. 11), the layout of circumfer-
ential stiffeners may be assumed axisymmetric with respect
to the mid-bay of the panel. Then Sequential Quadratic Pro-
gramming Method (SQP) was adopted. The range of λ was
also specified as [0.5, 1.5], and the considered imperfection
amplitude was also set as one tenth of the sum of skin thick-
ness and stiffener height. Convergence curve of the layout
optimization is shown in Fig. 12. The collapse load of Pco =
11869 kN of the imperfect optimum design was obtained
at λ = 0.6224. Hence, the collapse load of the imperfect

Fig. 19 Critical buckling mode shape of the first-stage optimum
design of test problem 2
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Fig. 20 Test problem 2: distribution of displacements along the Y-
direction control path passing through the maximum displacement
node

panel improved by 17.4 % with respect to the initial design
(see Table 2). The deformed shapes of perfect and imper-
fect panels at the collapse load are shown in Figs. 13 and 14,
respectively.

4.2 Flat stiffened plate subjected to non-uniform
symmetrical compression

The second test problem regarded a simply-supported stiff-
ened plate whose dimensions coincide with those indicated
in Jaunky et al. (1996). The nominal dimensions of the panel
are as follows (see the schematic of Fig. 15): B = 1524 mm,
L = 914.4 mm; the stiffener width tr and height h are 3.0
and 12.7 mm, respectively. The initial design included 5 cir-
cumferential stiffeners and 7 axial stiffeners. The stiffened

Fig. 21 Test problem 2: distribution of displacements along the X-
direction control path passing through the maximum displacement
node

Fig. 22 Convergence curve of the second-stage optimization for test
problem 2

plate is made of graphite-epoxy with the following mate-
rial properties: E11 = 169.0 GPa, E2 = 11.3 GPa, G12 =
6.0 GPa, υ = 0.3, ρ = 1.578E-6 kg/mm3. The skin stacking
sequence is [±45/90/0]s with 0.2032 mm thick plies. Stiff-
eners include plies oriented in the stiffening direction. Since
only uniform axial compression was considered in Jaunky
et al. (1996), non-uniform compression was considered in
this study according to Ganesh et al. (2013).

Because of the presence of non-uniform axial compres-
sion, SSM could not be used. Furthermore, since panel
edges were simply supported and nodal displacements were
restricted at panel boundaries, explicit dynamic analysis
also was inapplicable. Therefore, the load-carrying capacity
of the panel was described by the buckling load computed
by ABAQUS. The following boundary conditions were
imposed in FE analysis: X =0, u = v = w = θx = 0; X =
B, v = w = θx = 0; Y = 0 and L, u = v = w = θy = 0. The

Fig. 23 Critical buckling mode shape of the second-stage optimum
design of test problem 2
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Table 4 Comparison of initial and optimized designs for test problem 2

Critical buckling load factor Pcr Structural weight W [kg]

Initial design 34.9 4.5

First-stage optimum design 54.3 (improved by 55.6 %) 4.5

Second-stage optimum design 58.0 (improved by 66.2 %) 4.5

non-uniform compression load was applied at X = B (see
Fig. 15) according to the following equation:

Nx = sin (πY/L) (18)

The element size in FE mesh was set to 5 mm through
convergence analysis. The critical buckling load factor of
34.9 was determined via linear analysis, and the buckling
mode shape evaluated for the initial design is shown in
Fig. 16. Further, eigenmode-shape imperfection was also
introduced in the numerical model of this test problem, with
a maximum amplitude of 1.43 mm, corresponding to one
tenth of the sum of skin thickness and stiffener height. The
corresponding critical buckling load factor is 37.3, with the
buckling mode shape shown in

Fig. 17, which is almost identical with the one of the
perfect geometry. This demonstrates that flat plates are
marginally sensitive to small-amplitude imperfections (see,
for example, Schultz and Nemeth 2010) and hence the effect
of geometric imperfections may not be considered in the
following optimizations.

Side constraints of sizing variables are listed in Table 3.
Ply-angles could take discrete values from the set (-45, 0,
45, 90). The laminate is symmetric and comprised of 8 plies.
Because of the existence of discrete variables and in order
to limit computational cost of FE analyses, surrogate-based
optimization was performed for this test problem. Follow-
ing literature, the RBF model was selected as it resulted
more accurate and robust than Kriging and polynomial

Fig. 24 Main geometric and load parameters defined for the orthogrid
stiffened plate optimized in test problem 3

regression method (Jin et al. 2001). In view of this, we gen-
erated a set of 500 sampling points using Optimal Latin
Hypercube Sampling (OLHS) throughout design space and
built the RBF model fitting the sampled data. Since percent
errors for critical buckling load and structural weight were
respectively 1.0 % and 0.1 %, the surrogate model was rated
to be adequate.

The MIGA search engine was then adopted in the
surrogate-based optimization entailed by the sizing stage.
For the sake of clarity, iterations based on the surrogate
model are removed and only the history of outer update is
shown in Fig. 18. The optimized design is: [-45/90/-45/45]s
skin stacking sequence, tr = 3.36 mm, h = 14.57 mm,
ts = 0.18 mm, Nc = 6, Na = 8. The corresponding struc-
tural weight is 4.5 kg. The critical buckling load factor Pcr

evaluated for the optimized design is 54.3, with the corre-
sponding buckling mode shape shown in Fig. 19. Although
the load was axisymmetric, the buckling mode is slightly
asymmetrical because of the asymmetry in the skin stacking
sequence.

