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Abstract The paper discusses the filtering of shape sen-
sitivities as a mesh independent regularization method for
very large problems of shape optimal design. The vertices
of the simulation discretization grids are directly used as
design morphing handles allowing for the largest possible
design space. Still, however, there has been a lack of theory
to consistently merging the sensitivity filtering into the stan-
dard optimization technology which is an ongoing topic of
discussion in the community. The actual paper tries to over-
come this burden. As a result it will be shown that there is a
perfect transition between the sensitivity filtering and all the
other shape parameterization techniques used for the shape
optimization, as there are CAD-based techniques, subdivi-
sion surfaces or morphing box technologies. It appears that
sensitivity filtering belongs to the most general and power-
ful control technologies available for shape optimal design.
The success will be demonstrated by various illustrative
examples which span from basic aspects to sophisticated
applications in structural and fluid mechanics.
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1 Introduction

Sensitivity filtering is a well-established and very successful
procedure in discrete topology and shape optimization. It is
used to regularize the optimization problem by introducing
an additional filter length scale which is independent of the
discretization. The filter is both, a design tool controlling
local shape or density distribution and a mean to prevent
numerical problems such as mesh distortion or checker
board patterns. Together with adjoint sensitivity analysis to
determine the discretized shape gradient, the filter technique
is a most powerful optimization procedure and successively
applied to the largest optimization problems known. Fil-
tering is the key technology for using the vertices of even
the finest discretization mesh directly as design handles for
discrete shape optimization. This leads to what is called
Vertex Assigned Morphing of Optimal Shape (VAMOS)
throughout this paper. VAMOS is the most direct approach
to modify geometry. In contrast to standard shape morphing
techniques and CAD methodologies no other design handles
are used than the mesh vertices together with filters.

Still, however, there has been a lack of theory to con-
sistently merging the sensitivity filtering into the standard
optimization technology which is an ongoing topic of dis-
cussion in the community (Sigmund and Maute 2012). The
actual paper tries to overcome this burden with the spe-
cial application to shape optimization. As a result it will
be shown that there is a perfect transition between the
sensitivity filtering and all the other shape and topology
optimization techniques for problems of structural and fluid
mechanics. Among those techniques which do not use CAD
parameters to parameterize shape there are meshfree and
node-based or parameter-free methods which means “free
of CAGD parameters” (Kim et al. 2002; Le et al. 2011;
Clausen and Pedersen 2006; Bletzinger et al. 2010; Firl

mailto:kub@bv.tum.de


874 K.-U. Bletzinger

and Bletzinger 2012; Firl et al. 2013; Arnout et al. 2012;
Scherer et al. 2010; Hojjat et al. 2014), the traction method
(Azegami and Takeuchi 2006) and filtering techniques as
developed for topology optimization (Sigmund 1994, 2007;
Bourdin 2001; Bruns and Tortorelli 2001) or for CFD prob-
lems (Pironneau 1984; Jameson 1995, 2003; Jameson and
Vassberg 2000; Mohammadi and Pironneau 2004, 2009;
Stuck and Rung 2011). CAGD based optimization (Imam
1982; Braibant and Fleury 1984, 1986; Bletzinger et al.
1991, 2005) and morphing techniques have been adapted
from computer graphics technology (de Boer et al. 2007)
and define the actual state of commercial application.

The common reason behind the development of all the
mentioned methods is the properties of the inverse prob-
lem that is ill posed by nature, as it is well known. That
is the case for the continuous formulation as well. There
exists a vast amount of mathematical literature about deal-
ing with regularization in the context of shape optimization
and shape derivatives. The above referred work of Jameson,
Pironneau and others as well as Sokolowski and Zolésio
(1992) shall be mentioned as some few entry points into
this topic. Discretization amplifies the situation as it adds
all the well-known numerical deficiencies and artifacts. It
is important to realize that discretization is not the only,
and not even the major source of difficulties observed when
solving optimization problems. One can distinguish all the
above mentioned techniques by the regularization technol-
ogy applied to overcome the numerical problems. This
aspect is treated explicitly by the filtering methods as they
are mentioned above. CAGD based methods or morphing
methods regularize the problem in an implicit manner as
shape functions and morphing strain fields have the similar
effect as filters.

Looking at the history of structural optimization, the
technological deficiencies have been observed as jagged
surfaces in shape optimization and checkerboard patterns
in topology optimization. Regarding shape optimization,
that was an important argument to introduce CAGD-based
techniques (Braibant and Fleury 1984). Alternatively, filter-
ing has been introduced in topology optimization (Sigmund
1994). Both approaches take control of the basic modes of
geometry or material distribution and regularize the problem
by omitting the higher oscillating modes. This is done either
by reducing the number of design parameters and introduc-
ing basic shape functions, as in the CAGD-based, morphing
boxes and similar techniques, or, by directly filtering higher
modes. The relation between filtering and discretization is
obvious as it depends on the grid size which modes can
be resolved. Consequently, the filter radius or the CAGD
patches must be larger than a certain number of grid cells or
elements.

In the context of topology optimization filtering is dis-
cussed in even further details which is motivated by the

fact that clear separation fronts between the material phases
should be generated. The original approach of Sigmund
(1994) is known as ‘sensitivity filtering’ because it affects
the filtering of the objective sensitivities with respect to the
material density. The challenge of the original filtering for-
mula is that it seems not to fit in any consistent theory
but has proven to be most successful. Alternatively, Bruns
and Tortorelli (2001) and Bourdin (2001) independently had
suggested to filtering the material density instead which
could be proven to be mathematically consistent. That tech-
nique became known as ‘density filtering’ At the same time
Sigmund suggested a modified sensitivity filter which can
be shown to be equivalent to the mentioned density filtering.
Refer to Sigmund (2007) for an in depth discussion. The dif-
ference of the two approaches is that the density filter deals
with the filtering of total actual values of the design vari-
ables whereas the sensitivity filters deal with the variable
update, only. What follows in the sequel of the actual paper
is a sensitivity filtering scheme for shape which consistently
is derived from a ‘shape filtering’ procedure. That compares
best to Sigmund’s modified sensitivity filter and affects the
shape update, only. Consequently, the initial shape will not
be smoothed at all throughout the entire optimization proce-
dure. That is intended to deal with specific properties such
as feature lines which are important to identify the prod-
uct brand. In contrast, the parameter-free shape optimization
approach by Le et al. (2011) is based on ‘shape filtering’
which is equivalent to the density filtering in topology opti-
mization. Since the complete actual shape is filtered and not
the shape update only, consequently, initial shape features
will be smoothed as well.

