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Abstract The paper deals with minimization of the
weighted sum of compliances related to the load cases
applied non-simultaneously. The design variables are all
components of the Hooke tensor, subject to the isoperimet-
ric condition bounding the integral of the sum of the Kelvin
moduli. This free material design problem is reduced to an
equilibrium problem – in two formulations – of an effective
body with locking. The stress-based formulation reduces to
minimization of an integral of a certain norm of stress fields
over the stress fields which equilibrate the given loads. The
equivalent displacement-based formulation involves a lock-
ing locus defined by using a norm being dual to the previous
one. The optimal Hooke tensor is determined by using the
stress fields solving the auxiliary locking problem. To make
the optimal Hooke tensor positive definite one should con-
sider at least 3 load conditions in the 2D case and not less
than 6 load conditions in the 3D case.
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1 Introduction

The topology optimization of elastic structures provides the
methods of the optimal layout: of two or several mate-
rials (1), of the bars of pin-jointed frameworks (2), of
the elastic moduli within a given feasible domain (3), see
Bendsøe (1995), Bendsøe and Sigmund (2003). In the case
of a single load, a standard merit function is the compliance
of the whole structure. The theory of this problem is the
subject of the extensive studies, see Lipton (1994), Allaire
(2002), Cherkaev (2000) and Haslinger et al. (2010) and the
references therein. In the multiple load case the optimum
design should be considered within the Pareto framework of
the vector optimization. The Pareto solution can be found
on the basis of the solution to the optimum design prob-
lem with the merit function being the weighted sum of the
merit functions for subsequent load cases, cf. Hillermeier
(2001) and Jahn (2004). To construct the Pareto solution
one should solve the family of minimization problems over
all possible weighting factors ηi , the sum of which being 1.
Therefore, the present paper is aimed at minimizing the
weighted sum of the compliances corresponding to the given
loads applied non-simultaneously, for fixed values of the
weighting factors ηi .

Although the topology optimization comprises other
problems than compliance minimization, like optimal
choice of the first eigenfrequency, the compliance mini-
mization is the first on the list as the only problem being
self-adjoint: the adjoint problem coincides with the initial
one.

In problems named above by (1) the amounts of the mate-
rials are given thus providing the isoperimetric conditions
expressed by the integrals of the mass densities. The prob-
lem is to place the materials to minimize the merit function
(e.g. the compliance); the problem is rationally posed due

mailto:T.Lewinski@il.pw.edu.pl
mailto:s.czarnecki@il.pw.edu.pl


708 S. Czarnecki, T. Lewiński

to the isoperimetric conditions imposed, which prevent the
solutions from being trivial.

In problems (2), usually the total mass (or weight) of the
structure is bounded. The mass is determined by the areas
of the cross sections and member lengths. Alternatively, the
stresses in bars can be bounded. Such conditions reduce the
problems (2) to trusses, since the bent bars are eliminated as
stressed non-uniformly, and hence stressed non-optimally.

Yet it is much less obvious how to augment the prob-
lems (3) by isoperimetric conditions. The design variables
are elastic moduli Cijkl . Consequently, the isoperimetric
conditions should be expressed directly by these variables.
Since there is no link between the moduli and the mass den-
sity, the conventional isoperimetric conditions concerning
the mass density distribution cannot be applied. Probably,
just this unclear question was the reason why the first papers
on the problem of optimal choice of elastic characteristics
have appeared only in 1990’s, although the underlying the-
ory of the compliance minimization has been elaborated in
1980’s, while the theorems on invariants of the 4th order
tensors were available in 1970’s and found the mature state
in 1980’s, see Betten (1986, 1987a, b). The first paper on the
optimal choice of the elastic moduli in which the isoperi-
metric condition has been expressed in terms of invariants
of the Hooke tensor is due to Ringertz (1993), yet only
the paper by Bendsøe et al. (1994) put forward the crucial
formulae and cast the problem in the clear mathematical
setting. The extension of the previous paper to the multi-
load case is due to Bendsøe et al. (1995). This setting is
called there Free Material Design (FMD) and this term will
be used in the present paper. The merit function is chosen
as a weighted sum of the compliances. The isoperimetric
condition is expressed by the integral over the fixed design
domain of a scalar function φ(C). Two cases have been
discussed:

a) φ(C) = trC,
b) φ(C) = ||C||2.

Here trC is the trace of C while || · || is the Frobenius norm
of C. The scalar function should involve the invariants of
C. The functions mentioned above are admissible invari-
ants, yet other choices are also worth considering. One can
make use of the theory of invariants of 4th order tensors
outlined in Betten (1986, 1987a, b), Zheng (1994), Jemioło
and Telega (1997). The invariance property of the scalar
φ(C) is not sufficient to make the FMD problem well
posed. Recently Barbarosie and Lopes (2008) and Haslinger
et al. (2010) have formulated the sufficient conditions for
φ for making the FMD problem solvable. The scalar func-
tions φ chosen in Bendsøe et al. (1994, 1995) satisfy these
conditions.

One can note that the main effort of the hitherto existing
works on FMD has been put on the numerical procedures to

solve the optimization problem. These algorithms are usu-
ally based upon the displacement formulation which leads
to a saddle point problem, see e.g. (7) in Zowe et. al (1997)
and (2.8) in Haslinger et al. (2010). The minimization oper-
ation over admissible Hooke tensors is preceded by the
maximization operation over the kinematically admissible
displacements. Further modification of this formulation is
possible; the design variables can be eliminated to arrive
at the dual formulation, see (13) in Kočvara et al. (2008)
and Werner (2000). The difficulty of this dual formula-
tion lies in the nonlinearity of the bounding conditions.
Moreover, to find the optimal moduli Cijkl one should
solve an auxiliary problem, see p. 87 in Kočvara et al.
(2008). The contemporary codes to solve the non-linear
semi-definite programming problems (SDP) make it possi-
ble to find effectively the solution to the FMD problem in
its dual formulation. Yet this procedure is complex, needs
the most advanced numerical tools and is by far not direct,
see Section 2.4 ibidem. Within this framework one can take
into account the state constraints concerning the displace-
ments and stresses, see Kočvara and Stingl (2007, 2012) and
Section 2.6 in Haslinger et al. (2010).

The papers referred to above do not enter into the
algebraic structure of the Hooke tensors. The specific
properties of symmetry of these tensors determine their
spectral representation. The eigenvalues of the Hooke
tensor of the known materials are positive; they are
called Kelvin moduli and are denoted by λ1, λ2, . . . ,

λm; m = d(d + 1)/2, d being the dimension of the prob-
lem setting. Therefore, in the planar problem the number
of the Kelvin moduli is 3, while in the 3D setting it is
equal 6. The eigentensors are diads of the form ω ⊗ ω,
where ω is a symmetric tensor of order 2. The theorems on
this spectral representation are provided in the articles by
Rychlewski (1984), Blinowski et al. (1996), and Sutcliffe
(1992), Norris (2005, 2006), Moakher (2008), Mehrabadi
and Cowin (1990), Jemioło and Telega (1997). This rep-
resentation makes it possible to find a new interpretation
of the results by Bendsøe et al. (1994), cf. Turteltaub and
Washabaugh (1999). The spectral representation has also
been used in the paper by Banichuk (1996) on the optimal
local orientation of a given anisotropic material. In the FMD
approach the condition λK > 0 is relaxed to λK � 0 to
achieve the best material properties.

The history of the development of the two-material lay-
out theory shows that the most convenient approach to the
compliance minimization is to express the compliance as
the minimal value of the complementary energy over the
statically admissible stress fields, see Lurie and Cherkaev
(1986), cf. (2.4) in Allaire and Kohn (1993). The layout
problem is thus reduced to a static problem of a body of
nonlinear elastic characteristics given by a new, effective
density of complementary energy, see (2.7) in Allaire and
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Kohn (1993). This final stress-based formulation of the
minimum compliance problem does not involve the design
variables. The optimal values of the design variables are
expressed by the stress fields which make the effective
complementary energy minimal.

The result mentioned above has been an inspiration for
a similar reformulation of the FMD problem. Indeed, the
FMD problem for the single load case can be reduced to
a similar two-level scheme. The first step is to solve an
auxiliary minimization problem over the statically admis-
sible stress fields. Having found the minimizer one can
determine all the optimal elastic moduli, see Czarnecki and
Lewiński (2012).

The present paper is aimed at extension of the latter
result to the case of arbitrary number of independent loads.
The minimization over the tensors ω will be performed
first thus leading to the explicit formulation serving as the
point of departure for the subsequent step: the minimization
operation over the Kelvin moduli obeying the isoperimet-
ric condition involving the sum of these moduli as the
integrand. This condition is equivalent to the isoperimetric
condition with the integrand φ(C) = trC, assumed in most
papers on the FMD problems. The elimination of the Kelvin
moduli reduces the FMD problem to the minimization prob-
lem of a functional depending on independent stress fields.
Its integrand is the sum of singular values of the matrix
composed of the components of these stress fields. The
derivation of this result is one of the main objective of the
present paper. Since this integrand has a linear growth with
respect to its argument, the relevant minimization problem
can be interpreted as an equilibrium problem of an effective
body of locking properties, see Čyras (1972), Demengel and
Suquet (1986), Telega and Jemioło (1998). To have a com-
plete insight into the deformation of the body made of a
locking material one should solve two mutually dual prob-
lems: the stress-based problem (minimization over statically
admissible stresses, or rather stress rates) and the kinematic
problem (with maximization over kinematically admissible
displacements). In the considered problem of n loading con-
ditions we have to deal with n stress fields and n strains,
the latter lying within a locking locus at each point of the
design domain. This result is crucial as linking the locking
material theory with the FMD optimization problem. Yet
this link is not a surprise. The known Michell truss problem
is also expressed by two mutually dual formulations, both of
them lying within the framework of mechanics of materials
with locking, see Rozvany (1976), Strang and Kohn (1983),
Lewiński (2004). Moreover, similar problems appear in the
variable sheet problem, see Czarnecki and Lewiński (2013).

