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Abstract A novel reanalysis method, named independent
coefficients (IC) method is suggested in this study. This
method is proposed to reanalyze structures with local mod-
ification which leads to a low-rank change in the stiffness
matrix. IC method requires only initial solution as input,
and can determine the independent coefficients for each
degree of freedoms (DOFs) influenced by structural modi-
fications. Since any extra operations such as decomposition
of the initial stiffness matrix is not involved in computa-
tion procedure, the IC is a “cheap” algorithm and can be
an alternative choice for reanalysis. In order to verify the
performance of IC method, several large scale numerical
examples are tested. The results demonstrate that the IC
method has high accuracy as well as efficiency when the
modification is local. The cases involving beyond 1,500,000
DOFs and 3,000,000 DOFs show that IC method has low
demands on computer storage, and large scale problems can
be easily reanalyzed by this method.

Keywords Independent coefficients · Reanalysis ·
Computer storage spaces · Large-scale

1 Introduction

Reanalysis is an important research area for structure
optimization, and the studies have made some significant
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improvements. The combined approximation (CA) might be
the most popular method of reanalysis. The advantage of
CA is that the efficiency of local approximations and the
accuracy of global approximation are integrated to construct
a feasible method. The classical CA method (Kirsch 2002,
2010; Kirsch and Papalambros 2001) uses an initial solu-
tion by complete analysis and binomial series to construct
basis vectors for predicting the modified structure. It is only
suitable for small modification, and the DOFs of struc-
ture must be fixed (Kirsch 2002). In order to deal with the
bottleneck of the classical CA, Kirsh and Papalambros sug-
gested an unified approach (Kirsch and Papalambros 2001)
by introducing a modified initial design (MID), and Chen
developed an approximate two-step method (Chen and Yang
2004) for modified structure with added DOFs. To solve the
case with large modification of structure, Chen also pro-
posed an iterative combined approximation (ICA) method
(Yang et al. 2004). The ICA method divides the large mod-
ification into some pieces, and uses CA method to deal
with small changes of stiffness matrix in an iterative way.
The CA method is also developed for ill-conditioned sys-
tem of equations (Huang et al. 2011) using singular value
decomposition. Rational approximation (Wu et al. 2003) is
another kind of fast algorithm which uses an accurate ini-
tial solution and binomial series to construct basis vectors
just like CA method do. The difference is that CA method
obtains the coefficient of each basis vector by resolving the
reduced equations, while rational approximation uses ratio-
nal approximation method, such as Padé approximation to
achieve the coefficients for reduced equations.

Above mentioned methods have the capability to reana-
lyze all kinds of real engineering problems, such as struc-
tural static reanalysis (Kirsch 2000), eigenvalue reanalysis
(Kirsch 2000; Huang et al. 2000; He et al. 2007), nonlinear
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Fig. 1 Flow chart of IC and
CA. a IC method. b CA method

Select the DOFs which should be reanalyzed

Construct the basis vectors as
Vi=[0,0,…,0,1,0,…,0],

Where 1 is the j-th element of vi and j is the serial number of
selected DOFs.

Reduce the equations as
KR=rB

TKrB,FR=rB
Tδ

Solve reduced equationsKRy=FR

Calculate approximate solution change as
Δr=rBy

Calculate solution as r=r0+Δr

Compute change of stiffness matrix ΔK

Construct the basis vectors as
V1=r0

Vi = -K0
-1ΔKri-1,(i>1)

Reduce the equations as
KR=rB

TKrB,FR=rB
TF

Solve reduced equationsKRy=FR

Calculate approximate solution change
as r0=rBy

(a) (b)

dynamic reanalysis (Kirsch et al. 2006) topological opti-
mization (Bogomolny 2010; Amir et al. 2009) and can be
combined with genetic algorithm (Zuo et al. 2011). How-
ever, among these methods, the initial requirements for each
method commonly are different, such as decomposition of
initial stiffness matrix. Furthermore, the initial solvers are
various, which include direct method such as matrix decom-
position, and iterative method such as conjugate gradient
(CG) (Wu et al. 2004) and so on, and some of them can-
not provide the data that the reanalysis methods really need.
If a reanalysis method needs only the initial solution as
input, it will be more convenient and flexible, since it can
be integrated with any solvers ideally.