It is important to realize that choosing a regularization
method is a design decision which triggers the optimal
design. That is obvious when for regularization the num-
ber of design parameters is reduced. Clearly, the optimal
solution can only be found in the reduced design space.
It is a real challenge to consider all optimization relevant
design parameters while setting up the initial model. It is
an art to find the right balance between a small number of
design parameters and their relevance for the final optimum.
It is even more challenging to implement a distributed work
flow when design modeling and optimization are done by
different departments as it is typical for engineering collab-
oration. One gets stuck between the demand of having a
small number of design parameters necessary for regulariza-
tion and the engineering insight which is necessary to take
the right choice.

It appears that the filtering technique is an elegant and
effective solution of the engineering challenge. A very large
design space can easily be treated by definition of a fil-
ter size. Design modeling and optimization can be done
separately. The large design space allows for finding even
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unexpected solutions that could never be found with dimen-
sion reduced design models. The filter, however, will not
modify the solution. The filter helps to guide the optimiza-
tion procedure towards that local optimum whose shape
mode is characterized by the filter size. Hence, from the
operational point of view the filter is nothing more than
a smoother as it is called in the mathematical community.
From the engineering point of view, the idea of a filter is
appropriate because it is an easy to be applied handle to
identify different designs as local optima. The design space
is explored for local optima by repeatedly optimizing with
different filter sizes but the same design model. It appears
to be the ideal technology for preliminary design.

Also, the filter technique can be applied to dimension
reduced design models. Then the properties of CAD and
vertex assigned morphing are merged. In this case there are
two different discretization grids for the design control field
and the geometry. The design control grid serves as the con-
vex hull of design as it is known from CAGD. Applying the
filtering procedure to the coarse design control field appears
to be identical to the procedure of the subdivision surface
technology to generate geometry (Catmull and Clark 1978;
Zorin et al. 1996; Kobbelt 1996; Litke et al. 2001). Indeed,
the filtering technique can be seen as a further generaliza-
tion of CAD methods with the possibility to have identical
grids for design control and generated geometry. A proper
combination of design control grid and filter function even
generates cubic or other B-spline geometries as it is known
since the pioneer work of Catmull and Clark (1978). Also,
it will be shown that for the mentioned case of merged
grids to discretize design control and geometry fields it is
not necessary to introduce extra design control parameters.
The coordinates of the surface coordinates are enough, the
control parameters can be treated virtually. Le et al. (2011)
had been very close to the results presented here, however,
it seems that they did not realize the consistent relations
between sensitivity filtering and using the design control
field which they explained as the initial surface geometry.

Finally, regarding design, the filtering technology sup-
ports all relations to the isogeometric analysis (IGA) which
the subdivision surface technology does as well. The differ-
ence to filtering is that IGA starts from a rather coarse mesh
of the design controls. Then, by knot insertion, finer analysis
meshes are derived which, still, are approximating the true
geometry. As a fact IGA follows the classical CAD based
optimization strategies by considerably reducing the dimen-
sion of the design space compared to the number of analysis
degrees of freedom. There is a rapidly increasing amount of
literature on the tracks of this line (Wall et al. 2008; Cho and
Ha 2009; Ha et al. 2010; Seo et al. 2010; Nagy 2011; Kiendl
2011; Schmidt 2013; Kiendl et al. 2013). There are many
advantageous aspects of IGA. However, the question of how
to deal with large, non-convex design spaces remains. For an

answer it might be an option to combining IGA and the fil-
ter technology for regularization. Filtering is a methodology
on top of any simulation methodology including IGA.

To conclude, sensitivity filtering is the most general
and powerful shape control technology available for shape
optimal design. It has been applied to shape optimization
problems for structures and fluids with a number of design
parameters up to 3.5 million.

The paper is organized such that the theory is first
developed and then be demonstrated for some simple one-
dimensional cases. Finally, several real size and industrial
examples will briefly demonstrate the impressive potentials
of filtering and the vertex assigned morphing of design.

2 Continuous shape control

We start very general by introducing an additional field
p. This serves as the control which steers the evolution
of shape. In analogy to splines the control field can be
identified as the continuous equivalent to the convex hull
which is discretized by control nodes. As with splines where
the coordinates of the control nodes are the design vari-
ables, now, the control field represents the design degrees of
freedom which drive the shape.

The considered shape optimization problem states as:

s.t. :
min

p
f(x, z(x, p), u(x, z(x, p)))

R(x, z(x, p), u(x, z(x, p))) = 0
gj(x, z(x, p), u(x, z(x, p))) ≤ 0; j = 1, ...,m

(1)

where f and gj are the objective function and constraints and
R are the state equations which may be non-linear. There
are four fields describing the state u, the surface coordi-
nate x, the geometry z as well as the design control field
p, Fig. 1. To concentrate on the basic ideas of what follows
and for the sake of clarity, (1) is formulated in 1D geomet-
ric space. As a consequence, the geometry z is a function of
the one spatial surface coordinate x and the design control p.
Extended to 3D, (1) represents the classical view at a surface
controlled shape optimization problem following the ideas
of Hadamard, e.g., refer to Sokolowski and Zolésio (1992).
Then, the shape relevant modifications of geometry z are
identified as in the normal direction to the surface spanned
by surface coordinates x1 and x2. Since the field of coor-
dinates z decides about the shape of the structure it will be
called “geometry” or “shape” as well. In the case of topol-
ogy optimization, z is a dealt with as a scalar parameter and
may be identified as the field of material density.

Additionally, we introduce the material coordinate ξ

which is attached to the material points of the surface. The
surface coordinate x(ξ) is a function of the material coor-
dinate. This relation might be inverted to generate ξ(x),
which will be used later on. Finally, z and p are functions
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Fig. 1 Filtering of design
control field to generate shape

of the material coordinate through resolution of the surface
coordinate, z(x(ξ)) and p(x(ξ)), respectively.

Applying appropriate discretization techniques, e.g., the
finite element method for state and geometry or CAGD
techniques for the design control, one arrives at vectors u,
z, x and p of discrete parameters for state, shape as well as
surface coordinates, and design control, respectively. Since
the goal of the paper is to discuss the control of shape the
following presentation will concentrate on the treatment of
z as the shape coordinate and how filtering is introduced
in that regard. Tangential terms as they are known from
the Hadamard formulae are omitted here without loss of
generality. The closing examples will show applications to
the optimal shape design of surfaces embedded in three
dimensions.