The present paper puts forward a new numerical method
to solve the planar FMD problem for two load cases in
its stress-based setting. The method is an extension of the
numerical approach proposed in Czarnecki and Lewiński

(2012) for the single load case. Although the meshing of the
design domain is a starting point, the numerical method pro-
posed does not belong to the finite element (FE) methods,
since the integrand of the functional has a linear growth,
while most FEM codes are applicable for the integrands
of quadratic growth. Consequently, the stresses are not
linked with strains by constitutive equations, but by the
Kuhn-Tucker conditions. The kinematic formulation does
not lead to the set of equations with a quadratic stiffness
matrix. No aggregation procedure is applied to construct
the global system of the governing equations. Instead, we
have to solve the stress based problem by a direct mini-
mization of the prescribed integral. The trial stress fields
are interpolated element-wise by polynomials (which is the
only common feature with FEM) and subject to the set of
equilibrium equations implied by the variational equations
of equilibrium. The set of equilibrium equations results in
the algebraic under-determinate system of linear equations.
The solution of this system is represented numerically with
using the singular value decomposition (SVD). The redun-
dant parameters are then determined by minimization of the
prescribed functional. It is remarkable that these parame-
ters are not subject to any constraints, hence the available,
highly efficient optimization codes specially developed for
the unconstrained optimization problems can be applied.
The computational problem considered has never been dis-
cussed before. The numerical results can only be compared
with the available numerical solutions to the FMD prob-
lem posed different way, as a saddle point problem. The
final layouts found in the present paper compare favor-
ably with those published previously by Werner (2000) and
Kočvara et al. (2008), thus confirming the correctness of the
stress-based method proposed.

The optimal layouts published in Czarnecki and
Lewiński (2011) refer to the 2D case and to the arbitrary
choice of tensors ω and given distribution of the Kelvin
moduli. The layouts shown in the present paper refer to
variation of both: tensors ω and Kelvin moduli. The results
published in the present paper prove that admitting the
Kelvin moduli to vary changes the final design substantially
and contributes to a visible decrease of the compliance.

In the notation of the minimization problems the follow-
ing convention is adopted

min
x∈X f (x) = min {f (x) | x ∈ X} (1)

if the structure of the condition x ∈ X is complicated.
Moreover, the following standard notation is used. The
domain of the body whose material properties are designed
is denoted by Ω . It is a finite open domain in R

d , d being
the dimension (2 or 3).The domain is parameterized by
the Cartesian orthogonal system (x1, . . . , xd) with the
basis (e1, . . . , ed). A point x ∈ Ω is identified with its
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coordinates. A virtual displacement field v = (v, . . . , vd)

in Ω determines the virtual strain field ε(v); εij (v) =
(vi,j+vj,i)/2; (·)i = ∂(·)/∂xi . Locally ε ∈ E

2
s , E2

s being the
set of symmetric tensors of second rank. The scalar product
of ε, κ ∈ E

2
s is defined by ε · κ = εij κij ; i, j run over

1, . . . , d . The Euclidean norm of ε ∈ E
2
s is defined by

||ε|| = (ε · ε)1/2. Tensors of E2
s can be viewed as vectors in

R
m, m = d(d + 1)/2, according to the rules:

for d = 2

ε =
[
ε11, ε22,

√
2ε12

]T ∈ R
3, m = 3 (2)

for d = 3

ε =
[
ε11, ε22, ε33,

√
2ε23,

√
2ε13,

√
2ε12

]T ∈ R
6. (3)

This correspondence is explained in Moakher (2008). Thus
elements of E

2
s will be treated as tensors or as vectors,

depending upon the context. The p-th eigenvalue of a square
matrix B is denoted by μp(B). The p-th singular value of
an arbitrary matrix A is defined by

sp(A) =
√
μp(AAT ). (4)

The indices i, j, k, l run over 1, . . . , d; d being the dimen-
sion of the problem. The indices K, L run over 1, . . . , m.
The indices α, β take values 1, . . . , n, n being the number
of the load conditions.

The set of matrices of m rows and n columns is denoted
by Mm×n.

2 The FMD problem in its stress-based formulation.
Case of n loading conditions

The aim of the present section is to formulate the FMD prob-
lem for n independent loading conditions. For simplicity,
the body forces will be omitted. The FMD means design-
ing characteristics of an elastic body. We assume that body
occupies a fixed Ω in R

d . Thus its geometry is not sub-
ject to any change. Its segment Γ2 of the boundary Γ where
displacements are kept zero is also fixed. The remaining
part Γ1 of the boundary is subject to given tractions T α ,
α ∈ {1, . . . , n}. This load will not be subjected to any
change.

Introduce the linear form

f α(v) =
∫

Γ1

T α · vdΓ (5)

representing the virtual work of T α on the trial displacement
field v ∈ V (Ω); V (Ω) represents the space of kinemati-
cally admissible virtual displacements; v = (v1, . . . , vd).

Consider virtual stress fields τ = (τij ) in Ω of class
L(Ω, E

2
s ), which means that locally τ (x), x ∈ Ω is an

element of the set E2
s . The fields τ satisfy the regularity

assumptions following from the equilibrium equation:
∫

Ω

τ · ε(v)dx = f α(v) ∀ v ∈ V (Ω). (6)

Such virtual stress fields are called statically admissible
stresses. They constitute a linear affine set Σα(Ω). The (6)
is called a virtual work equation.

The design variables of the FMD problem are the elastic
moduli Cijkl for a.e. x ∈ Ω . These components are referred
to the basis ei ⊗ ej ⊗ ek ⊗ el ; they represent a tensor C(x).
The notation C ∈ E

4
s comprises the symmetry conditions:

Cijkl = Cklij ; Cijkl = Cjikl . Any tensor C ∈ E
4
s admits the

following spectral decomposition, see Rychlewski (1984),
Sutcliffe (1992)

C(x) =
m∑

K=1

λK(x)ωK(x)⊗ ωK(x) (7)

where λ1 � λ2 � . . . � λm � 0 are called Kelvin
moduli and ωK(x) ∈ E

2
s are called eigenstates, see

Rychlewski (1984). They satisfy the orthogonality condi-
tions: ωK(x) · ωL(x) = δKL. If tensors ωK(x) are viewed
as vectors in R

m, see (2), (3), then C can be interpreted as
a square matrix [Ckl] of m × m dimensions. If all λK > 0,
the inverse of C is represented by

C−1(x) =
m∑

K=1

(λK)
−1ωK(x)⊗ ωK(x). (8)

If λK = 0 for K = m1 + 1, . . . , m, then C−1(x) will be
interpreted as

C−1(x) =
m1∑
K=1

(λK)
−1ωK(x)⊗ ωK(x) (9)

where m1 = rank(C). Note that then CC−1 will not be
equal to a unit tensor in E

4
s .

Assume the triplet (uα, σα, ε(uα)) such that
uα ∈ V (Ω), σα and ε(uα) are linked by σ α(x) =
C(x)ε(uα(x)) and let σα ∈ Σα(Ω); α is fixed. The triplet
constitutes a solution to the elasticity problem correspond-
ing to the T α load. The main condition of uniqueness of the
solution is λm > 0. The existence problem is discussed in
Duvaut and Lions (1976).

The quantity

Υ̃ α = f α(uα) (10)

is called the compliance. In case of λm > 0 this quantity can
be equivalently expressed as below

Υ α = min
τ∈Σα(Ω)

∫

Ω

τ ·
(
C−1τ

)
dx. (11)
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The equality Υ̃ α = Υ α reflects the celebrated theorem of
Castigliano, see Duvaut and Lions (1976). In the present
paper the notion of compliance is extended to the case of
rank(C) < m by using the formula (11) with C−1 given
by (9).

Let ηα ∈ [0, 1] be fixed numbers such that η1 + . . . +
ηn = 1. In the FMD problem considered all components of
the tensor field C(x) for a.e. x in Ω are design variables.
This will be expressed by writing Υ α = Υ α(C).

Introduce the functional to be minimized

Fη(C) =
n∑

α=1

ηαΥ
α(C). (12)

A detailed discussion of solutions to the problem of mini-
mization of Fη for ηα linked by η1 + . . .+ ηn = 1 makes it
possible to find the whole Pareto front of the solutions. This
question will be explained in Section 6.

The trace of C is defined by Cijij or

trC = λ1 + . . .+ λm. (13)

Since λK � 0 we can write trC = ||λ||1, where λ =
(λ1, . . . , λm) and || · ||p is a p-norm. Let 〈·〉 be averaging
over Ω

〈f 〉 = 1

|Ω|
∫

Ω

f dx (14)

and let E0 be a referential elastic modulus. Let H(Ω) be
the set of appropriately regular tensor fields C on Ω such
that for a.e. x in Ω , C(x) ∈ E

4
s and its Kelvin moduli are

non-negative. We say that C ∈ Ĥ (Ω) if C ∈ H(Ω) and

〈trC〉 = Eo. (15)

For fixed η1, . . . , ηn satisfying η1 + . . .+ηn = 1 the FMD
problem considered is assumed in the form

Jη = min
C∈Ĥ (Ω)

Fη(C). (16)

Let us substute (11), (12) into (16) and switch minimization
operations. We find

Jη = min
τα∈Σα(Ω)

J̃η, Eo

(
τ 1, . . . , τn

)
. (17)

where

J̃η, Eo

(
τ 1, . . . , τn

)
= (18)

= min

{∫

Ω

n∑
α=1

√
ηατ

α ·
(
C−1 (√ηατ

α
))

dx

∣∣∣∣∣

C ∈ H(Ω), 〈trC〉 = Eo

}
.