Therefore, a reanalysis method named as independent
coefficients (IC) is suggested in this study. This method
requires only the initial solution for input, and determines
the independent coefficient for each DOF influenced by
structural modifications. The distinctive characteristic of the
IC method is to avoid using any extra information such as
decomposition of initial stiffness matrix, and the storage
space is also reduced significantly. In the IC method, the
change of the solution after modification is approximated
by a linear combination of some basis vectors, which are
constructed by some preselected DOFs. The basis vectors
are used to reduce the scale of the equilibrium equation, and
the coefficients of basis vectors are obtained by solving the
reduced equations. The IC method is efficient to the modifi-
cations in a relatively small number of elements and nodes.
When the modification is local, the efficiency of IC method
is much higher than complete analysis, and the accuracy

can be ensured as well. With the increasing of scale of FE
model, the advantage of IC should prevail.

The rest of this paper is described as follows. The basic
theories of IC method are described in details in Section 2.
In Section 3, three numerical examples are shown to test the
performance of the IC method. Finally, the conclusions are
summarized in Section 4.

2 Independent coefficients method

2.1 Background description

Assuming that the initial equilibrium equations of the struc-
ture are

K0r0 = F, (1)

where, r0 are initial displacements, which can be obtained
by any available method include direct methods and iter-
ative methods. After modifications, the new equilibrium
equations are

Kr = F. (2)

The mission of reanalysis is to solve (2) as efficient and
accurate as possible, which usually means not to solve (2)
directly.

Fig. 2 Stretch rod. a initial
structure. b modified structure

1 2 3 4

l l l
P

1 2 3 4

l l l

P

l

5

(a) (b)



A reanalysis method for local modification and the application in large-scale problems 917

440

880

1320

1760

3500

4230

70
0

2900

Fig. 3 Simplified car frame model

2.2 Formulation

The IC method replaces solving (2) directly with calculating
the displacements of the DOFs influenced by the corre-
sponding modifications. Major strategy of IC is summarized
as follows.

Assuming that the solution of the modified equations is

r = r0 +�r, (3)

Equation (2) can be written as

K (r0 +�r) = F. (4)

Transforming (4) into

K�r = F − Kr0, (5)

and defining

δ = F − Kr0, (6)

Equation (5) becomes

K�r = δ. (7)

δ can be defined as the residual value of the initial solution
r0. Since the modification is local, only some members of
δ are non-zero. Pre-select a small tolerance ε, all the DOFs
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Fig. 4 An illustration of cross section of frame model. a longitudinal
beam b traverse beam

Table 1 DOF constraints

Nodes DOF constraints

A ux, uz

B ux, uy , uz

C uz

D uy, uz

related to the non-zero members of δ should be recorded
for the rest steps of IC method. For instance, if |δ(i)| > ε,

the i-th row of K should be checked to choose the DOFs
influenced by modifications. If K(i,j) is not 0, the j -th DOF
influenced by the modification is recorded. Assume that the
selected DOFs are recorded in Sd , and the number of the
selected DOFs is nd . For example, if the first 3 DOFs are
selected, then Sd = [123]T and nd = 3.

In the IC method, a series of basis vectors are selected
and the linear combination of these basis vectors is used to
approximate �r in (7). Assuming that

�r = v1y1 + v2y2 + · · · + vsys = rBy, (8)

where v1, v2, . . . , vs are the basis vectors, and y1, y2,

. . . , ys are the coefficients of every basis vector. s is the
number of the basis vectors, corresponding value equals to
nd . In (8),

rB = [v1 v2 · · · vs] , (9)

y = [y1 y2 · · · ys]T . (10)

The independent coefficient for every selected DOF can be
determined as follows.

For every i = 1, 2, . . . , s, if the i-th selected DOF is
DOF j, vi can be constructed as

vi = [0 · · · 0 1 0 · · · 0]T ,
(
1 is the j − th element of vi

)
.

(11)

By this way, an independent coefficient can be determined
for every displacement of the selected DOF.