The geometry z at x0 is generated from the design control
field p(x) by a smoothing filter operation:

z(x0) =
∫

�

F p d� =
x0+r∫

x0−r

F(x, x0, r)p(x)dx (2)

F is the filter function also known as kernel function in terms
of the meshfree method (Kim et al. 2002). It is related to the
surface point x0 = x(ξ0) spanning over the filter domain of
radius r, Fig. 1. The filter function and the filter radius are
chosen to control the curvature or waviness of the generated
shape z. They are design decisions. In topology optimization
the equivalent approach is known as density filtering (Bruns
and Tortorelli 2001; Bourdin 2001).

The (forward) filter function satisfies the property:

x0+r∫

x0−r

F(x, x0, r)dx = 1 (3)

The adjoint or backward filter function A is defined as:

A(x0, x, r) = F(x, x0, r) (4)

A filter function is defined to be symmetric around its center
x0 or self-adjoint if

F(x, x0, r) = F(x0, x, r) = A(x, x0, r) (5)

Finally, a dual filter function D may be defined to restore a
suitable design control field p from the geometry z and is
defined as:

p(z) =
∫

�

D z d� (6)

Typically, when an optimization problem is set up, the ini-
tial shape z is given. The distribution of the related design
control field p is unknown and has to be adjusted by apply-
ing the dual filter D if one is interested in it. Typically, dual
filters refer to the dual shape functions of the applied surface
discretization method. In this context the term ‘filter’ for D
is used because the integrals (2) and (6) are formally identi-
cal and D in (6) plays the same role as F in (2). As a matter
of fact, this operation is not necessary as the absolute state
of the control field may remain unresolved. This is because
during the process of optimization we only are interested in
the change of the design control p to determine the change
of geometry. The absolute values of the design control field
have not to be known.

The variation of shape δz is determined to depend on the
variation δp of the control straight forward as:

δz =
∫

�

F δp d� (7)

Also, from (2), we can identify the relation between z(x0) at
x0 and p(x1) at x1 which allows to define the derivative of z
at x0 with respect to p at x1 as:

dz(x0)

dp(x1)
= F(x1,, x0, r) (8)
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Finally, applying the chain rule of differentiation the deriva-
tive of a response function f with respect to the design
control p at x1 is given as
df

dp

∣∣∣∣
x=x1

=
∫

�

df

dz

dz

dp(x1)
d� =

∫

�

df

dz
F(x1, x, r)d�

=
∫

�

A(x, x1, r)
df

dz
d� (9)

Formally comparing (9), (4) and (2), obviously, the geom-
etry gradient df/dz is filtered backward by the adjoint filter
function A. This procedure is what is defined as ‘sensitivity
filtering’. In the sequel it will be shown how that serves as
the basis for the design update.

3 Shape discretization and discrete sensitivity filtering

For numerical analysis, geometry and design control fields
are discretized. CAGD techniques use different grids for
control and geometry. Alternatively, both fields share the
same grid as it is the case what we discuss here. Discretizing
the control field by a fine mesh allows for as many as pos-
sible design degrees of freedom. Now, at every node j there
are values for the geometry (xj, zj) as well as a value for
the nodal design control parameter pj. The design control
field is discretized using shape functions Nj related to each
design parameter pj:

p = Njpj = Nj(ξ, n)pj = Nj(ξ(x), n)pj (10)

One can think of linear hat shape functions as the simplest
case, Fig. 2, creating a piecewise linear approximation of
the design control field, Fig. 3. The number n is the number
of nodes within the half span of the shape function. We will
see that this simple discretization is already good enough to
produce C2-continuous geometry fields z using linear filters
similar to the shape functions.

Applying (10) to discretize the design control field as
well as the filter function Fi to generate the geometry value
zi at node i we get from (2):

zi =
∫

�

F(x, xi, r)p d� =
∫

�

Fi p d� =
∫

�

Fi Nj d� pj

= Bij pj (11)

Additionally, Fi = F(x, xi, r) has been introduced to sim-
plify notation.

From this equation we can determine the discrete deriva-
tive of shape coordinate zi with respect to the design param-
eter pj which is the point of departure of sensitivity analysis:

dzi

dpj
=

∫

�

Fi Nj d� = Bij (12)

The matrix B is the forward filter operator matrix as the
discrete equivalent to the forward filtering operation (2).

Let us now consider an unconstrained optimization prob-
lem with f the objective as a function of the geometry zi and
design parameters pj as defined above:

f(zi(pj)) → min (13)

Constraints may be added as necessary. However, it is advis-
able to consider techniques which support adjoint sensitivity
methods for large numbers of design parameters, e.g., refer
to Arnout et al. (2012) for further details.

The derivative of the objective with respect to the design
parameter pj is straight forward to be determined as integral
over the surface �:
df

dpj
=

∫

�

df

dz

dz

dpj
d� =

∫

�

Nj Fi
df

dzi
d� = Bij

df

dzi
(14)

The geometry gradient df/dzi is assumed to be determined
by appropriate methods, e.g., by adjoint techniques.

We see that filter and shape functions exchange their role
which explains the definition of the adjoint filter operator

Fig. 2 Linear hat shape
functions to discretize the
design control field
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Fig. 3 Linear approximated
design control field and linear
hat filter function at node i

matrix BT as the discrete equivalent to (9). The derivatives
df/dzi are filtered backward compared to the design param-
eters pj, (11), which we consider to be filtered forward.

For the special case of regular and equidistant grids,
the filter operator matrix B is symmetric even if filter and
shape functions are spanning over different supports n or
m, respectively. Applying the transformation rule between
F and the related shape function N, Fig. 4, we arrive at:

zi =
xi+r∫

xi−r

Fi p dx =
xi+r∫

xi−r

Fi N(m)
j pjdx

=
ξi+n∫

ξi−n

N(n)
i N(m)

j dξpj = Bijpj = Bjipj

df

dpj
=

xi+r∫

xi−r

N(m)
j Fi

df

dzi
d� =

ξi+n∫

ξi−n

N(m)
j N(n)

i dξ
∂f

∂zi

=
ξj+m∫

ξj−m

N(n)
i N(m)

j dξ
df

dzi
= Bji

df

dzi
= Bij

df

dzi
(15)

Here, the head index (n) of N(n) = N(ξ,n) refers to the
number of nodes the shape function spans on each side.