It turns out that the functional J̃η, E0 can be explicitly con-
structed by performing: first minimization over ωK and then
over λK . This construction is shown in the next section.

3 Reduction of the FMD problem to a locking material
setting

3.1 Case of arbitrary, finite number of load conditions

Let us introduce the representation (9) of C−1 into (18). Let
us express the integrand ψ of the functional minimized in
(18) as follows

ψ =
n∑

α=1

m1∑
K=1

1

λK

(√
ηατ

α · ωK

)2 =

=
m1∑
K=1

1

λK
ωK ·

(
ŜηωK

)
(19)

where

Ŝη = SηS
T
η , Sη =

[√
η1τ

1, . . . ,
√
ηnτ

n
]
. (20)

The argument x is suppressed for simplicity. The matrix Sη

is constructed of the column vectors
√
ηατ

α using the rep-
resentation (2), (3) of tensors from E

2
s . Each column is of

m× 1 dimension.
Let us define the mapping

S
(
τ 1, . . . , τn

)
=
[
τ1, . . . , τn

]
(21)

treating τα as column vectorsm×1, using the representation
(2), (3). Hence

Sη = S
(√

η1τ
1, . . . ,

√
ηnτ

n
)
. (22)

The mapping S transforms the set of n column vectors in
R
m into a matrix of m× n dimensions. Define

S̃η = ST
η Sη. (23)

Note that

S̃η = [(√
ηατ

α
) · (√ηβτ

β
)]

α, β=1, ..., n . (24)

We know from algebra that rankSη = rankŜη = rankS̃η.
In case of n = m the matrix S̃η is a Gram matrix. This

special case will be commented later.
Let us define

aK = ωK ·
(
ŜηωK

)
.

Assume that

a1 � a2 � . . . � am1, m1 = rank
(
Ŝη

)
(25)

and recall that

1

λ1
� 1

λ2
� . . . � 1

λm1

. (26)
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Let us invoke the ,,rearrangement inequality”, cf.
Hardy et al. (1999)

m1∑
K=1

aK

λK
�

m1∑
K=1

aσ(K)

λK
(27)

where σ(K) is a permutation of the indices {1, . . . , m1}.
We see that to minimize the quantity ψ , see (19), over the
fields ωK we should, for a.e. x ∈ Ω , arrange the quanti-
ties aK according to (25). The biggest value of aK , or a1, is
attained by

a1 = max
||ω||=1

ω ·
(
Ŝηω

)
. (28)

This maximum is attained by ω∗
1(x) which is the eigenvector

corresponding to the first eigenvalue of Ŝη computed at x.
Thus, for fixed x, the pair (a1, ω∗

1) is the first solution to
the eigenvalue problem:

find (λ, y) such that

Ŝηy = λy. (29)

We shall write a1 = μ1(Ŝη), according to the notation
convention assumed in Section 1.

The next pairs (aK, ω∗
K ) are solutions to the same eigen-

value problem; aK , K = 1, . . . , m1 are ordered as in (25).
Note that for given x the number m1 is fixed. In fact m1

depends on x.
Concluding, minimization in (18) over the fields ωK sat-

isfying the conditions: ωK ·ωL = δKL pointwise rearranges
(17) to a new minimization problem

Jη = min

{
Iη(λ)

∣∣ 1

λK
∈ L1(Ω, R+),

〈λ1 + . . .+ λm1〉 = Eo, K = 1, . . . , m1

}
(30)

where λ = (λ1, . . . , λm1) and

Iη = min
τα∈Σα(Ω)

∫

Ω

Wη

(
λ(x); τ 1(x), . . . , τn(x)

)
dx.

(31)

The integrand of (31) reads

Wη

(
λ; τ1, . . . , τn

)
= Wλ

(√
η1τ

1, . . . ,
√
ηnτ

n
)

(32)

where

Wλ

(
τ 1, . . . , τn

)
=

m1∑
K=1

1

λK
μK

(
S
(
τ1, . . . , τn

)
ST
(
τ1, . . . , τn

))

or

Wλ

(√
η1τ

1, . . . ,
√
ηnτ

n
)
=

m1∑
K=1

1

λK
μK

(
Ŝη

)
(33)

where Ŝη is given by (20).
Let us substitute (32), (33) into (30). We find

Jη = min
τα∈Σα(Ω)

min
1
λK

∈L1(Ω, R+)

∫

Ω

m1∑
K=1

μK

(
Ŝη

)

λK
dx

〈λ1 + . . .+ λm1〉 = Eo. (34)

Minimization over λK can be done analytically, by extend-
ing the results of the Appendix of Czarnecki and Lewiński
(2013). The final result is

Jη = 1

|Ω|Eo

(Zη)
2 (35)

where

Zη = min
τα∈Σα(Ω)

∫

Ω

m1∑
K=1

√
μK

(
Ŝη

)
dx. (36)

Note that
√
μK

(
Ŝη

)
= sK(Sη). (37)

Moreover, note that the summation over K in (36) can be
extended to K = m, since sK(Sη) = 0 for K = m1 +
1, . . . , m. Instead of (36) it is more clear to write

Zη= min
τα∈Σα(Ω)

∫

Ω

m∑
K=1

sK

(
S
(√

η1τ
1, . . . ,

√
ηnτ

n
))

dx

(38)

since now the upper limit of K is x independent.
The optimal λK = λ∗K are expressed by minimizers τ ∗α

of problem (38)

λ∗K(x) = Eo

sK

(
S
(√

η1τ
∗1(x), . . . ,

√
ηnτ

∗n(x)
))

〈
m∑

K=1

sK

(
S
(√

η1τ
∗1, . . . ,

√
ηnτ

∗n))
〉 .

(39)

We note that λ∗K(x) > 0 for K = 1, . . . , m∗
1(x), m

∗
1(x) =

rankŜ∗
η(x), Ŝ

∗
η(x) corresponding to τα(x) = τ ∗α(x).

The optimal eigenstate ω∗
K is the K-th eigenvector of

problem (29). For given x ∈ Ω the optimal Hooke tensor is
expressed by

C∗(x) =
m∗

1(x)∑
K=1

λ∗K(x)ω∗
K(x)⊗ ω∗

K(x). (40)
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Let us write

∣∣∣
∣∣∣
∣∣∣
(
τ 1, . . . , τn

)∣∣∣
∣∣∣
∣∣∣ =

m∑
K=1

sK

(
S
(
τ1, . . . , τn

))
(41)

and note that

∣∣∣
∣∣∣
∣∣∣
(
ατ1, . . . , ατn

)∣∣∣
∣∣∣
∣∣∣ = |α|

∣∣∣
∣∣∣
∣∣∣
(
τ1, . . . , τn

)∣∣∣
∣∣∣
∣∣∣ . (42)

Thus the integral of (38) is a homogeneous function of
degree 1.

Instead of solving (38) it is sometimes easier to solve
the problem dual to (38). In the following we shall show
the passage from (38) to its dual. This passage is inspired
by the work of Strang and Kohn (1983) concerning Michell
trusses.

Let us disclose the equilibrium constraints in (38) and
rearrange this problem to a saddle point problem:

Zη = min
τα∈L(Ω, E2

s )
max

vα∈V (Ω){∫

Ω

∣∣∣
∣∣∣
∣∣∣
(√

η1τ
1, . . . ,

√
ηnτ

n
)∣∣∣
∣∣∣
∣∣∣ dx + f 1

(√
η1v

1
)

−
∫

Ω

√
η1τ

1 · ε(v1)dx + . . .+ f n
(√

ηnv
n
)

−
∫

Ω

√
ηnτ

n · ε(vn)dx
}
. (43)

Now we interchange the min and max operations. The
nested problem reads

R = min
τα∈L(Ω, E2

s )

∫

Ω

(∣∣∣
∣∣∣
∣∣∣
(√

η1τ
1, . . . ,

√
ηnτ

n
)∣∣∣
∣∣∣
∣∣∣

− √
η1τ

1 · ε(v1)− . . .−√
ηnτ

n · ε(vn)
)
dx

= min
σα∈L(Ω, E2

s )

∫

Ω

(∣∣∣
∣∣∣
∣∣∣
(
σ 1, . . . , σ n

)∣∣∣
∣∣∣
∣∣∣

−
(
σ 1 · ε1 + . . .+ σ n · εn

))
dx (44)

where εα = ε(vα). By analogy with Section 3.1. in
Czarnecki and Lewiński (2013) we compute

R =
{

0 if (ε1, . . . , εn) ∈ B

−∞ otherwise
(45)

and

B =
{(

ε1, . . . , εn
)
∈
(
E

2
s

)n ∣∣∣
∣∣∣
∣∣∣
∣∣∣
(
ε1, . . . , εn

)∣∣∣
∣∣∣
∣∣∣
∗
� 1

}
(46)

with

∣∣∣
∣∣∣
∣∣∣
(
ε1, . . . , εn

)∣∣∣
∣∣∣
∣∣∣
∗ = max

σα∈E2
s

σα 
=0
α=1,...,n

∣∣∣∣∣
n∑

α=1

σα · εα
∣∣∣∣∣

∣∣∣
∣∣∣
∣∣∣
(
σ 1, . . . , σ n

)∣∣∣
∣∣∣
∣∣∣
.

