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Abstract In civil and industrial engineering, structural
design optimization problems are usually characterized by
the presence of multiple conflicting objectives, as to get
the minimum investment cost and the maximum safety of
the final design. This issue makes these problems to have
not only one single solution, but a set them. Such solu-
tions represent the possible trade-offs among the different
objectives to be optimized. This paper reviews the latest
developments in the field of multi-objective metaheuristics
for solving design problems focusing on the optimization of
the topology, shape, and sizing of civil engineering struc-
tures. We review both the algorithms and the applications,
and the most relevant features of the solvers and the design
optimization problems are analyzed. The paper ends by
addressing a number of relevant and open issues that can be
the subject of further research.
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1 Introduction

Civil engineering is a discipline that deals with the design,
construction, and maintenance of the physical and naturally
built environment, which includes works such as bridges,
roads, canals, dams, and buildings (Institution of Civil
Engineers 2012). By determining the stability of structures,
it can materialize, among others, works for the shelter, pro-
tection, a livability of the society and its goods against
inclement weather and environmental phenomena.

In this field, as in other disciplines (e.g, industrial engi-
neering, telecommunications, economics, etc.), optimiza-
tion problems appear everywhere and they bring a constant
challenge, not only because of the appearance of new mate-
rials that may be used along with traditional ones, but also
because this leads to cutting-edge methodologies that enable
to realize complex designs in unexpected places.

When considering civil structures there are many issues
to take into consideration, but there is always a common
denominator for the concretion of a project: getting the min-
imum investment cost and the maximum safety of the final
design. These are opposite goals indeed, because enhancing
one of them involves worsening the other one. An example,
is the design of a bridge, in which it is normally desirable to
minimize cost, but with the aim of simultaneously maximiz-
ing safety. These are two conflicting goals, since a higher
safety implies a higher economical cost. As a consequence,
multi-objective optimization techniques are a highly valu-
able tool in this context. Compared to single-objective
optimization, where a single objective function f (x) has to
be optimized and a single optimal solution x∗ is searched
for, in multi-objective optimization a set of so-called non-
dominated solutions, known as the Pareto optimal set, is
the goal of the search (Coello et al. 2007; Deb 2001). Non-
dominated solutions represent the best possible trade-offs

mailto:grzavala@gmail.com
mailto:antonio@lcc.uma.es
mailto:fluna@inf.uc3m.es
mailto:ccoello@cs.cinvestav.mx


538 G. R. Zavala et al.

among the objectives of the problem (i.e., these are solutions
for which no improvement can be obtained for one objective
without worsening another). Such non-dominated solutions
are provided to the decision maker (e.g., the designer of a
bridge) so that he/she can select a single one that best fits
his/her particular needs and requirements (i.e., his/her user
preferences). Among the available computational methods
that can be used to solve multi-objective optimization prob-
lems, we focus on metaheuristics (Blum and Roli 2003),
which are high level strategies governing a set of underly-
ing techniques (usually, heuristics) in the search of optimal
or quasi-optimal solutions of a given optimization prob-
lem. Metaheuristics are considered as particularly useful
algorithms in structural engineering because, being random-
ized black box algorithms, they are able to handle problems
with non-linear, non-differentiable, or noisy objectives,
which are features normally found in structural engineer-
ing. Also, as opposed to traditional mathematical program-
ming techniques used for solving multiobjective optimiza-
tion problems (Miettinen 1999), metaheuristics are able to
generate several elements of the Pareto optimal set in a
single run.

The main goal of this paper is to provide both regu-
lar users and newcomers with a comprehensive survey of
multi-objective metaheuristic techniques applied to struc-
tural design, along with a review of applications. To the
best of our knowledge, this is the first attempt in the lit-
erature devoted to analyzing these two topics together.
One can find an extensive study of evolutionary com-
puting approaches in Kicinger et al. (2005), but no non-
evolutionary metaheuristics are not considered in that study
and the attention paid to multi-objective optimizations is
limited to a section whose length is only of one page. A
survey of multi-objective optimization methods for engi-
neering was presented in Marler and Arora (2004), where
only genetic algorithms, a particular type of metaheuristic,
were included. However, since 2005 (the publication date of
such survey), the multi-objective research community has
developed numerous and major algorithmic advances, many
of which have been applied to structural design problems.
Thus, we consider that it is worth reviewing such research
work and such is the motivation for this work. This paper
aims to provide an overall view of the work conducted on
the use of multi-objective metaheuristics for solving struc-
tural optimization problems, thus facilitating the exploration
of the literature for those interested in pursuing research in
this area. It is worth mentioning that we provide not only
a fairly comprehensive list of the different metaheuristics
that have been used to address structural design problems,
but also details about each particular problem in which they
have been applied (namely, type and domain, number of
decision variables, objectives, and constraints, number of

nodes, elements and groups) as well as details of the specific
type of algorithm adopted (i.e., algorithm type, population
size, termination condition, operators, type of local search
(if adopted)).