Interesting enough, filtering the linear hat shape func-
tion by itself turns out to be the well-known cubic B-spline.
Also, note that filtering on different grids for design con-
trol and geometry fields is strongly related to approximating

the geometry from the convex hull polygon as it is done by
standard CAGD methods using B- or other splines.

Finally, on regular grids and symmetric filters, we arrive
at what is known as filtering rules. The same filter is applied
to design control field p as well as to the shape deriva-
tives df/dz:

zi =
xi+r∫

xi−r

F(x, xi, r)p dx =
xi+r∫

xi−r

Fi p dx = Bijpj

df

dpj
=

∫

�

df

dz
F(xj, x, r)d� =

∫

�

df

dz
F(x, xj, r)d�

=
xj+r∫

xj−r

Fj
df

dz
dx = Bji

df

dzi
(16)

For non-regular grids the non-symmetry of the filter oper-
ator matrix B has to be considered. In particular, at design
edges filters are non-symmetric, as will be demonstrated
later. Design parameters are to be filtered forward by B
and the sensitivity parameters in backward direction by
BT. All that proves the sensitivity filtering technique to be
equivalent to the shape filtering and, consequently, as a
theoretically consistent method for shape optimization.

In numerical practice additional effort is applied to care-
fully guarantee a high quality, less distorted mesh or, at
the best, equally sized grid cells throughout the evolution-
ary process of shape optimization to support best simu-
lation results (Stavropoulou et al. 2013). Then, applying

Fig. 4 Relations between filter
and shape hat function on
regular grids
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the forward filter to the shape derivative which is equiv-
alent to assuming B to be symmetric is a good choice.
Also, as we will see later on, there is much more free-
dom to choose B or an equivalent filtering scheme without
altering the optimization model as it might be anticipated,
here.

4 Shape update rules

Let us start from the Taylor series expansion of the objective
function with respect to the design parameters at a certain
state of the solution evolution:

f̃ = f + df

dpj

T

�pj + 1

2
�pT

i
d2f

dpidpj
�pj

= f + ∇pfT�p + 1

2
�pT∇2

pf�p → min (17)

Next, the chain rule of differentiation is applied:

f̃ = f + ∇zfTB�p + 1

2
�p BT∇2

zf B�p → min (18)

and from the stationary condition the well-known Newton
parameter update formulae are derived where Hz is the Hes-
sian of f with respect to z and Hp that one with respect to
p:

∇pf = BT∇zf + BT∇2
zf B�p = 0

�p = −(BTHzB)−1BT∇zf

�z = −BH−1
p BT∇zf (19)

Obviously, by the last operations the design control param-
eters have been eliminated although their effect remains in
terms of the filter operator matrices B and BT.

By substituting the matrix M instead of the inverse of Hp

we can generate the general quasi-Newton family with α as
the line search step length factor:

�z = −α B M BT ∇zf (20)

Replacing M by the identity matrix I gives the steepest
decent method. For large and very large problems steepest
decent and variants of the conjugate gradient methods are
the methods of first choice because second derivatives or
their approximations typically are far too costly to be eval-
uated. We see from (20) the direct effect of the filter on
the algorithm. Through the related operator matrix B the
parameter update is affected which results in the discussed
smoothening of the geometry field but also in modifica-
tions of the search direction. Note, that (20) represents a two
pass filtering of the sensitivity. Furthermore, filters might be
generated which together with M approximate the inverse
Hessian and can help to optimize the convergence speed of
algorithms.

For the special case of the same number N of design and
geometry parameters the B matrix is quadratic of size N ×
N. That is the standard case for the vertex assigned or node-
based shape optimization as it is discussed here. Also, a
reasonable filter shall be applied such that B is of full rank.
Most of the common filters including the hat function share
that property. Then, we can draw further conclusions:

First, choosing M as the inverse of BT, then we get the
well-known sensitivity filtering technique where the shape
update vector �z is directly determined from the filtered
gradient vector (the tilde represents the smoothing oper-
ation) which is the basis for the implementation of the
algorithm:

�z = −αB∇zf = −α∇̃zf (21)

Second, looking again at the Newton update rule (19),
we get:

(BT∇2
zf B)−1 = B−1H−1

z B−T

�z = −B(BTHzB)−1BT∇zf

= −B(B−1H−1
z B−T)BT∇zf

= −H−1
z ∇zf (22)

As it can be seen, the filter cancels out. That is not surpris-
ing, since a N × N matrix B of full rank represents nothing
else than a transformation between alternative variables p or
z. This means, that regarding global and local minima the
optimization problem is not modified at all by the choice of
a filter, may it be the simple hat filter as presented here or
any other as e.g., a Gaussian distribution (Stück and Rung
2011). Instead, the problem will only be modified if it is re-
parameterized, e.g., by re-meshing or introducing individual
parameters for control grid and geometry grid as done by
CAGD or standard morphing techniques. Even if canceling
out during the optimization procedure, filters support the
numerical quality by controlling the surface quality in terms
of the smoothness of the discretized geometry.

As the filter modifies the gradient vector the filtering
effect can be exploited best by first order gradient methods.
Typically, those methods converge to that local minimum
which is characterized by a shape mode wave length that is
not smaller than the filter radius or the variance in case of
Gaussian filters. The filter shape, however, appears not to be
important at all. That allows to using any kind of filter for
the sensitivity filtering as long as B remains non-singular.
For example, forward sensitivity filtering instead of back-
ward is a feasible alternative as done in (16). In turn, we can
conclude that every simple gradient method with sensitivity
filtering will converge to a solution of the original, unmodi-
fied problem. For non-convex problems, the choice of filter
will affect which local optimum will finally be found. This
is the intended effect which helps to efficiently explore the
design space.
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Also, we see that neither the control field p nor its update
�p must be explicitly introduced or evaluated although they
are essential for the consistency of theory. That supports
the finding that vertex assigned or node-based shape opti-
mization directly deals with the grid node coordinates of
shape discretization although the true variables are the dis-
cretization parameters of the design control field. Indeed,
for application purposes the knowledge of p appears not to
be necessary at all.

To conclude, gradient methods together with filtering are
the first choice for large and very large problems. They
allow to solving easily, flexibly and intuitively problems
of up to several million design parameters. It is a mini-
mal effort to set up optimization problems when design and
geometry parameters share the same discretization mesh. If
a mesh for simulation is available the optimization prob-
lem is readily generated by choosing the proper filter and to
decide about objective and constraints.