(47)

The result (45) reduces the problem (43) to the form

Zη = max
vα∈V (Ω)

{
n∑

α=1

f α
(√

ηαv
α
)
∣∣∣∣∣

(
ε(v1(x)), . . . , ε(vn(x))

)
∈ B for a.e. x ∈ Ω

}
. (48)

Let us now re-write (38) in the form

Zη = min
τα∈Σα(Ω)

∫

Ω

∣∣∣
∣∣∣
∣∣∣
(√

η1τ
1, . . . ,

√
ηnτ

n
)∣∣∣
∣∣∣
∣∣∣ dx. (49)

The problems (48), (49) are dual to each other. They can be
interpreted as two problems reflecting mechanical behav-
ior of a certain n-components mixture of locking properties.
The behavior of stresses is governed by (49), while strains
are governed by (48). The relations between stresses and
strains are not expressed by equations but by Kuhn-Tucker
conditions. The noted link with the theory of materials
with locking is not a surprise, since the theory of Michell
trusses can be treated as a theory of a locking material, see
Rozvany’s (1976) comments and the footnote on Zenon
Mróz suggestion, see page 64 in this book. The present
paper does not deal with choosing spaces of admissible
functions in the problems (48), (49). It seems that the
stresses in (49) should satisfy the conditions mentioned in
Strang and Kohn (1983) and Demengel and Suquet (1986),
or τα ∈ M1(Ω, E

2
s ), divτα ∈ L2(Ω, R

d); M1 being the
space of bounded measures on Ω . Yet the problem remains
how to relax the boundary conditions on Γ1. The known
methods of F. Demengel cannot be applied here directly.

Assume that both the problems (48), (49) have been
solved and the tensor (40) has been constructed. The prob-
lem arises whether the elasticity problems corresponding to
the T α loads and the anisotropy given by (40) are solvable,
taking into account that, in general, C∗ is not positive defi-
nite. The affirmative answer is delivered by Th. 1 in Zowe
et al. (1997), based on the displacement approach. Other
existence theorems are formulated in Haslinger et al. (2010).

3.2 Single load condition

We consider now the simplest case of n = 1 load conditions.
Then η1 = 1, τ 1 will be denoted by τ , τ ∈ Σ(Ω) and
Sη = [τ ]. Moreover Ŝη = ττT , τ is interpreted as a vector
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in R
m, see (2), (3). Note that S̃η = τT τ = ||τ ||2. The only

positive singular value of Sη is ||τ ||. Moreover: rankSη =
rankŜη = rankS̃η = 1. Problem (49) reduces to

Z = min
τ∈Σ(Ω)

∫

Ω

||τ ||dx. (50)

Let τ ∗ be the solution to this problem. The only non-zero
Kelvin modulus is equal to

λ∗1(x) = Eo
||τ ∗(x)||
〈||τ∗||〉 (51)

while

ω∗
1(x) =

1

||τ∗||τ
∗(x). (52)

We see that 〈λ∗1〉 = E0. The optimal Hooke tensor equals

C∗(x) = λ∗1(x)ω
∗
1(x)⊗ ω∗

1(x). (53)

We see that rankC∗ = 1; the Kelvin moduli λ∗2, . . . , λ∗m
vanish.

The results (50)–(53) have been for the first time pub-
lished in Czarnecki and Lewiński (2012). These results are
compatible with the results published in Bendsøe et al.
(1994) and in the next papers on FMD. Let us stress that
the FMD version developed in Bendsøe et al. (1994), Zowe
et al. (1997), Hörnlein et al. (2001) is a displacement – based
version and these papers neither include the formulation
(50) nor the formulation dual to it, to be shown later.

According to Th. 6 in Zowe et al. (1997) there exist
stresses σij and strains εij satisfying all equations of the
elasticity problem for a body with anisotropy given by (53).
It is worth noting that the stress σ is collinear with the
auxiliary stress field τ ∗ solving (50). One can derive:

σ (x) = g(x)τ ∗(x) (54)

g(x) = λ1(x)(ω
∗
1(x) · ε(x))||τ∗(x)||−1.

The problem dual to (50) is a special case of (48). It reads

Z = max
v∈ V (Ω)

ε(v(x))∈B for a.e. x∈Ω

f (v). (55)

The locking locus is a unit ball:

B =
{
ε ∈ E

2
s

∣∣∣ ||ε|| � 1
}

(56)

since ||ε||∗ = ||ε||.

3.3 Two load conditions

Assume now that two kinds of loads T α are applied: α =
1, 2; n = 2. Let us write η1 = η, η2 = 1 − η; hence

Sη =
[√

ητ1,
√

1 − ητ 2
]
m×2

,

Ŝη = SηS
T
η , S̃η = ST

η Sη.

Moreover, rankŜη = rankS̃η = m1 = 2. The positive
eigenvalues of Ŝη and S̃η are the same. Let

G(σ , τ ) =
[
σ · σ σ · τ
τ · σ τ · τ

]

2×2

. (57)

Then

S̃η = G
(√

ητ 1,
√

1 − ητ 2
)
. (58)

The eigenvalues of G(σ , τ ) are expressed by

b1(σ , τ ) = 1

2
(||σ ||2 + ||τ ||2)

+ 1

2

√
(||σ ||2 − ||τ ||2)2 + 4(σ · τ )2

(59)

b2(σ , τ ) = 1

2
(||σ ||2 + ||τ ||2)−

− 1

2

√
(||σ ||2 − ||τ ||2)2 + 4(σ · τ )2.

Note that b1 � b2. The positive singular values of the matrix
S
(√

ητ1,
√

1 − ητ2
)

can be expressed as below

s1

(
S
(√

ητ 1,
√

1 − ητ2
))

=
√
b1

(√
ητ1,

√
1 − ητ 2

)

s2

(
S
(√

ητ 1,
√

1 − ητ2
))

=
√
b2

(√
ητ1,

√
1 − ητ 2

)
.

(60)

Let us define

|||(σ , τ )||| = s1(S(σ , τ ))+ s2(S(σ , τ )). (61)

One can derive the more explicit formula:

|||(σ , τ )||| (62)

=
√
||σ ||2 + ||τ ||2 + 2

√
||σ ||2||τ ||2 − (σ · τ )2.
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The construction of the optimal tensor C∗ consists of the
following steps:

Step 1 For fixed η ∈ [0, 1] solve the boundary value
problem

Zη = min
τα∈Σα(Ω)
α=1, 2

∫

Ω

∣∣∣
∣∣∣
∣∣∣
(√

ητ 1,
√

1 − ητ 2
)∣∣∣
∣∣∣
∣∣∣ dx.

(63)

Let τ ∗α be the minimizers of (63)
Step 2 For chosen points x in Ω compute the optimal

Kelvin moduli λ∗1, λ∗2 by (39), n = 2; with s1, s2

defined by (60). The Kelvin moduli λ∗3, . . . , λ∗m
vanish.

Step 3 Solve the eigenvalue problem for the matrix Ŝη(x)

to find the eigentensors ω∗
1(x), ω∗

2(x) for selected
x ∈ Ω .

In 2D case a direct construction of ω∗
1, ω∗

2 is as
follows:

Compute

ξ(x) =
( ||τ (x)||
||σ (x)||

)2
∣∣∣∣∣ σ = √

η
∗
τ 1

τ = √
1 − η

∗
τ 2

. (64)

Find an angle α(x) such that α ∈
(

0,
π

2

)
and

cosα(x) = |σ (x) · τ (x)|
||σ (x)|| · ||τ (x)|| (65)

where σ = √
ητ ∗1, τ = √

1 − ητ∗2. Find

ϕ̂ = − arctan

(
ξ sin 2α

1 + ξ cos 2α

)
,

∗
ϕ= 1

2
(π − ϕ̂)

(66)

for selected x ∈ Ω . The optimal eigenstates are
determined by

ω∗
1 =

(
− cosϕ∗

sinα

)
sign(σ · τ )

||τ || τ + cos(ϕ∗ − α)

sinα
· σ

||σ ||
ω∗

2 =
(

sinϕ∗

sinα

)
sign(σ · τ )

||τ || τ + sin(α − ϕ∗)
sinα

· σ

||σ || .
(67)

Step 4 Compute the components of the optimal Hooke
tensor by

C∗
ijkl =

2∑
K=1

λ∗K(ω∗
K)ij (ω

∗
K)kl . (68)

Step 5 The optimal compliance is given by

Jη = 1

Eo|Ω| (Zη)
2. (69)

Step 1 exceeds the framework of the conven-
tional finite element method, since the integrand in
(63) is of linear growth. Consequently, no constitu-
tive equations are associated with this problem and
in the discretized setting no stiffness matrix arises.
To solve the problem (63) one should develop a
new numerical scheme, which will be constructed
in Section 4. Note, that for η = 0 and η = 1 the
problem (63) corresponds to a single load case, see
problem (50).

The problem dual to (63) is a special case of
(48). It has the form

Zη = max
vα∈V (Ω)

{∫

Γ1

(√
ηT 1 · v1 +√1 − ηT 2 · v2

)
dΓ

∣∣∣∣

(ε
(
v1(x)), ε(v2(x))

)
∈ B a.e. in Ω

}
(70)

where the locking locus is the ball:

B =
{
(ε, κ) ∈ E

2
s × E

2
s

∣∣∣ |||(ε, κ)|||∗ � 1
}

(71)

defined by the norm

|||(ε, κ)|||∗ = max
σ , τ∈E2

s
σ 
=0
τ 
=0

|ε · σ + κ · τ |
|||(σ , τ )||| (72)

with |||(σ , τ )||| given by (62).