In the layout optimization stage, the node with the largest
displacement (with coordinates X = 925.29 mm, Y =
553.72 mm) was identified first: the corresponding dis-
placement paths across horizontal and vertical lines passing
through that node are shown in Figs. 20 and 21, respec-
tively. Since two axial and two horizontal sub-regions could
be identified in terms of monotonicity, a value of λ was
assigned to each sub-region. Layout optimization was then
performed with SQP. The range of variability set for λ was
again [0.5,1.5].

Fig. 25 Critical buckling mode shape of the initial design for test
problem 3
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Fig. 26 Converge curve (outer updates) recorded in the sizing opti-
mization stage of test problem 3

The critical buckling load factor evaluated for the opti-
mized design is 58.0, hence 66.2 % higher than for the initial
design with no penalty in structural weight. The optimum
layout design was obtained for λa1 = 1.0, λa2 = 0.9882,
λc1 = 0.5 and λc2 = 0.6721. The convergence curve of the
layout optimization process is shown in Fig. 22.

The optimized values of λa1 and λa2 are close to those
corresponding to the optimum size design. This may be
explained looking at the buckling mode corresponding to
the optimized design (see Fig. 23). The local skin buck-
ling in the lower-left and lower-right corners of the stiffened
plate occurs simultaneously to global buckling. Should
spacing of axial stiffeners near panel edges increase, local
buckling would occur before global buckling thus limiting
the load-carrying capacity of the panel. Finally, the critical
buckling load is improved by 66.2 % without any increase
in structural weight, as listed in Table 4.

Fig. 27 Critical buckling mode shape of the first-stage optimum
design of test problem 3

Fig. 28 Test problem 3: distribution of displacements along the Y-
direction control path passing through the maximum displacement
node

4.3 Flat stiffened plate subjected to non-uniform
asymmetrical compression

The third test problem solved in this study regarded another
simply-supported stiffened plate, with L = 1828.8 mm. The
panel is schematized in Fig. 24. The other structural param-
eters and material properties are the same as in the previous
test case. Non-uniform compression, not symmetric with
respect to Y-direction, was considered (see Fig. 24):

Nx = 1 + 2 sin (πY/L− π/3) (19)

Boundary conditions and mesh size were the same as for
test case 2. The critical buckling load factor evaluated for
this initial design is 8.9. The corresponding buckling mode
is shown in Fig. 25.

Fig. 29 Test problem 3: distribution of displacements along the X-
direction control path passing through the maximum displacement
node
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Table 5 Comparison of initial and optimized designs for test problem
3

Critical buckling Structural weight

load factor Pcr W [kg]

Initial design 8.9 9.0

First-stage optimum 16.6 (improved 9.0

design by 86.5 %)

Second-stage optimum 18.0 (improved 9.0

design by 102.2 %)

In sizing optimization, the number of axial stiffeners Na

could range between 11 and 17. Data relative to all other
design variables and conventions were the same as for the
previous test problem. Surrogate models were generated in
the same fashion as for the previous test problem. Since
model errors for critical buckling load and structural weight
were respectively 4.0 % and 0.6 %, the surrogate model was
again considered to be adequate.

The MIGA convergence curve is shown in Fig. 26. The
optimized design is as follows: the skin stacking sequence is
[0/±45/90]s , tr = 3.25 mm, h = 15.24 mm, ts = 0.18 mm,
Nc = 5, Na = 17. The corresponding structural weight
is 9.0 kg. The critical buckling load factor Pcr evaluated
for this optimized design is 16.6, with the corresponding
buckling mode shape shown in Fig. 27 Because of the
high asymmetry of the axial load acting on the panel, the
buckling mode shape is also non-uniform with respect to
Y-axis.

In the layout optimization stage, the node with the
largest displacement (with coordinates X = 861.61 mm,
Y= 675.64 mm) was identified first: the corresponding dis-
placement paths across horizontal and vertical lines passing
through that node are shown in Figs. 28 and 29, respectively.

Fig. 30 Convergence curve of the second-stage optimization for test
problem 3

Fig. 31 Critical buckling mode shape of the second-stage optimum
design of test problem 3

It was again possible to identify four sub-regions. Layout
optimization was then performed with SQP. The range of
variability set for λ was again [0.5,1.5]. The critical buck-
ling load factor evaluated for the optimized design is 18.0,
hence 102.2 % higher than for the initial design, as shown
in Table 5. The optimum layout design was obtained for
λa1 = 0.6329, λa2 = 0.5, λc1 = 0.8544 and λc2 = 1.0.
The convergence curve of the layout optimization process
is shown in Fig. 30. The buckling mode corresponding to
the optimum design is shown in Fig. 31. It can be seen that
buckling deformation is more uniform compared with that
evaluated for the initial design. This demonstrates that the
benefit of layout optimization is more significant for the
case of non-uniform asymmetrical compression.

5 Conclusion

This paper presented a two-stage computational framework
for sizing-layout optimization of stiffened panels. In the first
stage, traditional sizing optimization is performed. Based
on the buckling or collapse shapes of the optimized design,
sub-regions can be defined with respect to buckling or
collapse deformations along axial and circumferential direc-
tions. Layout optimization can then be performed for the
entire panel. In order to increase the numerical efficiency of
the proposed framework, different analysis methods includ-
ing surrogate models were utilized in each optimization
stage based on the type of loads acting on the panel.

Three test problems were solved in order to demonstrate
the validity of the proposed optimization framework. It was
found that the improvement deriving from optimization is
far more significant in the case of non-uniform compres-
sion. However, the proposed framework is only applicable
to orthogrid stiffened panels and its suitability for more
complicated stiffening patterns (e.g. triangle, Kagome, etc.)
will have to be investigated in future studies. Furthermore,
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the investigation on the lightweight design of stiffened pan-
els by combining both the size and layout optimizations is
still worth exploring.
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