
Struct Multidisc Optim (2014) 50:65–80
DOI 10.1007/s00158-013-1026-2

RESEARCH PAPER

Optimizing inclusion shapes and patterns in periodic
materials using Discrete Object Projection

Seung-Hyun Ha · James K. Guest

Received: 31 December 2012 / Revised: 18 October 2013 / Accepted: 16 November 2013 / Published online: 11 February 2014
© Springer-Verlag Berlin Heidelberg 2014

Abstract Current topology optimization methodologies
assume a monolithic, free form approach to design. Many
engineered materials and structures, however, are com-
posed of discrete, non-overlapping objects such as fiber or
particle-based materials. Application of the topology opti-
mization methodology to these types of materials therefore
requires controlling the shape and interaction of designed
features to ensure solutions are meaningful and physically
realizable. Achieving such control on continuum domains
is challenging as features form via the union of elements
of like phase. A topology optimization approach is pro-
posed herein for optimizing the size, shape, and layout of
inclusion-like features in a continuum domain. The tech-
nique is based on the Heaviside Projection Method and uses
multiple regularized Heaviside functions whose interaction
is tailored so that the designer may restrict the minimum and
maximum length scale of inclusions, and minimum spac-
ing between inclusions. The technique is demonstrated on
the design of material microstructures with enhanced elastic
stiffness.
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1 Introduction

Continuum topology optimization algorithms are built
around the assumption that the structure to be designed is
monolithic. That is, the structure is characterized by a mate-
rial distribution with a continuous connectivity of a phase.
A beam with holes, for example, features a continuous
load path from the applied load to the support bound-
ary conditions. Many engineered structures and materials,
however, gain functionality or are specifically manufac-
tured from discrete objects. For example, fiber-reinforced
composites where the objects (inclusions) are cylindrical
and are not permitted to overlap. Current topology opti-
mization methods are incapable of tackling such design
problems.

Guest (2011) proposed a means of optimizing the pat-
terning of such discrete objects at the 9th World Congress on
Structural and Multidisciplinary Optimization (WCSMO9).
The approach was based upon the Heaviside Projection
Method (HPM) for topology optimization (Guest et al.
2004) and achieved stiff discrete objects by giving each
design variable the ability to simultaneously project stiff
material locally over a radius of rmin and a compliant matrix
material in the region enclosing this stiff inclusion. Each
design variable thus had two projection domains charac-
terized as concentric circles. The primary limitation of the
approach was that the inclusions were fixed size and fixed
shape (e.g., radial).

In this work we extend this so-called Discrete Object Pro-
jection approach to cases where the inclusions (or holes)
are permitted to be variable in size and shape. The designer
may prescribe a minimum and maximum length scale of
the inclusions as well as the minimum spacing between
inclusions, as may be required to guarantee sufficient
matrix-inclusion bonding. The location, size, and shape of
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inclusions are then optimized. Unlike shape optimization, a
key advantage of the Discrete Feature Projection approach
is that inclusions may appear or disappear from any location
in the domain, or translate across the domain (Guest 2011).
This is more in the spirit of free-form topology optimiza-
tion and, perhaps most importantly, means that the number
of discrete inclusions need not be selected a priori.

The proposed algorithm will be demonstrated on the
design of periodic materials with maximized elastic stiff-
ness. The problem is posed as an inverse homogenization
problem, where the goal is to identify unit cell topologies
that offer optimized effective material properties at the bulk
scale. The inverse homogenization design problem was first
solved using topology optimization by Sigmund (1994a, b)
using truss and frame representations of microstructures to
design minimum weight materials with prescribed elastic
properties, including negative Poisson’s ratio. This was later
extended to continuum representations, including materi-
als with optimized elastic and thermal expansion properties
(Sigmund and Torquato 1997), fluid permeability (Guest
and Prévost 2006), and multifunctional materials governed
by multiple physics, including elastic stiffness and fluid
permeability (Guest and Prévost 2006; Challis et al. 2012)
and elastic stiffness and thermal conductivity (Challis et al.
2008; de Kruijf et al. 2007). Topology optimization has also
been applied (for example) to the design of piezocompos-
ites (Sigmund et al. 1998), phononic band-gap materials
(Sigmund and Jensen 2003), photonic crystal structures
(Jensen and Sigmund 2004), and most recently negative
permeability metamaterials (Diaz and Sigmund 2010; Zhou
et al. 2011). With the exception of the truss and frame rep-
resentations (Sigmund 1994a, b), topologies in these works
are assumed to be monolithic and may take on complex
topologies.