3.4 Three and more load conditions

In case of n = 3 and d = 2 the matrix Sη, see (63), is a
square 3 × 3 matrix; here n = m = 3. In case of n = 6
and d = 3 the matrix Sη is a square 6 × 6 matrix. In these
two cases all optimal Kelvin moduli attain positive values
and the optimal tensor C∗ becomes non-singular. Let us
conclude:

a) d = 2. If tensor C∗ is nonsingular then n � 3
b) d = 3. If tensor C∗ is nonsingular then n � 6

Therefore, to make C∗ nonsingular, the number of the
load conditions should be equal to (or bigger than) the
number of stress (or strain) components.
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4 Numerical treatment of the FMD problem in its
stress-based setting. The case of two load condition

The stress-based FMD problem (63) for two load cases, with
the trace constraint, or the problem:

Zη = min{∫

Ω

√
||σ ||2 + ||τ ||2 + 2

√
||σ ||2||τ ||2 − (σ · τ )2dx

∣∣∣∣∣

σ = √
η

1
τ , τ = √

1 − η
2
τ ,

α
τ∈ Σα(Ω)

}
, (73)

will be solved numerically for some selected 2D problems
with using the newly developed scheme of construction
of statically admissible stress fields defined element-wise,
along with the optimizer solving the minimization prob-
lem. The numerical approach starts from division of the
design domain Ω into 4-node, quadrilateral, isoparametric
finite elements with bilinear shape functions interpolating

the eight stress fields
α
τ 11,

α
τ 22,

α
τ 12,

α
τ 21 (α = 1, 2)

α
τ 11 (ξ, ζ ) = N0(ξ, ζ )

α
t 0 +N1(ξ, ζ )

α
t 3 +

+ N2(ξ, ζ )
α
t 6 +N3(ξ, ζ )

α
t 9

α
τ 22 (ξ, ζ ) = N0(ξ, ζ )

α
t 1 +N1(ξ, ζ )

α
t 4 +

+ N2(ξ, ζ )
α
t 7 +N3(ξ, ζ )

α
t 10

α
τ 12 (ξ, ζ ) = N0(ξ, ζ )

α
t 2 +N1(ξ, ζ )

α
t 5 +

+ N2(ξ, ζ )
α
t 8 +N3(ξ, ζ )

α
t 11

α
τ 21 (ξ, ζ ) = α

τ 12 (ξ, ζ )

(74)

within an e-th finite element Ωe. Here ξ , ζ parameterize the

master element ω = [−1, 1] × [−1, 1] and
α
t 3i+0,

α
t 3i+1,

α
t 3i+2 i = 0, 1, 2, 3) are the unknown nodal stresses

α
τ 11,

α
τ 22,

α
τ 12 at the vertices 0, 1, 2, 3 respectively see Fig. 1.

Fig. 1 Mapping of the master element ω onto e-th finite element Ωe

The shape functions N0, N1, N2, N3 are bilinear, of the

form
1

4
(1 ± ξ)(1 ± ζ ). The conditions τα ∈ Σα(Ω) mean

that the following variational equations

∫

Ω

α
τ ·∇vdx =

∫

Γ1

α

T ·vds (α = 1, 2) (75)

are fulfilled for all the kinematically admissible test fields
v = (v1, v2). These test fields will be interpolated within
an e-th element Ωe similarly as the stress field, or

vk(ξ, ζ ) =
3∑

i=0

Ni(ξ, ζ )p2i+k−1 (k = 1, 2) (76)

where p2i+0, p2i+1 (i = 0, 1, 2, 3) are the unknown
nodal virtual displacements v1, v2 at the vertices 0, 1, 2, 3
respectively. Substitution of (74), (76) into the variational
equations (75) results in two systems of linear equations

BΞ = α

Θ, α = 1, 2 (77)

representing the equilibrium conditions for two kinds of

tractions
α

T . In (77), B ∈ Mmo×ns is the rectangular mo×ns

statics matrix,
α

Θ∈ R
mo , α = 1, 2 are the two vectors of

nodal forces for two kinds of tractions
α

T , Ξ = (Ξj ) ∈ R
ns

is the vector of the unknown nodal parameters
α
t j (in global

notation) defining the stress fields (74). Number mo of rows

and number ns of columns (unknown nodal parameters
α
t j

in global notation) in the matrix B are in 2D case equal to
2no and 3no respectively, where no denotes the number of
all nodes in the global finite element mesh.

In the next step we perform the partition of the rectan-

gular matrix B and each vector
α

Θ (α = 1, 2) into two
matrices: upper Bu ∈ Mms×ns , lower Bl ∈ M(m0−ms)×ns

and two vectors
α

Θ u ∈ R
ms ,

α

Θ l ∈ R
mo−ms , respectively.

The first ms indices of the rows in the upper matrix Bu cor-
respond to the indices defining the global, unknown, free
degrees of freedom and the remaining mo − ms indices of
the rows in lower matrix B l correspond to the indices of
the global, known, constrained degrees of freedom due to

boundary conditions. All components of the vectors
α

Θ u

are known and the vectors
α

Θ l of the unknown boundary

reactions can be calculated from the relations
α

Θ l = B l
α

Ξ

upon finding the two vectors
α

Ξ from the two systems of

rectangular linear equations BuΞ = α

Θu, α = 1, 2. The
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two sets
α

J , α = 1, 2 of all solutions of the two systems of
equations

BuΞ = α

Θ u (α = 1, 2) (78)

can be expressed as

α

J=
{

α

Ξ= α

Ξ

(
α

β1, . . . ,
α

βs

)
∈ R

ns

∣∣∣∣
α

Ξ= α

Ξ ∗ +
s∑

k=1

α

βk bk,
α

βk∈ R

}
, α = 1, 2 (79)

where

bk =
⎡
⎣

bk1

· · ·
bkns

⎤
⎦ ∈ R

ns , k = 1, 2, . . . , s (80)

are the vectors that span the s-dimensional kernel of the
matrix Bu and

α

Ξ ∗ =
⎡
⎢⎣

α

Ξ ∗
1· · ·

α

Ξ ∗
ns

⎤
⎥⎦ ∈ R

ns (81)

are the arbitrary, fundamental solutions of the two sets of
linear equations (78). The representations (79) can be per-
formed with using e.g. the singular value decomposition
algorithm (SVD) and just this method has been applied
in the present paper. The short description of the SVD
algorithm has been outlined in Czarnecki and Lewiński
(2012). Let us mention that the QR decomposition of the
matrix makes it possible to find the representation (79) more
effectively than the SVD decomposition, due to a smaller
computational complexity. Yet the Gaussian elimination as
well as the LU decomposition methods fail to give sat-
isfactory results for bigger systems of rectangular linear
equations. Upon constructing the two solutions

α

Ξ=
⎡
⎢⎣

α

Ξ1

· · ·
α

Ξns

⎤
⎥⎦ ∈ R

ns (82)

of the two linear, rectangular algebraic systems (78), we
obtain in each e-th finite element Ωe the approximations

Σ̃α(Ω
e) of the two statically admissible sets of the stress

fields Σα(Ω
e), each determined by s global parameters

α

βk∈ R

Σ̃α(Ω
e) = Σ̃α

(
ς,

α

β1, . . . ,
α

βs

)

=

⎧⎪⎪⎨
⎪⎪⎩

α
τ=α

τ

(
ς,

α

β1, . . . ,
α

βs

)

=

⎡
⎢⎢⎣

α
τ 11

(
ς,

α

β1, . . . ,
α

βs

)
α
τ 12

(
ς,

α

β1, . . . ,
α

βs

)

α
τ 21

(
ς,

α

β1, . . . ,
α

βs

)
α
τ 22

(
ς,

α

β1, . . . ,
α

βs

)

⎤
⎥⎥⎦∈M2×2

⎫⎪⎪⎬
⎪⎪⎭
,

ς = (ξ, ζ ) ∈ ω (83)

where

α
τ 11 = N0

α
t ∗0 + N1

α
t ∗3 +N2

α
t ∗6 +N3

α
t ∗9

+
s∑

k=1

α

βk N0bkI0
+

s∑
k=1

α

βk N1bkI3

+
s∑

k=1

α

βk N2bkI6
+

s∑
k=1

α

βk N3bkI9

(84)

and the formulae for
α
τ 22,

α
τ 12=α

τ 21 can be found by an
appropriate change of indices.

The numbering of indices j in
α
t ∗
j and Ij in bkIj

(j =
0, 1, . . . , 11) is written in the local (element) notation and
depends on the global allocation matrix.

Recall that the integrand of (73) is a norm in R
6, hence is

convex.
The problem (73) is now approximated by the following

unconstrained minimization problem

Z̃η=min

{∫

Ω

∣∣∣∣
∣∣∣∣
∣∣∣∣
(√

η
1
τ ,
√

1 − η
2
τ

)∣∣∣∣
∣∣∣∣
∣∣∣∣ dx

∣∣∣∣
α
τ∈ Σ̂α(

α

β1, . . . ,
α

βs)

}
(85)

where Σ̂α = Σ̂α

(
α

β1, . . . ,
α

βs

)
denote the sets of

approximants of the statically admissible stress fields
Σα = Σα(Ω), α = 1, 2. The arguments of (85) are
expressed by the components βi , i = 1, 2, . . . , S of the
global vector of design parameters

β = (βi) =
[

1
β1, . . . ,

1
βs,

2
β1, . . . ,

2
βs

]T
∈ R

S, S = 2s.