The remainder of this paper is structured as follows.
Section 2 introduces basic concepts about multi-objective
optimization. Basic concepts about metaheuristics, their
main features, and the implications of dealing with multi-
objective optimization problems are issues dealt with in
Section 3. The next section is devoted to presenting a
classification of the different types of structural design
problems. The survey of solved problems and used tech-
niques is provided in Section 5, and an analysis is
included in Section 6. Finally, we present our conclu-
sions as well as some open research lines in this area in
Section 7.

2 Multi-objective optimization background

In this section, we provide some background on multi-
objective optimization fundamentals. We define first basic
concepts such as multi-objective optimization problem,
Pareto optimality, Pareto dominance, Pareto optimal set,
and Pareto front. Then, the goals of multi-objective opti-
mization are discussed. We will assume, without loss
of generality, that all the objective functions are to be
minimized.

A general multi-objective optimization problem (MOP)
can be formally defined as follows:

Definition 1 (MOP) Find a vector x∗ = [
x∗1 , x

∗
2 , . . . , x

∗
n

]

which satisfies the m inequality constraints gi (x) ≥ 0, i =
1, 2, . . . , m, the p equality constraints hi (x) = 0, i =
1, 2, . . . , p, and minimizes the vector function f (x) =
[f1(x), f2(x), . . . , fk(x)]T , where x = [x1, x2, . . . , xn]T is
the vector of decision variables.

The set of all the values satisfying the constraints defines
the feasible region � and any point x ∈ � is a feasible
solution. In order to determine those points that are solutions
to a given MOP, the concept of Pareto optimality has to be
introduced:

Definition 2 (Pareto Optimality) A point x∗ ∈ � is Pareto
Optimal if for every x ∈ � and I = {1, 2, . . . , k} either
∀i∈I (fi (x) = fi(x∗)) or there is at least one i ∈ I such that
fi (x) > fi (x∗).

This definition states that x∗ is Pareto optimal if no fea-
sible vector x exists which would improve some criteria
without causing a simultaneous worsening in at least one
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other criterion. A related definition associated with Pareto
optimality is Pareto dominance:

Definition 3 (Pareto Dominance) A vector u =
(u1, . . . , uk) is said to dominate v= (v1, . . . , vk) (denoted
by u � v) if and only if u is partially less than v, i.e.,
∀i ∈ {1, . . . , k} , ui ≤ vi ∧ ∃i ∈ {1, . . . , k} : ui < vi.

This way, a Pareto optimal point is that which is not dom-
inated by any other point in �. Pareto dominance relates
two solutions and it can be used as a binary operator. Thus,
the application of this operator to two solutions in objec-
tive space returns that one solution dominates another or
that the solutions do not dominate each other (i.e., they are
non-dominated solutions).

The optimization of a MOP consequently will be aimed
at finding the set of all the Pareto optimal solutions. This is
the so-called Pareto optimal set, or simply Pareto set, and it
is defined as follows:

Definition 4 (Pareto Optimal Set) For a given MOP f(x),
the Pareto optimal set is defined as P∗ = {x ∈ �|¬∃x′ ∈
�, f(x′) � f(x)}.

Each vector in the Pareto optimal set has a correspon-
dence in objective function space, leading to the so-called
Pareto front:

Definition 5 Pareto Front For a given MOP f(x) and its
Pareto optimal set P∗, the Pareto front is defined as PF∗ =
{f(x)|x ∈ P∗}.

Let us take into consideration as an example the four-
bar plane truss design problem depicted in Fig. 1. It is a
bi-objective optimization problem, in which two objectives
are to be minimized: the volume of the truss (f1) and its

Fig. 1 Four-bar plane truss problem

joint displacement � (f2). This problem can be formulated
as follows:

MinF = (f1(x), f2(x))

f1(x) = L(2x1 +
√

2x2 +√
x3 + x4)

f2(x) = FL

E

(
2

x1
+ 2
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2

x2
− 2
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2

x3

2

x4

)

such that:

(F/σ) ≤ x1, x4 ≤ 3(F/σ)√
2(F/σ) ≤ x2, x3 ≤ 3(F/σ)

where:

F = 10kN,E = 2 × 105kN/cm2,

L = 200cm, σ = 10kN/cm2

This problem has four decision variables x =
[x1, x2, x3, x4], and its true Pareto front is shown in Fig. 2.