Substituting (8) into (7), and premultiplying both side by
rTB , (7) becomes

rTBKrBy = rTBδ. (12)

Defining

KR = rTBKrB
FR = rTBδ

, (13)

Equation (12) can be written as

KRy = FR. (14)

By solving (14), y is obtained. Substituting y into (8), the
approximation of �r is achieved. Afterwards, r can be
obtained by (3).
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Fig. 5 Mesh model of frame

Assuming that the complete analysis solution of (2) is r∗,
(15) is used for evaluating the error of approximate solution:

� = ‖r − r∗‖
‖r∗‖ . (15)

The main procedure of the IC method is summarized as the
flow chart shown in Fig. 1a. For comparison, the flow chart
of the CA method is shown in Fig. 1b. From the figures,

it is obviously to see that, the IC method pays more atten-
tion to compute �r, while the CA method computes the
approximation of r directly.

2.3 Computational efficiency and storage cost of IC method

Assuming that the scale of K is n×n and the half-bandwidth
of the matrix is m. If (2) is solved directly such as trian-
gular decomposition, the computation should be O(nm2).

Fig. 6 Initial deformation
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Fig. 7 Deformation result by IC
method

In topological optimization, local modification is frequently
applied to the structure, which means nd will not be too
large. For example, nd = n/10 means there are 10 % DOFs
influenced by the modification. In this case, the scale of
KR is nd × nd , and the compute time of solving (17) is
O(ndm2). The value of O(ndm2) is O(nm2)/10. In other

words, it will cost 1/10 of the computation time of resolving

(2) to resolving (14). Actually for most of local modifica-

tion problems, especially in large scale cases, the influenced

DOFs are much less than 10 %, which means the efficiency

of IC method can be higher.

Fig. 8 Deformation result by
CA method
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Fig. 9 Deformation result by
complete analysis

To discuss the computer storage space cost by the IC
method, the features of RB and KR should be addressed. In
the IC method, the number of basis vectors is much larger
than other reanalysis methods. If RB and KR are not sparse,
computer storage space cannot be saved. According to
Section 2.2, it is easy to know that, there is only one non-
zero element in every column of RB , thus RB is sparse. For
KR , a more special structure can be observed in this discus-
sion compared with (13). Assuming that the i-th member of
Sd is k, namely the i-th selected DOF is DOF k, and the
j -th member of Sd is l, namely the j -th selected DOF is
DOF l, the matrix KR can be computed as

KR(i, j) = K(k, l). (16)

If Sd is arranged in ascending order, it is easily to observe
that KR is a nd -rank sub-matrix of K. In other words, the
sparsity of KR is increasing along nd .

Therefore, RB and KR are both sparse. In fact, the matrix
RB won’t appear in the procedure of the IC method sum-
marized below. However, the accuracy and efficiency are
influenced by the scale of the modification. If the scale of
the modification increases, nd will become larger, it means
more computational time should be cost for solving more
reduced equations. Theoretically, the accuracy won’t be
influenced much if enough DOFs are selected to be reana-
lyzed. Considering an extreme case, if all of the DOFs are
selected (all DOFs are influenced), IC method becomes a
complete analysis and the result is accurate.

2.4 The procedure of IC method

According to the discussion in the above sections, the
procedure of IC method can be summarized as follows:

1. Select a small value ε;

Table 2 Comparison for
displacements of Car frame DOF ID Exact IC CA Error

IC CA

102475 0.000218 0.000217 0.000218 0.000382 4.21E-05

23763 −0.00242 −0.00242 −0.00242 0.000193 4.22E-05

127131 −0.00249 −0.00249 −0.00249 0.000217 5.97E-06

23805 −0.00241 −0.00241 −0.00241 0.000231 4.70E-05

6233 2.64E-06 2.64E-06 2.64E-06 0.000395 5.85E-05

283293 0.000222 0.000222 0.000222 0.000371 3.12E-05
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Fig. 10 Computational cost of car frame

2. Calculate δ = F − Kr0;
3. Select the DOFs to be reanalyzed:

For i = 1 to n (n is the number of the DOFs)
If |δ(i)| > ε

For j = 1 to n
If K(i, j) �= 0

Save the number j in the vector Sd

End if
End for

End if
End for
Calculate nd: nd is the number of the DOFs

saved in Sd

4. Reduce the equation:
For i = 1 to nd

k = Sd(i),FR(i) = δ(k)