(86)
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The partial derivatives of the integrand Π =
|||(√ητ 1,

√
1 − ητ 2||| with respect to βi , i = 1, 2, . . . , S

are computed by the rules

∂Π

∂
α

βi

= ∂Π

∂
1
τ 11

∂
1
τ 11

∂
α

βi

+ ∂Π

∂
1
τ 22

∂
1
τ 22

∂
α

βi

+ ∂Π

∂
1
τ 12

∂
1
τ 12

∂
α

βi

+ ∂Π

∂
2
τ 11

∂
2
τ 11

∂
α

βi

+ ∂Π

∂
2
τ 22

∂
2
τ 22

∂
α

βi

+ ∂Π

∂
2
τ 12

∂
2
τ 12

∂
α

βi

α = 1, 2, i = 1, 2, . . . , s (87)

where partial derivatives
∂Π

∂
α
τ ij

can be easily programmed

and analytically calculated by any Symbolic Computation
System such as e.g. Maple. On the other hand, the partial

derivatives
∂

α
τ kl

∂
α

βi

are expressed by

∂
α
τ 11

∂
α

βi

= N0biI0
+N1biI3

+N2biI6
+ N3biI9

∂
α
τ 22

∂
α

βi

= N0biI1
+N1biI4

+N2biI7
+ N3biI10

∂
α
τ 12

∂
α

βi

= N0biI2
+N1biI5

+N2biI8
+ N3biI11

. (88)

The partial derivatives
∂

1
τ kl

∂
2
βi

,
∂

2
τ kl

∂
1
βi

appearing in the under-

lined sums in (87) are equal to 0.
Finally, the problem (85) is now reformulated to the fully

algebraic, finite dimensional and unconstrained problem of
nonlinear mathematical programming

Z̃η = min
(β1,β2,...,βS)∈RS

(89)

∑
e

∑

ςQ∈ω
w(ςQ)Π(ςQ, η, β1, β2, . . . , βS)

∣∣∣det∇x(ςQ)

∣∣∣

where w = w(ςQ) and det∇x(ςQ) are the weights and the
determinants of the Jacobian matrix of the transformation
(from the reference to the given finite element) calculated
at the Gauss integration points ςQ = (ξQ, ζQ) ∈ ω,
respectively.

We implement the well known assembly technique from
the classical FEM: the formulae (87) for partial derivatives
of the function

Π =
∣∣∣∣
∣∣∣∣
∣∣∣∣
(√

η
1
τ (ς),

√
1 − η

2
τ (ς)

)∣∣∣∣
∣∣∣∣
∣∣∣∣

= Π(ς , η, β1, β2, . . . , βS)

at arbitrary, but fixed point ς = (ξ, ζ ) ∈ ω make it possible
to calculate all components of the gradient

grad Π̃ = grad Π̃(β1, . . . , βS)

=
[
∂Π̃

∂β1
. . .

∂Π̃

∂βS

]T
∈ R

S (90)

of the objective function

(β1, β2, . . . , βS) → Π̃(β1, β2, . . . , βS)

=
∑
e

∑

ςQ∈ω
w(ςQ)Π(ςQ, η, β1, . . . , βS)

∣∣∣det∇x(ςQ)

∣∣∣ .

(91)

The algorithm
Assume that coefficient η is given. The computational
procedure consists of the following steps

Step 1. Set the two rectangular systems of linear alge-

braic equations (77) or BΞ = α

Θ , α = 1, 2, in
accordance with FEM.

Step 2. Separate upper sub-matrix Bu and two upper, sub-

vectors
α

Θ u, α = 1, 2 corresponding to the
unknown degrees of freedom of the FEM.

Step 3. Parameterize the sets (83), i.e. find the two solu-

tions
α

Ξ= α

Ξ ∗ +
s∑

k=1

α

βk bk , α = 1, 2 of the two

rectangular systems of linear algebraic equations

BuΞ = α

Θ u, α = 1, 2.
Step 4. Apply any algorithm of the nonlinear mathemat-

ical programming (e.g. Broyden–Fletscher–Gold-
farb–Shanno (BFGS) algorithm) to find the min-
imizer β = [β1, β2, . . . , βS]T of the function
(91).

Step 5. In accordance with the formulae (84), find the all

components
α
σ 11,

α
σ 22,

α
σ 12 of the optimal stress

tensors
α
σ defined by the optimal solution

α

β1

, . . . ,
α

βs , α = 1, 2 found in step 4.
Step 6. In accordance with the formulae (39), (64)–(67)

find the distribution of λ1, λ2, ω1, ω2, and optimal
moduli Cijkl by (68).

5 Case studies

The aim of this section is to show the optimal layouts of
Kelvin moduli λ1, λ2 and elastic moduli Cijkl within rect-
angular plates of various kinematic boundary conditions

subject to two kinds of in-plane surface loads
α

T , α = 1, 2
that are non-simultaneously applied at Γ1 and contribute
to the functional (12) with weight factors η1 = η and
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Fig. 2 The body Ω –
rectangular plate Lx × Ly , FEM
mesh

η2 = 1 − η, respectively for η ∈ [0, 1]. The examples con-
cern nx ×ny a rectangular plate of length Lx = 2.0 [m] and
height Ly = 1.0 [m] (see Fig. 2). The finite element mesh is
defined by nx ×ny = 40×20 = 800 quadrilateral modules.
The total number of nodes no = (nx + 1)(ny + 1) = 861,
which gives the total number of the columns (total num-
ber of the unknown nodal stress parameters) and rows (total
number of the degrees of freedom) in matrix B equal to
ns = 3no = 2583 and mo = 2no = 1722, respectively. The
9- and 3-points Hammer – Stroud rules of the Gauss integra-
tion for the two-dimensional element and one-dimensional
segment are adopted, respectively.

The tractions
α

T= α

T (ζ ) = α

T i (ζ )ei , ζ ∈ Γ1 are modeled
by the weight function

∀ζ ∈ Γ1
α

T i=
α

T i (ζ ) = Tmaxe
−(

ζ−ζ0
w )2

(i = 1, 2) (92)

where ζ0 = Lx

2
or ζ0 = Ly

2
. The values Tmax, w are

assumed to be equal Tmax = 0.0376, w = 0.15, respec-

tively, so all integrals
∫

Γ1

α

T i ds (α, i = 1, 2) are then

equal to 0.1 (emulation of the unit forces). In all examples
we have assumed that E0 = 1.0 [N/m2], see (15).

Example 1 Consider the plate supported at four non-
sliding supports at its corners, subject either to a vertical

load
1
T= 1

T 2 e2 at its bottom edge or to the vertical load
2
T= 2

T 2 e2,
2
T 2= − 1

T 2 at its top edge, see Figs. 3, cf.
Hörnlein et al. (2001). Distribution of the values of the opti-
mal Kelvin moduli λ1, λ2 (λ1 � λ2) depends on the η

Fig. 3 Problem of Example 1

parameter, see Figs. 4, 5, and 6. We consider three values
of the weighting factor η: η = 0.9, η = 0.5 and η = 0.1.
We note that the layouts depend heavily on the parameter η.
It is worth to note that the modulus λ1 (with the layouts of
”∨” or/and ,,∧” shapes) assumes extremal values in the zone
near the applied forces and supports. The modulus λ2 (of
,,|” shape) assumes extremal values only in the zone near
the applied forces.

The problem considered here has been previously dis-
cussed in Hörnlein et al. (2001). The result in Fig. 8 of
Hörnlein et al. (2001) shows the layout of trC (which equals
to λ1 + λ2) for the case of η = 0.5. This result looks the
same as the diagram of λ1 shown in Fig. 5 because λ2 is
much smaller than λ1 and that is why the plot of λ1 + λ2

has not been displayed. Let us note that neither the paper
referred to above nor other hitherto published papers on
FMD have presented the optimal distribution of the Kelvin
moduli independently.

Example 2 Consider three plates supported at two
non-sliding supports at their bottom corners. First
plate (see Fig. 7a) is subject either to a horizontal load
1
T= 1

T 1 e1 at its bottom edge and to
1
T= − 1

T 1 e1 at its

upper edge or to the vertical loads
2
T= 2

T 2 e2 at its bottom
and top edges. Second plate (see Fig. 7b) is subject either

to a load
1
T= 1

T 1 e1+
1
T 2 e2 at its bottom edge or to a load

2
T= − 2

T 1 e1+
2
T 2 e2 at its upper edge. Distribution of

the values of the optimal Kelvin moduli λ1, λ2 (λ1 � λ2)

and optimal components Cijkl referred to the (x1, x2)

coordinate system depend on the η parameter, see Figs. 8,
9 and 10. We consider three values of the weighting factor
η: η = 0.9, η = 0.1 and η = 0.5. The third plate (Fig. 7c)
is subject simultaneously to a load T e1 + T e2 at its bottom
edge and to a load −T e1 + T e2 at its upper edge, where the
function T = T (ζ ) has the form (92). For this single load
condition, optimal layout of the one Kelvin modulus λ̃1

and components C̃ijkl of the Hooke tensor are found on the
basis of the algorithm presented in Czarnecki and Lewiński
(2012) (see Section 3.2). If we e.g. assume that η = 0.5
for the two first plates, it may be interesting to compare the
optimal results found for these three cases of loadings and
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Fig. 4 Solution of Example 1.
Distribution of the optimal λ1,
λ2 for η = 0.9 (scatter layout in
Reverse Gray scale on left and
contour layout in ChromaDepth
scale on right)

notice that the result of the simultaneous vector minimiza-
tion of the two independent compliances corresponding to
the two independent loadings that was transformed into a
problem of scalar-valued minimization of the weighted sum