The main goal of multi-objective optimization algorithms
is to obtain an approximation of the true Pareto front of a
given MOP. In general, multi-objective optimization prob-
lems can have a Pareto front composed by a huge (possibly
infinite) number of solutions. When using stochastic tech-
niques, such as metaheuristics, the goal is thus to obtain a
Pareto front approximation (also called approximation set),
i.e., a subset of solutions that represents the true Pareto
front. We want to emphasize here that we are approaching
multi-objective optimization using a posteriori techniques,
that is, we produce first an approximation of the Pareto front
and then, we pass the solutions obtained to the decision
maker (the civil engineer in the case of structural design
problems), so that he/she can choose the most appropriate
solution to be implemented, based on his/her own prefer-
ences. There are multi-objective optimization approaches
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Fig. 2 Pareto front of the four-bar plane truss
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that can be used in an a priori or in interactive form (Coello
et al. 2007), but they will not be discussed here.

In general, it does not make sense to search for a huge
number of Pareto optimal solutions, since normally a rea-
sonably low number of solutions is enough. Thus, multi-
objective metaheuristics normally aim to obtain a limited set
of Pareto optimal solutions (typically, around 100), although
this is clearly a user-defined parameter and other values
(e.g., 50, 200, or any other value) can be adopted as well,
depending on the specific requirements from the user (Das
1999; Gobbi et al. 2013; di Pierro et al. 2007).

When producing an approximation of the Pareto optimal
set using multi-objective metaheuristics, two main proper-
ties are normally aimed for: (1) convergence (i.e., we want
to produce solutions as close as possible to the true Pareto
front) and (2) diversity (i.e., we want to produce solutions
that are spread along the entire Pareto set, and not only
clustered around a few specific parts of it).

These concepts are illustrated in Fig. 3. The Pareto front
approximation in the top left is on the true Pareto front, but
there are some regions in which no solutions were found;
this means that the decision maker would not know whether
or not there are any useful solutions in this region. The
example in the top right of Fig. 3 shows a Pareto front with
an excellent distribution of points along the Pareto front, but
they have not converged to the true Pareto front. This is evi-
dently undesirable, since a good distribution of solutions is
relevant only when having a good convergence. Finally, the
approximation set shown in the bottom of the figure shows
a desirable result which has both a good convergence and a
good diversity.

It is important to indicate that, in practice, other goals
may also be desirable. For example, it may be required
to obtain more solutions only on a specific part of the
Pareto front. This may be particularly relevant when dealing
with computationally expensive objective functions (e.g., in
aeronautical engineering problems). In such cases, it may
happen, for example, that the solutions shown in the top left
part of Fig. 3 are preferred if they can be reached in a signif-
icantly shorter time than that required to obtain the solutions
shown at the bottom of the figure.

3 Metaheuristics and multi-objective optimization

In the previous section we provided a background of basic
multi-objective optimization concepts. Here we include a
complement of that information by presenting some funda-
mentals of multi-objective metaheuristics. First, we define
the concept of metaheuristic and how this family of solvers
can be classified. Second, we describe Evolutionary Algo-
rithms, which are, by far the most well-known metaheuristic
techniques. Third, a number of issues that are particular
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Fig. 3 Pareto front approximations: good convergence (top left), good
diversity (top right), good convergence and diversity (bottom)

to multi-objective optimization algorithms are highlighted.
Finally, we elaborate on the solution encoding, which is an
important feature because of its influence in the algorithms
than can be chosen to solve a specific problems.

3.1 Definition of metaheuristic and classification

Metaheuristics are a broad family of non-deterministic opti-
mization methods aimed at finding accurate solutions to
complex optimization problems when exact methods are
not applicable. Metaheuristics cannot, in general, guaran-
tee to find optimal solutions but they tend to produce
near-optimal solutions with a reasonably low computational
effort. This class of approaches includes, among others,
Evolutionary Algorithms (by far, the most well-known
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metaheuristic), Ant Colony Optimization, Scatter Search,
Simulated Annealing, and Particle Swam Optimization. In
fact, many metaheuristics have been designed in the last 20
years, and a number of approaches to classify them accord-
ing to some criteria have been proposed (see for example
Blum and Roli (2003)). One of the most accepted tax-
onomies is that distinguishing between nature-inspired and
non-nature inspired metaheuristics. Table 1 contains a list of
metaheuristic algorithms according to this classification.

Of the many definitions of metaheuristics that can be
found in the literature, a number of basic properties of them
can be stated (Blum and Roli 2003):

– They are general strategies or templates that guide the
search process.

– Their goal is to provide an efficient exploration of the
search space to find (near-) optimal solutions.

– They are not exact algorithms and their behavior is
generally nondeterministic (stochastic).

– They may incorporate mechanisms to avoid visiting non
promising regions of the search space.