For j = 1 to nd

l = Sd(j),KR(i, j) = K(k, l)

End for
End for

5. Solve the reduced equation KRy = FR;
6. Calculate r = r0 +�r:

r = r0

For i = 1 to nd

j = Sd(i), r(j) = r(j)+ y(i)
End for

3 Numerical examples

3.1 Benchmark

A stretch rod is shown in Fig. 2a. The rod is discretized into
4 nodes and 3 truss elements. The displacement of node 1 is
restrained and a load P is enforced on node 4. The modulus
of elasticity is E and the cross section of the rod is A. The
length of each element is l.

According to the FEM theory, the initial equilibrium
equation is

AE

l

⎡

⎢⎢
⎣

1 0 0 0
0 2 −1 0
0 −1 2 −1
0 0 −1 1

⎤

⎥⎥
⎦ r0 =

⎡

⎢⎢
⎣

0
0
0
P

⎤

⎥⎥
⎦ . (17)

The solution of (17) is

r0 = P l

AE
[0 1 2 3]T . (18)

Another node and element are added to the structure as
a modification as shown in Fig. 2b, and the equilibrium
equation of the modified structure is

AE

l

⎡

⎢⎢⎢⎢
⎣

1 0 0 0 0
0 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −1
0 0 0 −1 1

⎤

⎥⎥⎥⎥
⎦

r =

⎡

⎢⎢⎢⎢
⎣

0
0
0
P

0

⎤

⎥⎥⎥⎥
⎦
. (19)

According to (6), the residual value of r0 is

δ = F − Kr0 = [0 0 0 − 3P 3P ]T . (20)

Therefore, Sd = [3 4 5] and nd = 3.
The reduced equation is

AE

l

⎡

⎣
2 −1 0
−1 2 −1
0 −1 1

⎤

⎦ y =
⎡

⎣
0

−3P
3P

⎤

⎦ . (21)

Fig. 11 Side panel
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Fig. 12 Initial solution

Solving (21), obtains

y =
[

0 0
3P l

AE

]T
. (22)

Thus, the change of the displacement is

�r =
[

0 0 0 0
3P l

AE

]T
. (23)

According to (3), the solution of the modified equation is

r = r0 +�r = P l

AE
[0 1 2 3 3]T . (24)

By solving (19) directly, the exact solution can be obtained,
which is

r∗ = P l

AE
[0 1 2 3 3]T . (25)

Comparing (24) and (25), it is obviously to see that the
IC method obtains the exact solution in this example.

Substituting some specific values for A, E, l and P , for
example A = E = l = P = 1, the CA method is used to
reanalyze the same problem.

By initial analysis, the inverse of the stiffness matrix is

K−1
0 =

⎡

⎢⎢
⎣

1 0 0 0
0 1 1 1
0 1 2 2
0 1 2 3

⎤

⎥⎥
⎦ . (26)

Extending the dimensions of the inverse matrix, thus

K−1
0 =

⎡

⎢⎢⎢⎢
⎣

1 0 0 0 0
0 1 1 1 0
0 1 2 2 0
0 1 2 3 0
0 0 0 0 10000

⎤

⎥⎥⎥⎥
⎦
. (27)

Fig. 13 The modified inner
door panel. a modified side
panel. b partial enlargement

(a)

(b)
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Fig. 14 Analysis results by IC
method. a IC solution. b partial
enlargement

(a)

(b)

Fig. 15 Analysis results by CA
method. a CA solution. b partial
enlargement

(a)

(b)
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Fig. 16 Analysis results by
complete method. a complete
analysis. b partial enlargement

(a)

(b)

The change of the stiffness matrix is

�K = K − K0 =

⎡

⎢⎢⎢⎢
⎣

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1 −1
0 0 0 −1 0.9999

⎤

⎥⎥⎥⎥
⎦
. (28)

Then 2 basis vectors can be obtained, which are

Rb =

⎡

⎢⎢⎢⎢
⎣

0 0
1 3
2 6
3 9
0 −30000

⎤

⎥⎥⎥⎥
⎦
. (29)

The reduced stiffness matrix and the reduced load vector are

Kr =
[

12 9.0036 × 104

9.0036 × 104 9.0045 × 108

]
and Fr =

[
3
9

]
.