The work here focuses on engineered materials that are
fabricated by embedding discrete inclusions in a matrix
material. These objects may be fibers or particles that
enhance strength or multifunctionality of the material, or
hollow particles to reduce material weight. Such inclusions
are discrete objects, are not permitted to overlap, and are
restricted to a fixed range of length scales. Both stiff and
compliant inclusions are considered. Of course, the elastic
properties of materials with stiff inclusions have been stud-
ied extensively in literature. Eshelby (1951, 1957, 1975),
for example, has studied the mechanical properties of com-
posites with circular and ellipsoid inclusions, and effect of
inhomogeneities. This has subsequently facilitated shape
optimization of such inclusions (e.g., Kolling et al. 2003).
A key difference in this work is that shape, size, layout, and
number of inclusions are simultaneously optimized.

2 Variable shape Discrete Feature Projection

Following the conventional radial projection-based method-
ology (Guest et al. 2004), each design variable φi has the
potential to project a material phase onto the finite ele-
ment space to create a topological feature. This projection
is performed over a physical length scale and can be for
the solid phase, creating solid elements (ρe = 1), or for
the void phase, creating void elements (ρe = 0). Essen-
tially the phase that is ‘actively’ projected is the phase
whose length scale is controlled, as may be required by the
governing manufacturing process. Examples of this include
controlling minimum length scale of the solid phase (Guest
et al. 2004), void phase (Sigmund 2007; Guest 2009a), or
both phases (Sigmund 2007; Guest 2009a), or preventing
solutions that are susceptible to over- and under-etching
(Sigmund 2009; Wang et al. 2011). In these standard radial
projection schemes, the projected features are permitted to
overlap, creating a monolithic structure.

2.1 Review of discrete objects of fixed size and shape

In the Discrete Feature Projection approach (Guest 2011), a
discrete object is created by projecting one phase onto the
local radial domain (�n

L) and the alternate phase onto the
so-called enclosure domain (�n

E). In the case of a stiff inclu-
sion, for example, the domain defaults to compliant matrix
material and, when a design variable n achieves φn > 0,
stiff material is projected over a radius rmin (diameter dmin)
and is then enclosed in compliant matrix material, as shown
in Fig. 1. In the case where φn = 0, no projection occurs,
and thus no inclusion is centered at design variable n.

The length scale of the enclosure space, denoted as tE , is
the minimum allowable distance between discrete objects,
or equivalently the minimum length scale (diameter) of the
second phase. It is user-defined and can be selected based on
manufacturing or design specifications. For example, com-
posite structures and materials typically require a minimum
bonding distance.

As both the stiff and compliant phases are projected from
each design variable, the projection functions were con-
structed to penalize phase mixing (Guest 2009a), a situation
when elements receive both stiff and compliant material
through the projection (Fig. 2a). Figure 2b shows the case
where projecting design variables are spaced a distance
2∗rmin+tE apart, illustrating that the minimum length scale
of the enclosure phase is in fact tE . These projection func-
tions will be presented in modified form in the following
section.
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Fig. 1 Discrete object projection from design variable n (indicated
by pentagram). A discrete stiff object is created by projecting the stiff
phase onto the local domain �n

L and the compliant phase onto the
enclosure domain �n

E . The upward and downward pointing triangles
indicate elements becoming stiff and compliant, respectively, and the
empty circles indicate elements that are not affected by the projection
from n

2.2 Concept: discrete objects of variable size and shape

The idea now is to allow the designer to prescribe the min-
imum allowable length scale of objects (rmin), maximum
allowable length scale of objects (rmax), and minimum
allowable spacing between objects (smin), and have the
optimizer design each object’s location, shape, and size
respecting these restrictions. This enhanced capability is
achieved by simply introducing a passive free zone of length
scale tF between the local and enclosure domains as shown
in Fig. 3. A design variable does not directly influence

Fig. 3 Variable radius discrete object projection from design vari-
able n (indicated by pentagram) shown for stiff object projection. Stiff
phase is projected onto the local domain �n

L, compliant phase is pro-
jected onto the enclosure domain �n

E , and no projection occurs within
the free zone, leaving the compliant phase by default

elements located within this free zone. This means that a
limited number of neighboring design variables may also
project objects onto these elements, creating overlapping
objects and thus new ‘shapes’, provided the projected local
material does not mix with an actively projected enclosure
phase.