(12) of the two compliances (scalarization of the vector-
valued objective function), significantly differs from the
minimization of the one, scalar-valued compliance corre-
sponding to the weighted sum of the two loadings with the

Fig. 5 Solution of Example 1.
Distribution of the optimal λ1,
λ2 for η = 0.5 (scatter layout in
Reverse Gray scale on left and
contour layout in ChromaDepth
scale on right)
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Fig. 6 Solution of Example 1.
Distribution of the optimal λ1,
λ2 for η = 0.1 (scatter layout in
Reverse Gray scale on left and
contour layout in ChromaDepth
scale on right)

a b

c

Fig. 7 Formulation of the Examples: 2a, 2b, 2c
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Fig. 8 Solution of Examples 2a,
2b. Distribution of the optimal
λ1, λ2 for η = 0.9 (contour
layouts in ChromaDepth scale)
for the case a (left column) and
b (right column)

a b

a b

Fig. 9 Solution of Examples 2a,
2b. Distribution of the optimal
λ1, λ2 for η = 0.1 (contour
layouts in ChromaDepth scale)
for the case a (left column)
and b (right column)

a b

a b
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Fig. 10 Solution of
Examples 2a, 2b, 2c.
Distribution of the optimal λ1,
λ2 and Cijkl for η = 0.5,
i, j, k, l = 1, 2, and optimal
λ̃1 and C̃ijkl i, j, k, l = 1, 2
(contour layouts in
ChromaDepth scale) for the
case a (left column) b (middle
column) and c (right column)
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same value of the parameter η. The last approach could
be interpreted as an alternative and a significantly simpli-
fied way of finding the optimal layouts in the case of two
independent loadings. The optimal values of the objective
function (35) are the following:

Jη=0.9 = 0.0379, Jη=0.1 = 0.0783, Jη=0.5 = 0.0636 in
Example 2a

Jη=0.9 = 0.1365, Jη=0.1 = 0.1370, Jη=0.5 = 0.1613 in
Example 2b J̃ = 0.0215 in Example 2c

We see that the optimal value of the scalar-valued com-
pliance corresponding to the resultant of the two loadings
(J̃ = 0.0215) is better than the both optimal values (J =
0.0636 and J = 0.1613) calculated on the basis of the vec-
tor optimization algorithm. However, the optimal layouts of
the Hooke tensor calculated by scalarization of the vector-
valued objective function are a better compromise because
they apply to the efficient points and Pareto optimal solu-
tions, which is the best what mathematics can do at this
stage of the setting of the problem.

Let us note that although the loads in Example 2a
are either symmetric or skew-symmetric, the optimal dis-
tributions of the Kelvin moduli are symmetric or skew-
symmetric in each case, see Figs. 8–10, the left columns.
This property of the solution follows from the independent
treatment of both the loads in the formulation (16): the trial
stress fields τα are taken from two independent sets. Con-
trary, the results of the Example 2c are asymmetric, because
the only load applied is asymmetric.

Example 3 Consider the cantilever supported at two non-
sliding supports at its left corners. The plate (see Fig. 11) is

subject either to a horizontal load
1
T= 1

T 1 e1 or to the vertical

load
2
T= 2

T 2 e2 at its right edge. Distribution of the values
of the optimal Kelvin moduli λ1, λ2 (λ1 � λ2) and opti-
mal components Cijkl referred to the (x1, x2) coordinate
are shown for the weighting factors η = 0.9 and η = 0.1,
see Fig. 12.

The optimal values of the objective function occur to be
Jη=0.9 = 0.0514 and Jη=0.1 = 0.1921.

Fig. 11 Problem of Example 3

Fig. 12 Solution of Example 3. Distribution of the optimal λ1, λ2 and
Cijkl for η = 0.9 (left column) and for η = 0.1 (right column) (scatter
plot layouts in Rainbow Color map)
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Table 1 Non-dimensional, approximate values of the objective func-
tion for various meshes

nx × ny Jη for η = 0.1 Jη for η = 0.9

20 × 10 0.184 0.048

40 × 20 0.192 0.051

60 × 30 0.194 0.051

In this example we have also tested numerically
mesh independence of the presented algorithm. A rectangu-
lar plate was additionally divided into nx ×ny = 20×10 =
200 and nx × ny = 60 × 30 = 1800, 4-node, quadrilat-
eral, isoparametric finite elements. The optimal values of
the objective function are set up in Table 1.

Similar comparison of the layouts of the optimal Kelvin
moduli λi is shown in Figs. 13 and 14.

The layouts shown in Figs. 13 and 14 and the values of
the objective function set up in Table 1 confirm stabilization
of the results as the mesh is finer and finer. Similar tendency
was noted in all examples discussed in the present paper.

Remarks 1 Minimization of the functional (73) was per-
formed by the numerical routine frprmn(...) that imple-
mented Fletcher-Reeves-Polak-Ribiere algorithm or by the
numerical routine dfpmin(...) based upon the Broyden-
Fletcher-Goldfarb-Shanno variant of the Davidon-Fletcher-
Powell algorithm. The C-codes of both the routines were

implemented into the program originally published in the
book by Press et al. (1992). The procedure was treated as the
,,black box” delivering the correct results, hence no iteration
histories of the values of the functional (73) was checked.
The initial value of the functional (73) depended on the ran-
domly assumed values of the design parameters (86). Let it
be stressed here that in all cases of randomly assumed val-
ues of the design parameters (86) we have always got the
same numerical value of the objective function (73) and the
same layouts of the design parameters. The number of iter-
ations in the main loop of the above routine frprmn(...) (or
dfpmin(...)) was observed to be dependent on the assumed
loads cases, boundary conditions and numerical tolerances,
but it was not bigger than 100. The time of executing the
program depended heavily on the number of finite elements.

6 Comparison of the optimum free material designs
with the optimum solutions of the fixed values
of the Kelvin moduli

The designs reported in Section 5 correspond to the opti-
mum simultaneous choice of all the parameters which deter-
mine at each point of Ω the tensor C of elastic moduli
according to the spectral decomposition (7). On the other
hand, the optimum designs presented in the previous paper
(Czarnecki and Lewiński 2011) were found under the condi-
tion of the Kelvin moduli being fixed viz. the Kelvin moduli

Fig. 13 Example 3. cont. Case
η = 0.1. Contour layouts of λ1
(left column) and λ2 (right
column) for the division with
20 × 10, 40 × 20 and 60 × 30
finite elements in the first,
second and third row,
respectively
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Fig. 14 Example 3, cont. Case
η = 0.9. Contour layouts of λ1
(left column) and λ2 (right
column) for the division with
20 × 10, 40 × 20 and 60 × 30
finite elements in the first,
second and third row,
respectively

were not subject to optimization. A comparison analysis of
both optimum design methods is pending. The aim of the
present section is to assess the influence of releasing the
Kelvin moduli on the final optimization result. Let us note
that the tensors ωK determine non-dimensional character-
istics of the underyling microstructure, like angles between
the fibres, while the Kelvin moduli measure elastic stiff-
nesses. Thus one should expect that the optimization over
all characteristics of the Hooke tensor, including the Kelvin
moduli, shall lead to much stiffer designs, better formed to
carry the given load or the system of loads.

Note that in the considered vector optimization for two
load cases not one but a family of Pareto optimal solutions
is constructed, indexed by the parameter η. A comparison of
solutions in the sense of the work Czarnecki and Lewiński
(2011) with the FMD solutions discussed here cannot be
done directly, since we face the problem of comparing two
sets of solutions.

Let us discuss this question with a greater detail. Let us
formulate the problem of Section 3.3 in terms of Pareto
optimization. Introduce a vector valued mapping

Υ = (Υ 1 Υ 2) : Ĥ (Ω) → R
2 (93)

where Ĥ (Ω) is defined in Section 2 while Υ α is the com-
pliance corresponding to the α-th load, see (11). The Pareto
problem reads: among the Hooke tensor fields of class
Ĥ (Ω) find all efficient points

Υ ∗ = (Υ ∗1 Υ ∗2) ∈ Υ (Ĥ (Ω)) (94)

along with the pertaining Pareto tensor fields C∗ ∈ Ĥ (Ω).
Let us recall that Υ ∗ ∈ Υ (Ĥ (Ω)) is an efficient point

with respect to the order relation ≤ in R
2 if and only if one

cannot find Υ 
= Υ ∗ in Υ (Ĥ (Ω)) such that

Υ ≤ Υ ∗. (95)

A point C∗ ∈ Ĥ (Ω), Υ ∗ = Υ (C∗) is called Pareto optimal
if Υ ∗ is efficient.

Hence, in our case, the aim of the vector optimization is
to find all efficient fields

Υ ∗ ∈ Υ (Ĥ (Ω)) ⊂ R
2

along with the Pareto optimal fields C∗ ∈ Ĥ (Ω) pertaining
to them. Thus the task is to find not one optimal field but
the set of optimal fields. From this Pareto set of fields we
can choose the particular solution using additional criteria
not yet taken into account in the formulation of the problem.
Among the many methods of finding Pareto optimal mini-
mizers, the most popular and perhaps the simplest one is the
weighting method that transforms the vector optimization
problem into a problem of a scalar-valued optimization.