(30)

Solve the reduced equations, obtaining

y = K−1
r Fr =

[
1.0006
−0.0001

]
. (31)

The solution r then can be approximated as

r = Rby = [0 1.0003 2.0006 3.0009 3.0012]T .

(32)

Comparing with the exact solution

r∗ = Rby = [0 1 2 3 3]T , (33)

The error of the approximation is 0.034 %.

3.2 Car frame

A simplified model and the main body size of a car frame
are shown in Fig. 3. The shape and size of cross-section of
the longitudinal and traverse beam are shown in Fig. 4.

Table 3 Comparisons of the
selected DOFs DOF ID Exact IC CA Error

IC CA

78289 0.0512366 0.0512468 0.0512603 0.000198 0.000462

239895 −0.321858 −0.321905 −0.321991 0.000147 0.000414

394142 0.9702832 0.9704547 0.9707114 0.000177 0.000441

709538 −1.45898 −1.459093 −1.459489 7.69E-05 0.000349

1435819 −0.112127 −0.112138 −0.112168 9.8E-05 0.000369
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Fig. 17 Computational cost of side panel

The frame FE model is composed of 118,200 elements
and 120,546 nodes, involving 723,276 DOFs. To simulate
bending of the frame, constraints can be applied according
to Table 1. The vertically downward loads are enforced on
the nodes marked E with the value of 500N and the nodes
marked F with the value of 100N as shown in Fig. 5.

The modulus of elasticity is 200 GPa, and the Poisson’s
ratio is 0.3. A direct method using matrix decomposi-
tion is used for solving the initial equations. The initial
deformation solution is shown in Fig. 6.

As a modification, the thickness of traverse beam 1
shown in Fig. 5 becomes 20 mm and the one traverse
beam 2 becomes 5 mm. The IC method and CA method
and complete analysis method are used for analyzing struc-
ture with fixed constraints and loads. The IC method uses

Fig. 18 Inner door panel

Fig. 19 Constraints and loads

5280 basis vectors and the CA method uses 6 basis vec-
tors. The deformation results are shown in Figs. 7, 8 and 9,
respectively.

According to these figures, it is easy to observe that
both the deformation results of the IC method and the CA
method are close to the one of complete analyze, and a

Fig. 20 Initial solution
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Fig. 21 The modified inner
door panel. a modified inner
door panel. b partial enlargement

(a) (b)

Fig. 22 Analysis results by IC
method. a IC solution. b partial
enlargement

(a) (b)

Fig. 23 Analysis results by
complete method. a complete
analysis. b partial enlargement

(a) (b)
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Table 4 Comparisons of the
selected nodes Node ID IC Complete analysis Error

359574 1.963399 1.954495763 0.004555

359571 1.974736 1.965842375 0.004524

280494 3.467026 3.490160193 0.006628

153360 0.018274 0.018314105 0.002196

357802 0.025639 0.025361595 0.01092

93143 0.011023 0.010981951 0.003735

359575 1.960491 1.95160787 0.004552

359570 1.981218 1.972387859 0.004477

280495 3.466882 3.490013195 0.006628

153359 0.018235 0.018272533 0.002065

357803 0.025715 0.025439533 0.010816

93143 0.011023 0.010981951 0.003735

particular comparison of the displacements is shown in
Table 2. Table 2 shows that the displacements of the IC
method and the CA method are close to the complete anal-
ysis ones. According to (15), the error of the IC method is
0.38 %, and the error of the CA method is 0.037 %.

The complete analysis cost 39.13 s to solve this prob-
lem, and the IC method takes 2.69 s and the CA method
takes 6.95 s. The efficiency of the IC method and the CA
method are much higher than complete analysis. Compared
with the complete analysis, the IC method only takes 6.87 %
of the computational time to solve this problem, and the cor-
responding ratio of CA is 17.76 %. The comparison of the
efficiency is also shown in Fig. 10.