Figure 4 illustrates these properties for an object of stiff
phase enclosed in a compliant matrix material. A single pro-
jecting design variable creates a circular feature of radius
rmin (diameter dmin). A circular object of radius rmax (diam-
eter dmax) is achieved by the design variable distribution in
Fig. 4a. A large free region provides more design freedom
for the shape of the discrete object, allowing (for example)

Fig. 2 Discrete object
projections from design
variables n1 and n2
(φn1 > 0, φn2 > 0, all other φ =
0). a Hexagrams indicate
elements receiving projection of
both phases (phase mixing),
which must be prevented. b
Binary solutions may result
when projecting design variables
are at least a distance 2*rmin+
tE apart, also illustrating that the
minimum length scale of the
enclosure phase is tE
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Fig. 4 Candidate stiff phase objects for projection domains of Fig. 3
(rmin = 2h, tF = 2h, and tE = 1h, where h is the element size). Design
variable nodes marked with a pentagram have magnitude greater than
zero and elements with circles at centroids are the compliant (blue)
phase by default. Attainable features include a circle of diameter

2*rmin (Fig. 3), a a circle of diameter dmax = 2*rmin+ tF , b an
elipse of height 2*rmin and length 2*rmin+ tF , and c a “T-shape” of
length and height 2*rmin+ tF (with other possible variations including
L-shape)

the creation of a line object or ellipse (Fig. 4b), or even
‘T-shape’ (Fig. 4c). Note that element-wise volume frac-
tions are used herein, meaning stiff or compliant materials
are projected onto element centroids. Figure 4c is thus free
from phase mixing despite the minor overlap of stiff and
compliant domains at the edges of the “T”.

Regardless of shape, the maximum diameter length scale
of the discrete object is rmax = rmin + tF/2. As Fig. 5
illustrates, objects having length scale greater than this rmax

along any axis incur phase mixing. We note the restricted
maximum length scale here is different than that described
and used in Guest (2009b) for controlling member sizes.
Herein rmax is enforced in all directions leading to isolated

objects. In the previous work, the constraint on rmax had
to be satisfied in any single direction, thus allowing (for
example) long beams of maximum width rmax .

Using the free zone approach, discrete objects will be
enclosed by the second phase with length scale of at least
tE + tF . This length scale is thus the minimum spacing
between objects and is denoted as smin. Noting that the
example projection domains in Fig. 3 have tE = 2 elements
and tF = 1 element, this minimum spacing is clearly seen in
Fig. 4 where all stiff objects are surrounded by 3 compliant
elements.

Although the length scale variables tE and tF are needed
to clearly explain the numerics of the algorithm in the
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Fig. 5 Objects of length scale greater than 2*rmin+ tF lead to
phase mixing, which is prevented through penalization. Length scale
annotations are associated with nodes n1 and n2

following section, the variables rmax and smin are more use-
ful in terms of engineering design. Given these variables
and rmin, one can simply use the following relations to
determine the projection domain length scales tE and tF :

tF = 2(rmax − rmin)

tE = smin − tF = smin − 2(rmax − rmin)
(1)

As length scales must be positive, we note that the proposed
framework requires smin > 2(rmax − rmin). This require-
ment is discussed further in Section 4.3. We also note that
setting tF = 0 yields rmin = rmax and thus the fixed size
and shape case described in Guest (2011).

2.3 Numerical implementation

The following equations are developed for the projection
domains shown in Section 2.2 for the case of a stiff object
enclosed in compliant matrix material.

2.3.1 Neighborhood sets

As suggested by the preceding figures, a single design vari-
able influences several elements. It follows that several
design variables influence the phase distribution within each
element. This mapping is stored in neighborhood sets for
each element. The local (Ne

L), free (Ne
F ), and enclosure

neighborhood sets (Ne
E) for element e contain the design

variables for which the element is located in the local, free,
and enclosure zones. More rigorously:

i ∈ Ne
L if

∥
∥xi − xe

∥
∥ ≤ rmin

i ∈ Ne
F if rmin <

∥
∥xi − xe

∥
∥ ≤ rmin + tF

i ∈ Ne
E if rmin + tF <

∥
∥xi − xe

∥
∥ ≤ rmin + tF + tE

(2)

where xi is the location of design variable i, and xe is the
location of the centroid of element e. As design variables do
not project either phase into the free region, the neighbor-
hood set Ne

F is not used in the equations below and need not
be stored. It is simply identified for completeness.

2.3.2 Heaviside projection

The proposed technique projects design variables onto the
local space and the extended space independently. Projec-
tion intensity in elemental neighborhood sets Ne

L and Ne
E

are denoted as μe
L and μe

E , respectively, and are computed
using standard proximity-based filtering as

μe
L =

∑

i∈Ne
L

φiwL(xi − xe)

∑

i∈Ne
L

wL(xi − xe)
, μe

E =

∑

i∈Ne
E

φiwE(xi − xe)

∑

i∈Ne
E

wE(xi − xe)
(3)

where the wL and wE are the local and extended region
weighting functions, respectively, shown in Fig. 6 and given
as

wL(xi − xe) =
{ rmin−ri

rmin
if xi ∈ �e

L

0 otherwise

}

wE(xi − xe) =
{

(rmin+tF+tE)−ri
tE

if xi ∈ �e
E

0 otherwise

} (4)

and ri is simply the distance between design variable and
element centroid.

ri ≡
∥
∥xi − xe

∥
∥ (5)

The variables μe
L and μe

E are then separately converted to
binary pseudo-volume fractions ρe

L and ρe
E by passing them

through the Heaviside projection operator as follows

ρe
L = H(μe

L) =
{

1 if μe
L > 0

0 if μe
L = 0

}

,

ρe
E = H(μe

E) =
{

1 if μe
E > 0

0 if μe
E = 0

}

.