Just the formulation (16) is constructed according to this
idea. Let us re-write it in the following way

Jη = min
{
η · Υ (C) | C ∈ Ĥ (Ω)

}
(96)

where η = (η1, η2), η1 = η, η2 = 1 − η.
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Fig. 15 a The bold curve
represents the set of efficient
points belonging to the set
Υ (Ĥ (Ω)) b The nine efficient
points from the set Υ (Ĥ (Ω))

corresponding to the results of
the Example 3 for
η = 0.1, 0.2, . . . , 0.9 colored
from violet (η = 0.1) to red
(η = 0.9), respectively

a b

The family of points (Υ 1, Υ 2) determines a set in R
2,

symbolically depicted as the bold line in Fig. 15a.
This family constitutes the efficient points being the

images of the Pareto optimal solutions of the problem (96).
Each efficient point Υ ∗ of the contour of Υ (Ĥ (Ω)) is asso-
ciated with a vector η perpendicular to the tangent line to
the contour of this set, see Fig. 15a. The pre-images of
the contour points are the Pareto solutions. The nine effi-
cient points corresponding to the results of Example 3 (for
the 40 × 20 mesh density) are found for the nine subse-
quent values: η = 0.1, 0.2, . . . , 0.9, see Fig. 15b. These
efficient points are the images Υ (C∗

i ) of the nine various
Pareto tensor fields C∗

i ∈ Ĥ (Ω), i = 1, . . . , 9. The two
of them for η = 0.1 and η = 0.9 are shown as Pareto
optimal C∗

ijkl components of the Hooke tensor at the right
and left column of Fig. 12, respectively. The two Cartesian
coordinates (Υ 1, Υ 2) of the nine efficient points are the
two compliances of the nine optimally designed cantilevers
corresponding to the nine Pareto optimal tensor fields C∗

i ,
i = 1, . . . , 9 and calculated in the cases of either the hori-
zontal load T 1 (T 2 = 0) or the vertical load T 2 (T 1 = 0),
respectively.

The two optimization problems: over ωK (considered
in Czarnecki and Lewiński (2011)) and over (ωK, λK)

put forward in the present paper determine two sets of
Pareto efficient solutions. A comparison of both the sets
seems impossible, because a uniform choice of the weight-
ing coefficients ηi from the interval [0, 1], i.e. the choice
which divides the interval into equal segments, results in an
irregular set of Pareto efficient points, see e.g. Hillermeier
(2001), p. 21.

The comparison performed below will be confined to the
case of η = 0.5. We consider the problem of Fig. 16. The
plate is subject to two kinds of loads: symmetric and skew-
symmetric. In the first step we solve the FMD problem (16)

by solving the problem (63) for η = 0.5 and Eo = 1 Pa.
The optimal values of λ∗3 become zero. Since the loads are
independent the optimal layouts of the moduli λ∗1, λ∗2 are
symmetric, see Fig. 17. The optimal layouts of the moduli
C∗

1111, C∗
1122, C∗

1221, C∗
2222 are symmetric while the layouts

of C∗
2212, C∗

1112 are skew-symmetric with respect to the ver-
tical symmetry axis of the plate, see Fig. 18, the results at
the left column.

Note that the effective domains of λ∗1, λ∗2 (or the domains
where they are not zero) form very thin strips.

Consider now the same plate of fixed and uniformly
distributed Kelvin moduli of the values

λ1 = 0.9 Pa, λ2 = 0.09 Pa, λ3 = 0.01 Pa (97)

within the domain Ω . The moduli thus fixed satisfy the
isoperimetric condition (15) with the same value of Eo as
assumed in the results in Figs. 17 and 18. Optimization with
respect to ωK leads to the Pareto optimal layouts of the mod-
uli C#

ijkl , see the middle column of Fig. 18. These layouts
differ considerably from the layouts of C∗

ijkl found by the
FMD optimization.

Let us check now whether the FMD layouts of C∗
ijkl

can be repeated by performing optimization over ωK of the
plate with the Kelvin moduli found by the FMD method, or

Fig. 16 The plate subject to
α

T : the symmetric load (α = 1) or to the
skew-symmetric load (α = 2)
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Fig. 17 The solution to the problem in Fig. 16. Distribution of the Pareto optimal Kelvin modulus λ∗1 (first row) and λ∗2 (second row) for η = 0.5
(Scatter, Contours and Height Field plots in Rainbow Color map, respectively)

with the Kelvin moduli λ∗K reported at the left column in
Fig. 17. This check is made difficult due to λ∗3 = 0, which
is not allowed in the optimization over ωK as described in
Czarnecki and Lewiński (2011). The condition λ3 = 0 is
replaced by λ3 = 0.001. Moreover, minimizers of the prob-
lem (63) vanish, or almost vanish on some sub-domains
of Ω and, consequently, the Kelvin moduli given by (39)
assume there zero or very small values. Since the algo-
rithm of Czarnecki and Lewiński (2011) of optimization
over ωK requires positive values of the fixed Kelvin mod-
uli, it was necessary to assign small values to λ1 and λ2 in
those sub-domains. The optimal distributions of the Hooke
tensor components Cîjkl , being the results of this optimiza-
tion is shown in the right column of Fig. 18. We note that
these layouts are similar to the optimal layouts found by the
FMD algorithm, displayed in the left column of Fig. 18.

Let us discuss the question to what extent the optimiza-
tion over the Kelvin moduli contributes to the decrease of
the compliance. To this end consider the plate of Fig. 16,
now subjected to one force of components (1 − η)T and
ηT . We assume η = 0.5. If this plate is optimally designed
by the FMD method, where both ωK and λK are design
variables, its normalized compliance equals J ∗ = 0.0082.
If this plate is made from the material of Kelvin moduli
(97) with optimal eigenstates ωK found by the method of
Czarnecki and Lewiński (2011) its normalized compliance
equals J # = 0.0849, or about 10 times more. A comparison
of this type has been reported in the paper Czarnecki and
Lewiński (2012) concerning the single load case. The com-
pliance of an optimal non-homogeneous and anisotropic

plate was reported to be 7.2 times smaller than the compli-
ance of an equivalent isotropic plate. As was to be expected
the optimization over all characteristics of the Hooke tensor
leads to much stiffer structures than optimization over the
eigenstates ωK .

Remarks 2 The scalar optimization problem (16), aimed at
minimizing a weighted sum of the compliances, is the only
one from among many possible replacements of the pri-
mary vector optimization problem (94) by a suitable scalar
optimization problem that allows to find all Pareto (called
also Edgeworth-Pareto) optimal points. From among many
scalarization methods used in the modern vector optimiza-
tion (see the survey in Chapter 3.2 in Hillermeier (2001))
besides the most widely used (and used here) the weighted
sum approach, the another method – weighted Chebyshev
norm approach is frequently recommended – especially for
the nonconvex multiobjective optimization problems, cf.
Section 11.2.2, pp. 304–312 in Jahn (2004).

7 Final remarks

In virtue of expressing the compliance of the elastic body
by the minimum of the complementary energy the optimum
design problem of minimization of the weighted sum of n
compliances over parameters characterizing the anisotropic
properties of the body has been rearranged to a mini-
mization problem involving: the behavioral variables (the
components of n stress fields) and design variables (the
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Fig. 18 Solution of the problem of Fig. 16. Distribution of the optimal C∗
ijkl , C

#
ijkl and Cîjkl for η = 0.5, (scatter plot layouts in Rainbow Color

map)
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parameters of the spectral decomposition of the Hooke ten-
sor). This problem has been reduced to a new effective
problem: to the minimization of an effective complementary
energy of a mixture of materials with locking properties.
This energy has the integrand of linear growth, a spe-
cific feature leading to non-smoothness of the solutions,
experienced by the mathematicians engaged in the cele-
brated minimal surface problem, also characterized by the
functional of the integrand of linear growth.

The locking material problems are expressed by two
mutually dual problems: static and kinematic. In the present
paper both the problems have been formulated, yet the static
problem only has been the subject of the numerical treat-
ment. This choice has been dictated by a direct link between
the minimizers of the static problem and the optimum val-
ues of the design variables: the method developed delivers
explicit rules for the latter formulae.

The effective stress-based problem involves minimiza-
tion over statically admissible stress fields, corresponding
to the independent loads applied. Any numerical approach
necessitates interpolation of such fields. This interpolation
problem has been solved by using the SVD decomposi-
tion method. Then the minimization operation has been
performed by applying carefully chosen gradient oriented
non-constrained optimization solvers. Indeed, the SVD
decomposition introduces free parameters, not subject to
any constraints, which paves the way for the unconstrained
optimization.

A characteristic feature of the FMD solutions is that the
stress fields which solve the locking problem (38) can van-
ish on some sub-domains of the design domain. There the
material is not necessary. Such behavior of the solutions is
admissible within the mathematical setting due to the linear
growth of the integrand of the minimized functional in (38).
Therefore, the method put forward discloses the domains
where the material is not necessary, which makes it possible
to circumvent other optimization methods aimed at locat-
ing the holes in the design domain as well as the shape
optimization methods. The optimal shape of the domain is
directly determined by the effective domain of the stress
fields being minimizers of the stress-based auxiliary locking
problem (38).

The method applies to the three dimensional case. To
make it numerically efficient one should develop fast codes
for solving the SVD problem. In the 3D case six stress
components are assigned to each node of the mesh. Conse-
quently, the number of the unknowns is much bigger than in
2D case, where three stress components at a node should be
found. Moreover, the number of Kelvin moduli is six, and
six tensors ωK should be determined. A huge number of
unknowns will be an obstacle difficult to overcome, unless
efficient parallelized SVD codes are developed.
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