3.3 Side panel

A side panel model is shown in Fig. 11. The mesh model is
composed of 273,816 nodes and 538,332 elements, involv-
ing 1,642,896 DOFs. To calculate the torsional stiffness, the

Fig. 24 Computational cost of inner door panel

3 translational DOFs of nodes A, B and C are restrained, and
a force is applied on node D with the value of 400N along
Y direction. A direct method using matrix decomposition is
used to solve the initial equations. The displacements in Y
axis are shown in Fig. 12.

The modified side panel is shown in Fig. 13. A rib is
added to the structure. And then, the structure is reanalyzed
with the IC method using 402 basis vectors and the CA
method with 6 basis vectors. The corresponding solutions
are shown in Figs. 14, 15 and 16. It is shown that the solu-
tions of IC method and complete analysis are almost the
same.

To further compare the accuracy of the IC method and
the CA method, the displacements of some selected DOFs
are listed in Table 3. It can be found that all the errors of the
selected DOFs are smaller than 0.1 % and the error of the
IC method calculated by (15) is 0.19 %, and the error of the
CA method is 0.07 %.

The computational cost of the IC method is 4.295 s, and
the CA method 43.06 s, while the one of complete analysis

100

40

F=1

Fig. 25 Topology optimization model
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Fig. 26 Structures of selected
iterative steps. a complete
analysis. b IC method

Step 1

Step 21

Step 41

Step 61

Step 81

Step 101

Step 111
(a) (b)
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is 177.828 s. The IC method takes only 2.42 % of complete
analysis, and the CA method takes 24.2 %. The comparison
of efficiency is also shown in Fig. 17.

3.4 Inner door panel

An inner door panel model is shown in Fig. 18. The mesh
model is composed of 545,659 nodes and 1,083,336 ele-
ments, involving 3,273,954 DOFs. As shown in Fig. 19,
the 3 translational DOFs of nodes A and B are restrained.
For node C, the translational DOF along Y direction is
restrained and a force is applied along Z direction with
a value of -800N. In order to reduce the computational
cost, a preconditioned conjugate gradient (PCG) method
(Helfenstein and Koko 2011) is used to solve the initial
equations. The displacements in Z axis are shown in Fig. 20.

The modified inner door panel is shown in Fig. 21. A
hole is added to the structure. Since the initial analysis is
done using PCG method, only the IC method is applied to
this structure and the solutions of both the IC method and
complete analysis are shown in Figs. 22–23, respectively. It
is shown that the solutions of the IC method and complete
analysis are almost the same.

To further observe the accuracy of IC, the displacements
of some selected nodes are listed in Table 4. It can be
found that the errors of the displacements of these nodes
are about 0.4 % and the error calculated by (15) is 1.23 %.
The computational cost of IC method is 17.85 s, while the
one of complete analysis is 3574.97 s. The IC method takes
only 0.5 % computation time of complete analysis. The
comparison of the efficiency is also shown in Fig. 24.

3.5 IC based topology optimization

The size and shape of the design domain are shown in
Fig. 25. The left side of the domain is fixed and a unit force
is applied on the center position of the right side. The area
is discretized into 100 × 40 elements. The material param-
eters are modulus of elasticity E = 1 and Possion’s ratio
μ = 0.3. The BESO method (Querin et al. 1998) is used for
solving the topology optimization problem and 40 % of the
elements are planned to be deleted. Two strategies are used
to solve the optimization problem – complete analysis for
every iterative step and complete analysis and IC method
used alternately. Several selected iterative steps in proce-
dure of topology optimization completed by complete and
IC methods are presented in Fig. 26, respectively. Accord-
ing to the Fig. 26, compared with the complete analysis, the
results by the IC method made are a bit different due to the
approximation strategy and error accumulation. However,
the result is consistent with the one of complete analysis.

The final compliance value of complete analysis is 46.5303,
and the one of IC method is 46.5859.

4 Conclusions

This study suggests a novel method named IC method to
reanalyze structures with local modification. The IC method
is a “cheap” algorithm, because it requires only initial solu-
tion as input. Avoiding using any extra information such as
decomposition of initial stiffness matrix is the most remark-
able advantage, so that this method can be used together
with any available initial analysis method. The applications
in large scale numerical examples show that the proposed
method also achieves much higher efficiency than complete
analysis, and the accuracy can be ensured as well.
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