(6)

Fig. 6 Weighting functions wL and wE as a function of distance from
design variable location to element centroid
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For the use with gradient-based optimizers, the Heaviside
operators are regularized as

ρe
L = 1 − e−βLμ

e
L(φ) + μe

L(φ)

μmax
e−βLμmax ,

ρe
E = 1 − e−βEμ

e
E(φ) + μe

E(φ)

μmax
e−βEμmax

(7)

where βR indicates the curvature of the regularization in
region R, and μmax is simply the maximum possible projec-
tion intensity which is usually μmax = φmax. The operator is
linear when βR = 0, and converges to the discrete Heaviside
function as βR approaches infinity.

The pseudo-volume fractions for local and enclosure
domains are combined to yield physically meaningful ele-
ment volume fraction ρe using following expression as

ρe = ρe
L

(

2 − ρe
E

)

2
(8)

Element e becomes a stiff element (ρe = 1) only when
ρe
L = 1 and ρe

E = 0, meaning element e is receiving
material projected from a local domain only. When ρe

L is
equal to 0, the element is a compliant, regardless of ρe

E . In
the case that an element is receiving both stiff and com-
pliant material from projections

(

ρe
L = 1 and ρe

E = 1
)

, ρe

becomes 0.5. This is referred to as phase mixing and will
be prevented through standard intermediate volume fraction
penalization techniques.

For the case of designing compliant features (e.g., holes)
in a stiff domain, we project the compliant phase in the
local domain and stiff phase in the enclosure domain. This
is achieved by simply subtracting (8) from unity:

ρe = 1 − ρe
L

(

2 − ρe
E

)

2
(9)

Finally, we note that expressions (8–9) are continuous when
using the regularized functions (7). Derivatives ∂ρe

∂φi
are thus

straightforward and readily computed via the chain rule.

3 Problem formulation and algorithm

The new topology optimization algorithm is applied herein
to design the unit cell microstructure of periodic materials.
Homogenization theory is used to estimate the material’s
effective stiffness tensor at the macro (bulk) scale given the
micro (unit cell) topology. An inverse homogenization prob-
lem is then formulated to design the material distribution
in the unit cell such that desired optimal properties at the
macroscale are achieved, such as optimized elastic moduli
with prescribed elastic symmetries. In this paper we con-
sider maximization of bulk modulus under conditions of
isotropic symmetry.

3.1 Elastic homogenization and inverse homogenization

Elastic homogenization theory (Bensoussan et al. 1978;
Sanchez-Palencia 1980) and their finite element-based
implementations (Guedes and Kikuchi 1990; Hassani and
Hinton 1998) are well-known. We therefore present only the
relevant finite element equations here. In short, the goal of
elastic homogenization is to determine the effective stiffness
tensor CH in the macroscale constitutive relation

σ = CHε (10)

where σ and ε are the macroscopic stress and strain fields,
respectively. In two-dimensions, the effective stiffness ten-
sor is given in engineering notation as

CH =
⎡

⎢
⎣

CH
11 CH

12 CH
13

CH
12 CH

22 CH
23

CH
13 CH

23 CH
33

⎤

⎥
⎦ (11)

and is computed via finite element analysis as

CH
ij = 1

|�|
∑

e∈�

(

de(i)
o − de(i)

)T

ke(ρe)
(

de(j)
o − de(j)

)

(12)

where ke(φ) is the element stiffness matrix as a function of
the design variables φ, and de(i)

o are the elemental nodal dis-
placement vectors associated with the unit test strain fields
for homogenization analysis. The nodal displacement vec-
tors de(i) are the elemental components of d(i), the nodal
displacement vectors associated with the fluctuation strain
fields due to heterogeneity of the unit cell. These are found
by solving the finite element problem

K(φ)d(i) = f(i)(φ)

d(i) is �− periodic
(13)

where the nodal forces f(i) result from the unit test strain
field (i) and are computed by

f(i) = K(φ)d(i)
o (14)

The inverse homogenization problem can now be defined as

max
φ

f = fproperty(CH (φ))− ferror(CH(φ))

subject to K(φ)d(i) = f(i)
∑

e∈�
ρe(φ)ve − V ≤ 0

0 ≤ φi ≤ φmax∀i ∈ �

(15)

where ve are the elemental volumes and V the allowable
volume of the stiff material phase. For the case of isotropic
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materials, the stiffness tensor (11) must take the following
form:

Cisotropic =
⎡

⎣

C11 C12 0
C12 C11 0

0 0 0.5(C11 − C12)

⎤

⎦ (16)

This is imposed using the f error penalty function, which
quantifies anisotropy of the effective stiffness tensor. Com-
paring (11) and (16), this function may be defined as

ferror =
(

CH
11 − CH

22

)2 +
(

CH
11 − CH

12 − 2CH
33

)2

+
(

CH
13

)2 +
(

CH
23

)2
(17)

This work considers maximizing the effective bulk modulus
BH of the material, which may be expressed as

fproperty = BH = 1

4

(

CH
11 + CH

22 + 2CH
12

)

(18)

The reader is referred to Guest and Prévost (2006) for a
detail discussion of these and alternate formulations, includ-
ing the sensitivity analysis.

3.2 Preventing intermediate volume fractions

In order to obtain 0–1 designs, intermediate volume frac-
tions created by phase mixing must be prevented. In this
paper we consider both the Solid Isotropic Material with
Penalization (SIMP) method (Bendsøe 1989; Zhou and
Rozvany 1991) and the Rational Approximation of Material
Properties (RAMP) method (Stolpe and Svanberg 2001).
SIMP models elemental Young’s modulus as

Ee(φ) = E0 + ρe(φ)p(E1 −E0) (19)

where p ≥ 1 is the SIMP exponential penalty term, and E0

and E1 are Young’s moduli of the compliant and stiff phases,
respectively. We have found that this method shows better
performance for compliant feature inclusions such as holes.
RAMP expresses elemental Young’s modulus as

Ee(φ) = E0 + ρe(φ)

1 + η(1 − ρe(φ))
(E1 − E0) (20)

where η ≥ 0 is the RAMP penalty term. We have found
RAMP more effective for stiff feature inclusions (see Guest
(2011) for additional details).

3.3 Optimization algorithm and parameters

All examples are solved using the Method of Moving
Asymptotes (MMA) (Svanberg 1987). MMA is well-known
to be very efficient for problems with a large number of
design variables provided the number of active constraints is

small. In this paper, we use constant projection parameters
β = 50 and φmax = 3 with tightened MMA asymptotes as
described in Guest et al. (2011), and constant penalization
parameters p = 5 for SIMP and η = 10 for RAMP. The ini-
tial material distribution in all examples is selected as linear
distribution that increases with the distance from the base
cell centroid (Guest and Prévost 2007).

3.4 Reported metrics

Reported quantitative metrics will include the discreteness
metric M proposed by Sigmund (2007):

M =
(

4

n

)
∑

e=1,n

ρe(1 − ρe) (21)

where n is the number of finite elements. This metric is zero
for a fully binary solution and 100 % for a solution with all
ρe = 0.5.

We will also report the effective bulk modulus BH for all
optimized topologies. It must be emphasized, however, that
this magnitude is only accurate when the topology achieves
M = 0 (is a binary design). In the case of M > 0, one
can use the RAMP or SIMP penalized stiffness in the cal-
culation of BH , or the unpenalized stiffness. The former
underestimates the “actual” BH of the material while the
latter overestimates it. This makes it difficult to compare
to solutions to the theoretical Hashin-Shtrikman bounds
on bulk modulus, as these do not apply for M > 0. In
fact, and in some cases we see penalized BH below the
Hashin-Shtrikman lower bound and unpenalized BH above
the Hashin-Shtrikman upper bound. Due to this inconsis-
tency, we chose to present the BH used in the objective
function, which is the penalized BH evaluated with RAMP
parameter η = 10 for stiff inclusion examples and SIMP
exponent of p = 5 for soft inclusion examples. This enables
a clear relative comparison between optimized topologies.
Finally, we note that all results were isotropic with an error
function magnitude f error of less than 10−6. The magnitude
of this function is thus not reported for each example.

4 Periodic material design examples

The variable shape, discrete object algorithm is now applied
to design periodic microstructures with maximized effective
bulk modulus and isotropic elastic symmetries. The design
domain is the unit cell of the periodic material, defined here
as a unit square meshed using 160 by 160 elements. The two
material phases composing the microstructure are assumed
isotropic with Poisson’s ratio of 0.3. Young’s moduli of
these phases will be varied.
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Fig. 7 Maximum bulk modulus
solution using monolithic
topology optimization with 10 %
volume constraint: unit cell (left)
and periodic structure (right)

4.1 Optimizing size, shape, and layout of stiff inclusions
in a compliant matrix material

We begin with case of embedding a stiff phase of Young’s
modulus E1 = 1.0 into a compliant matrix material of
Young’s modulus E0 = 0.2. Figure 7 displays the isotropic,
maximal bulk modulus solution for the case of a mono-
lithic, single-scale topology with stiff phase volume fraction
of 10 %. This topology is representative of what free-form
(monolithic) topology optimization produces and exhibits
a bulk modulus of 0.171, nearly achieving the Hashin-
Shtrikman bound of 0.172 for this volume fraction.