5 Discretized filtering hierarchy

Alternatively, we approach at a discrete version of the fil-
ter integrals (16) through series expansion applying the
trapezoidal integration rule. That is done for the example
of the one dimensional case on a regular grid (2D cases
and non-regular grids have to be treated considering the
non-symmetry of the filter operator):

zi = z(p, xi) =
xi+r∫

xi−r

F(x, xi, r)p dx =
n∑

j=1

r

n
F(xj, xi, r)pj

=
n∑

j=1

Ni(ξj)pj (23)

Here, the filter integral transforms into a sum of products
of the discrete design control parameters pj and shape func-
tions Ni evaluated at the related nodes. They are derived
from scaling the filter function by r/n, where r is the fil-
ter radius r and n the number of integration intervals. That
recalls the transformation between filter and shape functions
as shown in Fig. 4 and the definition of Ni(ξj) below in (26).

Using the fact that the shape functions used are self
adjoint, i.e., Ni(ξj) = Nj(ξi), we get the equivalent notation
which is formally identical with CAGD and other standard
discretization methods:

zi = z(p, xi) =
n∑

j=1

Nj(ξi)pj (24)

As an example, consider the simplest case of a piecewise
linear hat filter function F:

F(x, xi, r) =

⎧⎪⎨
⎪⎩

1
r + 1

r2 (x − xi) for xi − r ≤ x ≤ xi
1
r − 1

r2 (x − xi) for xi ≤ x ≤ xi + r
0 otherwise

(25)

Fig. 5 a Continuous filtering of a linear hat-shape design control field.
b Discrete filtering with n = 1. c Discrete filtering with n = 4
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And the equivalent shape function Ni:

Ni(ξ, n) = N(ξ,ξi, n) =

⎧⎪⎨
⎪⎩

1
n + 1

n2 (ξ− ξi) for ξi − n ≤ ξ ≤ ξi
1
n − 1

n2 (ξ− ξi) for ξi ≤ ξ ≤ ξi + n
0 otherwise

(26)

For an example, refer to Fig. 5 with the choice of r = 4 and
the filtering of a linear, hat-like distribution of the design
control field p.

For any number n of node intervals within the filter radius
and the simple hat filter function the equation of the filtered
coordinate zi is:

zi = 1

n2

n−1∑
j=1−n

(n − |j|)pi+j (27)

In the limit n → ∞ the discrete filtered geometry as shown
in Fig. 5c will converge to z0 = 2/3p0 and the curve will
span from x = −8 to x = 8.

Furthermore, in the limit n → ∞ it appears that filter-
ing the linear filter hat function (F(x, x0, r), spanning over
2r, Fig. 2a) by itself converges to the well-known cubic
B-Spline function spanning over 4r:

B(x, 0)=
x+r∫

x−r

F(x̃, x, r)F(x̃, 0, r)dx̃; F(0, 0, r) = 1/r

B(x, 0)= 1

r4

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(x3 + 6x2r + 12xr2 + 8r3)/6 for − 2r ≤ x < −r

(−6x3 − 12x2r + 8r3)/12 for − r ≤ x < 0

(6x3 − 12x2r + 8r3)/12 for 0 ≤ x < r

(−x3 + 6x2r − 12xr2 + 8r3)/6 for r ≤ x < 2r

0 otherwise

(28)

Figure 6 shows the convergence history with increasing
n for the filtering of the hat function with radius r = 4 and
height z0 = 1. Obviously, it converges to the cubic B-spline
with maximum height of 2/3.

As a conclusion, we can state that filtering of polygo-
nal design control fields with the linear hat function and
a filter radius equivalent to the spacing of the control ver-
tices will generate C2-continuous geometries in the limit.
Refer to Zorin et al. (1996) for the generalization to meshes
of arbitrary topologies. Discrete filtering by using the lin-
ear hat shape function with at least 4 node spans within the
filter radius will generate very good approximating poly-
gons of piecewise C2-continuous cubic functions and can
be interpreted as generating a “moving B-Spline” shape
approximation. In general, the field of continuous design
control p(x) or the polygon defined by the discrete design
parameters pj defines a convex hull around the shape.
The convex hull is approximating the shape rather than
interpolating as it is well known from classical CAGD
techniques. Discrete design parameters interpolate the
generated shape if linear hat shape functions are used
and the filter radius is as large as the distance between
nodes, i.e., overlap n = 1. In contrast, if the node spac-
ing is given by the discretization mesh, increasing the
filter radius will improve the smoothness of the generated
shape.

6 Shape approximation and convex hull property

It is the nature of filtering that the job of the design con-
trol field is not more than approximating the generated
geometry. The design control field is the equivalent to the
control node polygon of B-splines. Moreover, as it has been
shown above, if a polygonal design control field and a filter

Fig. 6 Convergence history
towards a cubic B-spline of a hat
function filtered by itself

- - - - -



882 K.-U. Bletzinger

Fig. 7 Convex hull and
approximation property of the
design control field

with radius as large as the control vertex spacing are used
the polygon of the filtered geometry will approximate the
cubic B-spline. It will converge to the B-spline as the num-
ber n of node intervals within the filter radius converges to
infinity, Fig. 7. Using n = 1, the design control field is inter-
polated; with n = 4 the cubic polynomial is approximated
already very well, Fig. 7. The design control field of the
example shown in Fig. 7 is generated piecewise linear with
the filter radius used as spacing between the vertices. When
filtering (n − 1) additional nodes are generated between the
vertices, Fig. 7.

Particularly, the design control field does not interpo-
late the edges of the generated shape, here, the left and the
right end of the curve, Fig. 8. Again, the filtering approach
shares this property with B-splines. In contrast, however,
it is not straight forward to create an alternative filtering
scheme which is interpolating the edges as it the case for
open B-splines. The alternative is to extend the control
field by one filter radius across the edges such that the
generated geometry properly starts at the desired position,

Fig. 8. For the case of a polygonal design control field—as
for the presented example—the generated shape, its deriva-
tive and curvature at the free edge can exactly be controlled
by defining the positions of the three control nodes at the

Fig. 8 Detail at left end
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Fig. 9 Smooth design control
field

edge and one node span to the left and right, nodes −1, 0, 1
as shown in Fig. 8:

p−1 = z0 − rz′0 +
r2

6
z′′0

(
2 + 1/n2

)

p0 = z0 − r2

6
z′′0

(
1 − 1/n2

)

p1 = z0 + rz′0 +
r2

6
z′′0

(
2 + 1/n2

)
(29)

Obviously, the effect of discretization is fading out in the
continuous limit when n approaches to infinity. The right

edge is controlled, equivalently. The example of Fig. 8 is
generated with the specific values:

z0 = 0 z′0 = −1 z′′0 = 1 (30)

Note that filter and shape functions may have different node
spans n. Filtering always improves the smoothness of the
design control field, as it is demonstrated in Fig. 9.