Using the discrete object projection concept, the stiff
phase is now restricted to be circular inclusions of fixed
diameter dmin = dmax = 0.06 units, spaced at a minimum
distance of smin = 0.03 units. This is essentially the algo-
rithm of Guest (2011) (Fig. 1) and is achieved herein using
rmin = 0.03, tF = 0, and tE = 0.03 units. The result-
ing topology is shown in Fig. 8a and, not surprisingly, it
is seen that the inclusions are largely aligned with the load
path of the monolithic solution. Increasing the required min-
imum spacing to smin = 0.06 units leads to the topologies
in Fig. 8b. It is seen that all inclusions are the same size and
shape, and spaced at the required minimum distance. Table 1

Fig. 8 Maximum bulk modulus
solutions for 10 % volume
fraction of the stiff phase using
Discrete Object Projection for
circular inclusions of fixed size
(dmin = dmax = 0.06 units) and
minimum allowable spacing of a
smin = 0.03 and b 0.06 units.
Unit cells are shown in the left
column and periodic structures
in the right column. The red and
blue length scale bars indicate
the required circular object
diameter and minimum spacing,
respectively (a)

(b) 
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summarizes the bulk moduli for these (and the following)
optimized topologies. It is clear from these results that
the requirement to use discrete objects leads to a signifi-
cant drop in bulk modulus over the free-form, monolithic
solution (row 1).

Object design freedom is now enhanced using the new
variable size and shape algorithm. Figure 9 shows a number
of solutions found by imposing a minimum object diame-
ter of dmin = 0.06 units and various combinations of length
scale restrictions on the maximum object diameter dmax and
minimum object spacing smin. The solutions contain a vari-
ety of inclusion sizes and shapes, including circles, ellipses
(Fig. 9b), heart-like shapes (see Fig. 9e), and even “bow-
tie” shapes (see midpoints of unit cell boundaries in Fig. 9f).
Before performing a detailed comparison of these topolo-
gies, we first illustrate that the prescribed length scales are
indeed satisfied. As discussed in Section 2, the projection
naturally imposes minimum and maximum length scales of
dmin = 2 rmin and dmax = 2rmax = 2rmin+ tF , respec-
tively, and a minimum length scale for spacing of smin =
tF+ tE . These length scale restrictions are illustrated with
circles in Fig. 10, which contains an enlarged version of
Fig. 9(d). It is clearly seen that all inclusions are between
the minimum and maximum allowable length scales, and
that all inclusions are spaced at least as far apart as the min-
imum allowable distance smin. The designer may specify
these three length scales according to the range of desirable
(or available) inclusion sizes and minimum required bond-
ing distances, and the projection algorithm naturally creates
topologies under this restriction without the need for explicit
constraints.

Figure 9a, b and c illustrate the effect of increasing smin

when using a constant dmin and dmax . It is clear from these
topologies that the inclusions move farther apart as smin

increases. This also reduces stiffness of the design: Table 1
shows this quantitatively while visually we see inclusions
pushed from the edges of the unit cell towards its interior.
This has a very interesting effect on the designed shape of
inclusions located at the midpoints of the unit cell bound-
aries. Examining closely these locations in Fig. 9b, we see
these inclusions have been squeezed into ellipses, and that
adjacent inclusions on the interior of the unit cell feature a
flat exterior edge. This effectively keeps as much stiff phase
as possible along the primary load path, the edge of the unit
cell. In other words, if either the edge or interior inclusions
were circular, the centroid of the interior inclusion would
need to move further towards the centroid of the unit cell to
respect the minimum spacing requirement.

Figure 9c, e, and f illustrate the effect of increasing
shape freedom by increasing dmax for constant dmin (and
smin). Moving from Fig. 9c–e, we see the larger dmax

enables design of larger inclusions, and these inclusions
have straight edges to enable tight packing along the unit

cell boundary – no inclusions are found on the interior. This
trend continues in Fig. 9f, where the algorithm has man-
aged to pack all inclusions in line, away from the interior of
the unit cell, including at the corners. Table 1 confirms that
these topological changes improve the objective function, as
BH increases from topology 9c to 9e to 9f.

Finally, it is worth noting that the algorithm is quite
successful at creating near 0–1 solutions. The discreteness
measure M is approximately 4 % or less for all of the
topologies in Fig. 9.