7 Pragmatic discrete filtering using post-scaling

Instead of appropriate pre-scaling the shape functions by the
inverse of the number of node spans within the filter radius

Fig. 10 Discrete filtering with
post-scaling
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Fig. 11 Definition of shadow
nodes si

as shown in Fig. 4 post-scaling can be done to insure the
unit-integration-condition, Fig. 10:

zi =
∫

�

Fi p d� =

n∑
j=1

N̂i(ξj)pj

n∑
j=1

N̂i(ξj)

= 1

γi

n∑
j=1

N̂i(ξj)pj (31)

That approach can be used also in the case of non-regular
grids when pre-scaling is complicated. Then the summation
is done over all neighbor nodes inside the filter radius. The
extension to 2D surface design control and filter functions
is straight forward. Regarding topology optimization, this
technique is an essential part of the density filtering methods
by Bruns and Tortorelli (2001) as well as Bourdin (2001) but
also of the modified sensitivity filter by Sigmund (2007).

8 Discrete sensitivity filtering

The discrete sensitivity filtering is created directly applying
(31) to the shape sensitivity for symmetric filter operators:

df

dpi
=

n∑
j=1

Fi(ξj)
df

dzj
=

n∑
j=1

N̂i(ξj)
df
dzj

n∑
j=1

N̂i(ξj)

;�pi = −α
df

dpi
(32)

In the case of asymmetric filter operators backward filtering
has to be applied:

df

dpi
=

n∑
j=1

1

γi
N̂i(ξj)

df

dzj
;�pi = −α

df

dpi
(33)

Fig. 12 Varying filters towards
the left edge of domain, r = 4
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Fig. 13 Varying filters and
interpolated left edge

And, finally, again forward:

�zi =
n∑

j=1

Fi(ξj)�pj = 1

γi

n∑
j=1

N̂i(ξj)�pj (34)

9 Modified density and sensitivity filtering for topology
optimization

As mentioned in the introduction, there is still a lack of
theory to merge the original sensitivity filtering scheme of
Sigmund (1994) into a consistent framework. Following the

idea of the additional design control field a new motivating
argument may be developed, again for the 1D case.

First, another filtering scheme is introduced which links
the control field p to the density ρ at coordinate xi , compare
to (2):

ρi = ρ(xi) = exp

(∫
Fi ln pd�

)

= exp

⎛
⎝

xi+r∫

xi−r

F(x, xi, r) ln p(x)dx

⎞
⎠ (35)

Fig. 14 Varying filters and interpolated edges, distribution of filters (below)
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Straight forward, the derivative of ρi at xi with respect to pj
at xj is determined to be, compare to (8):

dρi

dpj
= exp

(∫
Fi ln pd�

)
F(xj,, xi, r)

1

pj
= F(xj,, xi, r)

ρi

pj

(36)

That in mind, the chain rule is applied to determine the
derivative of the objective function f as function of the
density ρ with respect to the parameters pj :

df

dpj
=

∫

�

df

dρ

dρ

dp(xj)
d� =

∫

�

df

dρ
F(xj, x, r)

ρ

pj
d� (37)

and, applying a symmetric filter we arrive at:

df

dpj
= 1

pj

∫

�

F(x, xj, r)ρ
df

dρ
d� (38)

which, according to the previous paragraphs can be approx-
imated as

df

dpj
=

n∑
i=1

N̂j(ξi)ρi
df

dρi

pj

n∑
i=1

N̂j(ξi)

(39)

The last expression is almost identical to Sigmund’s origi-
nal sensitivity filter. The only difference is that the control
parameter pj in the denominator of (39) should be replaced
by ρj which might be motivated that, typically, the control
parameters are eliminated and not available:

df

dpj
=

n∑
i=1

N̂j(ξi)ρi
df

dρi

ρj

n∑
i=1

N̂j(ξi)

(40)

Last not least, it can be argued that (40) is another filtering
rule than from where started with (35). But as the number
N of control and density parameters is identical this leads to
a N × N filter operator matrix B, which we learned can be
chosen freely as long as it is of full rank. As that is the case
there is no reason to blame (40) as a heuristic suggestion.

10 Sensitivity filtering at the domain edges

As shown above domain edges can only be manipulated by
design control fields which are extended across the edges by
one filter radius span. In particular, additional nodes have
to be generated across the edge to support the derivatives
df/dpj :

df

dpj
=

x0+r∫

x0−r

Fj
df

dz
dx;

j = −n...− 1 and j = num + 1...num + n (41)

where the domain is discretized by nodes with numbers
from 0 to num.

In practice, however, it may be very difficult or even
impossible to generate extra nodes across the domain edges.
In particular, that is true for very large problems of indus-
trial importance. That problem can be solved by using those
domain nodes twice which are within a band of size r near
the edges: First, as they are, and secondly, as the shadow of
the virtual nodes from outside. Instead of spanning to the
extra outside node, filters near the edge are reflected back
into the domain spanning to the shadow nodes sj , Fig. 11.
For the example in Fig. 11 the shape functions N0 and N1

Fig. 15 The given curve which
is to be optimally adapted. Four
grids used to discretize the
design control field. Geometry
is always discretized on grid
level 0
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are reflected back into the domain where the nodes 1 and 2
serve as shadows of nodes −1 and −2, respectively, to addi-
tionally store their data. The distance between a node and

a shadow node has to be determined by the length of the
reflected ray between those nodes. The extension to surfaces
needs special considerations at corners.

Fig. 16 Best cubic fit to given curve. The vertices of the generated curve z follow cubic splines as defined on the related grids. The discretization
of grids 0 and 1 is very coarse
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Fig. 17 Convergence of the steepest descent method using the finest grid 0 to discretize the design control field. The generated curve (red), the
optimal B-Spline (blue)
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Considering shadow nodes, (27) has to be modified:

zi = 1

n2

n−1∑
j=1−n

(n − |j|)
({

pi+j ; i + j ≥ 0
s−j−i ; i + j < 0

})
;

zi = 1

n2

n−1∑
j=1−n

(n − |j|)
({

pi+j ; i + j ≤ nnod
s2∗nnod−i−j ; i + j > nnod

})
(42)

11 Varying filters to interpolate edges

Alternatively, for the edges of the domain one can modify
the filters towards the edges such that the filters will never
leave the integration domain.Regarding linear hat functions

Fig. 18 Convergence to local minima which are related to selected filter radius
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Fig. 19 Preserving
characteristic design features
applying large filter radii

the radius and the filter height have to be adjusted according
to the unit integral condition (3), Fig. 12:

F(x, x0, r) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
ρ + 1

ρ2 (x − x0) for x0 − ρ ≤ x ≤ x0
1
ρ − 1

ρ2 (x − x0) for x0 ≤ x ≤ x0 + ρ

1 for ρ = 0

0 otherwise

;

ρ = min(r, x0 − xL, xR − x0) (43)

The reducing filter sizes towards the edges allow interpo-
lating the geometry at the free edge. Consequently, different
forward and backward filtering has to be considered. To
carefully control the smoothness of the generated geome-
try, additional control may be superimposed to the discrete
design parameters within the range of the filter size right or
left to the edge. In Fig. 13 an example is given with the reg-
ular filter radius r = 4. The discrete design parameters pj at
the edge between nodes j = 0 to 4 are interpolated cubi-
cal to exactly control design z0, first and second derivative
at the edge j = 0. As the filters increase towards the inte-
rior of the domain the higher discontinuities at parameter j
= 4 will be filtered away when the geometry is generated.
The design parameter interpolation has to be considered as
additional parameter linking by the chain rule of sensitivity
analysis. Figure 14 shows a larger view of the last exam-
ple. The extension to surfaces is straight forward as filters
are modified at the edges. Refer e.g., to Litke et al. regard-
ing equivalent techniques for the trimming of subdivision
surfaces.

12 Numerical examples

12.1 A simple optimization model problem: best fit

Consider the model problem given in Fig. 15. Given is a
control field p(x) which is discretized using the grid levels
shown. The geometry is always generated on grid level 0
with varying filter radii from 1 to 8. The objective function
f is the least square error determined from comparing the
generated geometry z(x) and the function shown in Fig. 15.

First, the shapes of the best fitted cubic B-splines on grids
0 to 3 are determined, Fig. 16. On grids 0 and 1, they are
roughly approximated since the grid sizes of geometry and
control field differ only slightly. The solution on grid 0 even
resembles the goal function itself.

Next, the steepest descent method together with filters is
used. As for typical large scale optimization problems the
design control field is discretized on the same finest grid
level 0 as the generated geometry. Figure 17 shows the result
of several optimization runs after the given number of iter-
ations for different choices of filter radii. They are chosen
in relation to the grid sizes of the four grid levels. As can
clearly be seen from Fig. 17 at the beginning of the opti-
mization procedure the filter guides the solution towards
those best cubic fitted curves which are determined on that
grid which is related to the applied filter radius. That is
exactly the effect which is intended by the sensitivity filter
technique: To approach at basic shape modes of different
wave lengths using the same fine grid but varying the mesh
independent filter. Further continuing optimizing the algo-
rithm will converge to the goal curve for any choice of filter

Fig. 20 Optimal bead design
for max. stiffness of an initially
plane sheet
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Fig. 21 Bead optimization of a
thin metal sheet for the
automotive industry.
Maximization of the five
smallest eigen values

as has been shown in theory. The convergence might be very
slow depending on how well the finer modes are represented
by the filtering procedure. But they are there because the
filter operator matrix B is non-singular.

12.2 Convergence to selected local minima

This example is constructed such that it consists of an
unlimited number of local minima which are composed
by arbitrary combinations of basic sinusoidal modes for k
= {2, 4, 64}, where k reflects the frequency of the related
mode. It will be shown that the method will converge to a
local minimum which is characterized by the selected filter
radius. The objective function is given as:

f =
n+1∑
k=1

⎛
⎝wk

n∫

0

Ckz(x)dx

⎞
⎠

2

+
⎛
⎝

n∫

0

z(x)dx

⎞
⎠

2

→ min

where

Ck = 4 cos

(
kπ

n
x

)
; n = 64

wk =
{

0; k = {2, 4, 64}
1; else

(44)

For the numerical solution the geometry field z(x) is dis-
cretized by linear shape functions as used before. The
following solutions are determined for a domain of length
n = 64, Fig. 18. The discretization grid is defined by equally
distances of �x = 1. Applying the filter technique three
results are determined for filter radii r = {1, 8, 16}. As can
be seen, using the related filter the algorithm converges to

solutions which represent the background noise (k = 64)
or solutions which are related to combinations of the basic
modes k = {2, 4}. According to the low pass filter proper-
ties the lower modes are always present. For problems of
structural optimization, usually, different structural shapes
are directly related to different structural behavior represent-
ing distinct local minima. In particular, that is true for the
shape optimization of shells for maximum stiffness or other
objective functions. One can easily imagine that selecting a
certain filter radius will guide the algorithm to the related
local minimum. It should be noted that for this example
because the mentioned three modes are blended out from
(44) the rank of the related B operator matrix is incomplete
and reduced by 3. Inversion of B must be done through
modal decomposition to check the Newton update schemes
as introduced before.

12.3 Preserved design features

For typical industrial applications the product shape shall be
optimized, however, small size shape characteristics must
be preserved. For example, think of the feature lines which
give car bodies the characteristic appearance of the brand.
It is essential that shape optimization does not disturb the
design identity. This is naturally supported by the presented
technique as the shape update is filtered rather than the
shape in total. Typically, an initial shape is given which is
generated from a creative design process and which repre-
sents all product characteristics regarding large and small
surface curvature as well as sharp kinks. During optimiza-
tion until the final stage of the convergence history those

Fig. 22 Cylindrical roof; initial
circular cross section (a), global
optimum, ν = 0 (b), local
minimum, ν �= 0, r
= 100 mm (c)
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Fig. 23 Cylindrical roof; local
minima with varied filter radius,
ν �= 0 convergence history

properties will be preserved which are related to curva-
tures radii which are smaller than the selected filter radius.
Figure 19 sketches a simple example. Again, a certain target
curve has to be optimally fitted. Additionally, a small kink
at x = 20 is defined which has to be preserved through opti-
mization. That is the case if a filter radius is chosen which
is large enough, e.g., r = 10, as done in Fig. 19. What is
displayed are the initial shape and the shape after iteration
steps 4, 12, and 24, including the kink at x = 20. At iteration
step 24 the curve has nicely converged to the target curve
except for the top with the forced kink and the base where
one observes a small undershooting because of the smooth-
ing. From an application point of view this intermediate
solution may be accepted as the optimal shape including
the kink as the intended design feature. This situation is
immediately identified since the speed of convergence drops
considerably when the optimization is continued. Then, as
is to be expected and can be seen from Fig. 19 as well, the
method will converge completely to the target curve. This is
indicated in the figure by the tag ‘many iterations’.