Figure 11 shows an additional set of solutions using a
larger minimum length scale diameter of dmin = 0.12 units.
The same trends are observed as in the previous example.
As the minimum allowable spacing is increased, compar-
ing Fig. 11a, b and c, inclusions move farther apart and are
pushed into the interior of the cell. This is a less efficient
region of the unit cell causing a corresponding decrease
in bulk modulus (Table 2). Increasing dmax provides more
design freedom to the optimizer, reflected in the more
complex shapes and an improved bulk modulus (Table 2)
moving from Fig. 11d, b and e.

4.2 Optimizing size, shape, and layout of compliant
inclusions in a stiff material

We now use the algorithm to optimize the shape, size,
and layout of compliant inclusions in a stiff substrate. The
compliant and stiff phases are assumed to have Young’s
moduli of 0.33 and 1.0, respectively, and we consider a stiff
phase volume fraction of 85 %. The monolithic solution,
found using free form topology optimization, is shown in
Fig. 12. This topology offers a bulk modulus of 0.598, again
approaching the Hashin-Shtrickman bound of 0.601.

Figure 13 displays solutions using the variable size and
shape discrete object projection algorithm with minimum
length scale dmin = 0.12 units and various magnitudes
of the maximum and minimum spacing length scales.
Quantitative metrics for these topologies are contained in
Table 3. The solutions follow the expected trends: (1) as
smin increases inclusions are pushed farther apart and the
optimized bulk modulus decreases (compare Fig. 13a–b),
and (2) as dmax increases, more diverse inclusion shapes
are seen and bulk modulus increases (compare Fig. 13c, b
and d).

An interesting observation is that the layouts of the soft
inclusions here strongly resemble the layouts of the stiff
inclusions in the preceding examples. Figure 13d and 11e,
for example, are essentially the inverse of each other. One
explanation for this is that the inclusions introduce fluctua-
tion strains in the microstructure and the optimizer orients
these fluctuation strains in a ring-like pattern so as to
maintain isotropic symmetry.
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Fig. 9 Maximum bulk modulus
solutions using Discrete Object
Projection with variable size and
shape inclusions having
minimum diameter dmin = 0.06
and a dmax = 0.09, smin = 0.06;
b dmax = 0.09, smin = 0.09;
c dmax = 0.09, smin = 0.12;
d dmax = 0.12, smin = 0.09;
e dmax = 0.12, smin = 0.12; and
f dmax = 0.15, smin = 0.12.
Unit cells are shown in the left
column and periodic structures
in the right column. The two red
length scale bars in each figure
indicate the minimum and
maximum allowable inclusion
length scale in diameter, and the
blue bar represents the
minimum allowable spacing
between inclusions

(a) 

(b) 

(c) 

(d) 
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Fig. 9 (continued)

(e)  

(f)  

4.3 Topological limitations of the proposed algorithm

As demonstrated, the proposed algorithm allows the
designer to prescribe the minimum allowable length scale
diameter (dmin) and maximum allowable length scale diam-
eter (dmax) of designed objects, as well as the minimum
allowable spacing between objects (smin). The larger the dif-
ference between dmax and dmin, the larger the length scale
of the free zone projection domain tF , and thus the more
design freedom in optimizing the shape of the inclusion.

The primary drawback of the algorithm as proposed is
that increasing tF also increases the minimum allowable
spacing between objects (smin = tF+ tE). Although one can
reduce the enclosure zone length scale tE to mitigate this
effect, it must remain a positive number and thus we are lim-
ited to cases where smin > 2(rmax− rmin). This essentially
means that the algorithm as presented is not capable of pro-
viding significantly large design freedom in size and shape
while also allowing the inclusions to be tightly packed. This
is one of the reasons the algorithm seems to prefer larger
inclusions as tF increases in the preceding examples. This
limitation becomes more restrictive as the allowable volume
of material increases, as eventually the maximum stiff-
ness problem will begin to resemble the packing problem

(Guest 2011), and the algorithm will prefer all inclusions
achieve the maximum length scale so as to maximize mate-
rial volume. Ideally the minimum spacing smin would be a
function of only the enclosure length scale tE . Removing
this dependency is the subject of future work.

Fig. 10 An enlarged version of the periodic material in Fig. 9d anno-
tated with length scales dmin = 0.06, dmax = 0.12, and smin =
0.09, the minimum and maximum allowable inclusion diameters and
minimum allowable distance between inclusions, respectively
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Table 1 Comparison of bulk
modulus for the monolithic
topology (Fig. 7) and
topologies found using
Discrete Object Projection
using objects of fixed size and
shape (Fig. 8) and variable size
and shape (Fig. 9)

Figure dmin dmax smin rmin tF tE M (%) BH (η = 10)

7 0.02 – – 0.01 – – 0.002 0.17139

8a 0.06 0.06 0.03 0.03 0.00 0.03 4.95 0.15813

8b 0.06 0.06 0.06 0.03 0.00 0.06 5.61 0.15736

9a 0.06 0.09 0.06 0.03 0.03 0.03 1.20 0.15962

9b 0.06 0.09 0.09 0.03 0.03 0.06 3.08 0.15879

9c 0.06 0.09 0.12 0.03 0.03 0.09 4.37 0.15782

9d 0.06 0.12 0.09 0.03 0.06 0.03 1.66 0.15969

9e 0.06 0.12 0.12 0.03 0.06 0.06 2.21 0.15911

9f 0.06 0.15 0.12 0.03 0.09 0.03 1.39 0.15957

Fig. 11 Maximum bulk
modulus solutions using
Discrete Object Projection with
variable size and shape
inclusions having minimum
diameter dmin = 0.12 and
a dmax = 0.18, smin = 0.09;
b dmax = 0.18, smin = 0.12;
c dmax = 0.18, smin = 0.15;
d dmax = 0.15, smin = 0.12; and
e dmax = 0.21, smin = 0.12.
Stiff phase volume fraction is
15 %. Unit cells are shown in
the left column and periodic
structures in the right column

(a) 

(b) 

(c) 
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Fig. 11 (continued)

(d)

(e) 

Table 2 Comparison of bulk
modulus for variable size and
shape discrete object
topologies of Fig. 11

Figure dmin dmax smin rmin tF tE M (%) BH (η = 10)

11a 0.12 0.18 0.09 0.06 0.06 0.03 3.44 0.16854

11b 0.12 0.18 0.12 0.06 0.06 0.06 4.12 0.16768

11c 0.12 0.18 0.15 0.06 0.06 0.09 4.22 0.16754

11d 0.12 0.15 0.12 0.06 0.03 0.09 6.39 0.16635

11e 0.12 0.21 0.12 0.06 0.09 0.03 2.84 0.16866

Fig. 12 Maximum bulk
modulus solution found using
monolithic topology
optimization with a stiff phase
volume fraction constraint of
85 %. Unit cell is shown in the
left column and periodic
structure in the right column
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Fig. 13 Maximum bulk
modulus solutions using
Discrete Object Projection with
variable shape compliant
inclusions having minimum
diameter dmin = 0.12 and
a dmax = 0.18, smin = 0.09;
b dmax = 0.18, smin = 0.12;
c dmax = 0.15, smin = 0.12;
d dmax = 0.21, smin = 0.12.
Unit cells are shown in the left
column and periodic structures
in the right column. The two
blue length scale bars in each
figure indicate the minimum and
maximum allowable inclusion
length scale in diameter, and the
red bar represents the minimum
allowable spacing between
inclusions

(a) 

(b) 

(c) 

(d) 
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Table 3 Comparison of bulk
modulus for the monolithic
topology (Fig. 12) and
topologies found using Discrete
Object Projection with variable
size and shape objects (Fig. 13)

Figure dmin dmax smin rmin tF tE M (%) BH (p = 5)

12 0.10 – – 0.05 – – 0.93 0.59831

13a 0.12 0.18 0.09 0.06 0.06 0.03 3.95 0.58913

13b 0.12 0.18 0.12 0.06 0.06 0.06 4.22 0.58861

13c 0.12 0.15 0.12 0.06 0.03 0.09 4.64 0.58763

13d 0.12 0.21 0.12 0.06 0.09 0.03 2.68 0.59232

5 Concluding remarks

A topology optimization method is presented for optimiz-
ing the size, shape, and layout of discrete non-overlapping
objects, such as inclusions, in periodic materials. In con-
trast to traditional monolithic topology optimization, the
designer may specify the minimum and maximum allow-
able object size as well as the minimum allowable spacing
between discrete objects. These size and shape restrictions
are satisfied naturally, without additional constraints, using
the projection-based methodology. Specifically, each inde-
pendent design variable is capable of actively projecting
multiple material phases onto different regions of the finite
element space and the interaction of these projections is
tailored to yield near binary topologies.

As in the original Discrete Object Projection approach
for features of fixed size and shape (Guest 2011), the
variable size and shape scheme presented here progresses
in the spirit of free-form topology optimization. That is,
objects may appear, disappear, or translate across the design
domain. This means the number of objects need not be
defined a priori, which is particularly important in the
design of multifunctional materials where the optimal num-
ber of inclusions may not be known. The scheme was
demonstrated in the context of maximum stiffness materi-
als for cases of stiff inclusions in a compliant matrix and
compliant inclusions in a stiff substrate. Extension to 3d
is straightforward with the circles in Figs. 1 and 3 simply
becoming spheres.
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