12.4 Bead design of plates and shells

This and the following examples demonstrate the success
of the technology for the application to thin structures
and surfaces in 3D (Firl et al. 2013; Hojjat et al. 2014).

The presented ideas are analogically applied moving nodes
in shape normal direction whilst the filters are extended
to be rotationally symmetric hat filters. Additionally, the
mesh quality has been controlled by applying a weighted,
anisotropic Laplace smoother which has been developed
by the group applying the mechanical analogy of virtual
surface stresses (Bletzinger et al. 2010; Stavropoulou et al.
2013). The optimization as well as the structural analysis
has been done applying the own software CARA++, which
is an efficient, object-oriented and parallel implementation,
including highly efficient semi-analytical (Bletzinger et al.
2008) and adjoint sensitivity analysis, robust, gradient based
optimization techniques (variants of conjugate gradients),
and reliable non-linear finite element models in particular
for shell and membrane structures.

All examples are highly non-convex and the results
depend extremely on the applied regularization scheme, i.e.,
the chosen filter methodology, how it is implemented and,
most important, how large the filter radius is chosen, not to
mention the effects of the type of finite element discretiza-
tion and the modeling of loads and supports. Therefore, the
examples are not reported in all details. Instead, the focus
is on potential fields of application and the success of the
approach for challenging industrial problems as an alter-
native to CAD-based shape optimization, in particular for

Fig. 24 Staggered shape and
fiber optimization of a bend
cantilever. Initial shape and
loading (left), optimal shape
(right)
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Fig. 25 Staggered shape and
fiber optimization of a bend
cantilever. Optimal fiber
orientation, bottom layer (left),
top layer (right)

the first stages of product development when a large design
space is mandatory.

The first example demonstrates the mesh independence
of the method, Fig. 20. A quadratic plate is loaded in the
center and supported at the corners. The question is to find
the optimal topology of stiffening beads. A filter radius is
chosen as large as half of the width of support. Addition-
ally, a constraint on the maximum bead depth is given. As
shown, the optimal solution is characterized by the filter
but it is mesh independent. The choices of filter type and
size are additional degrees of design freedom which may
be used to explore the design space. Note the smooth final
surface although only local radial filters are applied. No
post-processing is applied.

Figure 21 shows the result of a joint project together
with Adam Opel GmbH. The optimal distribution of beads
has been determined to maximize the five lowest eigen-
frequencies of a thin metal sheet. The number of iterations
appears always to be not more than 40 for every problem
size. The number of optimization variables has been appr.
50.000 lateral (shape relevant) and 100.000 tangential (mesh
relevant) variables.

12.5 Optimal design of a cylindrical roof

The shape of a cylindrical roof (length = 2.000 mm) sub-
jected to self-weight is optimized for stiffness, Figs. 22
and 23. Mass is indirectly controlled by setting the thickness
constant. A very fine mesh is used for analysis and design
with approximately 100.000 lateral and 200.000 tangential
design degrees of freedom. The well-known shape of the
inverted hanging chain is found as global optimum for any
choice of filter radius if the Poisson effect is neglected (ν =
0). For ν �= 0 several local minima are found depending on
the choice of filter radius r. Note the speed of convergence as
well as the marginal differences of design objective values
for the various different solutions, Fig. 23.

12.6 Staggered optimization of a fiber reinforced
composite shell

The shape of a bend cantilever is determined, assuming
a composite shell with two layers of fiber reinforcement,
Figs. 24 and 25. The filter technique has been applied to
regularize the fiber optimization as well. The objective is

Fig. 26 Selected design
scenarios for the VW-Passat side
mirror. The dark parts are
allowed to be modified by shape
optimization
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Fig. 27 Shape optimization of the side mirrors for drag reduction of
the complete car referring to the center column of Fig. 26. Longitudinal
section of the mirror body. The shape is morphed whilst the displayed
feature lines are maintained. The shape of the mirror itself (left straight
line) has been constrained to guarantee the usability. Therefore, the
optimizer was prevented to simply remove the mirrors to reduce drag

maximum stiffness; altogether there are about 80,000 shape
and fiber angle variables.

12.7 CFD applications

The geometry of the VW-Passat side mirrors has been
improved in several different scenarios, where the whole
mirror or parts have been allowed to be modified, Fig. 26.
In all cases the goal was to reduce the drag of the complete
car by shape modifications of the mirrors only. Therefore,
a complete model of the car had to be simulated in an
appropriate numerical wind tunnel using OpenFoam, the
adjoint solver of ICON, and CARAT++ for optimization.
Regarding optimization, both mirrors had been treated indi-
vidually, i.e., no symmetry conditions had been applied.
That gives 32,000 design parameters for each mirror, i.e.,
64,000 in total. Most important was to maintain the mir-
ror feature lines throughout the optimization as to preserve
the specific characteristics of a Passat mirror, Fig. 27. The
total drag of the car could be reduced up to 0.6 %. The
geometry has been provided by Volkswagen and the adjoint
solvers by ICON who had been partners of the EU-project
FLOWHEAD (refer to the acknowledgment). In further
applications, which are not displayed here, the complete car
body had been optimized which comes together with up to
3.5 Mio shape parameters.

13 Conclusion

Discrete design filtering is proven to be a variant of a most
flexible design parameter approximation technology of

infinite dimension. Applied to shape sensitivities, filtering
is shown to be a mathematically consistent method which
resembles the chain rule of differentiation. Choosing a fil-
ter radius independent of the mesh discretization allows to
most easily and flexibly formulating and solving the largest
possible optimal design problems.
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