– Their basic scheme has a predefined structure.
– They may use specific problem knowledge for the prob-

lem at hand, by using some specific heuristic controlled
by the high level strategy.

This way, metaheuristics can be considered as high level
strategies for exploring search spaces by using different low
level search operators. From an algorithmic point of view,
the provided templates can be instantiated or tuned to per-
form an efficient search of any given optimization problem.
Algorithm 1 shows the pseudocode of a generic metaheuris-
tic, where a set A of some initial solutions (A may be
eventually initialized to ∅), is iteratively updated by generat-
ing a set S of new solutions from it until a stopping condition
is met.

3.2 Evolutionary algorithms

As an example, we describe next an evolutionary algorithm
(EA), the most popular and widely used member of the

metaheuristics family. A typical EA follows the pseudocode
included in Algorithm 2.

In EAs, candidate solutions are called individuals, which
are composed of a chromosome (the representation of the
variables of the problem) and a fitness (an indicator of
the quality of the solution in the context of the problem
being solved). Groups of individuals are referred to as pop-
ulations. As in real life, some selected individuals from a
population mate (i.e., are selected) for reproduction, gener-
ating new child or offspring individuals which, according to
the natural selection process, can replace some other indi-
viduals. Whenever a new solution is created, it is evaluated
to be assigned its corresponding fitness value. When the
current population is replaced by a new one, a generation
has taken place. The process of iterating through successive
generations is called evolution, and ends when a termination
condition is fulfilled.

The pseudocode in Algorithm 2 can be instantiated also
to yield particular EA variants. Thus, if the reproduction
is based on crossover and mutation operators, the result-
ing EA is a Genetic Algorithm (GA), which, by the way, is
the best-known EA. Other EA variants are Evolution Strate-
gies (ESs) and Genetic Programming (GP). It is important
to note that some parameters, such as the population size
or the probability of applying the crossover and mutation
operators, have to be carefully tuned so that the EA can
have a good performance. In fact, this topic has been sub-
ject of a considerable amount of research in the evolutionary
computation literature (see for example Lobo et al. (2007)).

Most metaheuristics, single and multi-objective, follow a
pattern similar to the one used by EAs, i.e., the algorithms
consist of a loop where a number of tentative solutions are
combined and modified in a certain way, in order to produce
new solutions, and at each iteration the loop tries to improve
the managed solutions towards the optimum of the problem
to be solved. All of these techniques have control parame-
ters whose values have an important influence in the search
capabilities of the algorithm.
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Table 1 Classification of
metaheuristics in
Nature-inspired and
Non-nature-inspired techniques

Nature-inspired Non-nature-inspired

• Simulated annealing (SA) • Tabu Search (TS)

• Swarm Intelligence • Variable Neighborhood Search (VNS)

• Particle Swarm Optimization (PSO) • Scatter Search (SS)

• Ant Colony Optimization (ACO) • Iterated Local Search (ILS)

• Evolutionary Computation (EC) • Guided Local Search (GLS)

• Genetic Algorithm (GA) • Path Relinking (PR)

• Evolution Strategy (ES) • Greedy Randomized Adaptive

• Genetic Programming (GP) Search Procedure (GRASP)

• Estimation of Distribution

Algorithm (EDA)

3.3 Issues when solving multi-objective optimization
problems

When the goal is to solve a multi-objective optimization
problem (MOP) with metaheuristics, there are new issues to
consider due to the fact that we aim to produce a set of solu-
tions (i.e., our approximation of the Pareto set) rather than a
single value. Comparisons between solutions are required in
many selection operators used within metaheuristics (e.g.,
binary tournament within an EA) and in replacing policies.
When dealing with single-objective optimization problems,
the relationship “is better than” between two solutions is
trivial: the one with the lower or higher fitness value,
depending whether function has to be minimized or maxi-
mized, is better. In the case of MOPs, this relationship has to
be redefined, because when comparing two solutions which
are non-dominated there is no a way to assess which of them
is better, unless we impose certain user’s preferences. The
consequence is that a new kind of fitness measurement is
needed. On the other hand, as commented in Section 2, the
set of solutions that we aim to produce has to have at the
same time satisfactory convergence and diversity properties.
This means that not only Pareto optimal solutions are sought
for, which would guarantee a high degree of convergence,
but also that such solutions must be evenly distributed along
the Pareto front. Again, and in order to illustrate these
issues, we will analyze next an example using the Non-
dominated Sorting Genetic Algorithm-II (NSGA-II), which
is the most popular multi-objective evolutionary algorithm
(MOEA) in current use.

The NSGA-II (Deb et al. 2002) is a multi-objective
genetic algorithm that is characterized by two features: the
use of a Pareto ranking mechanism to classify solutions and
a density estimator known as crowding distance. The rank-
ing of solutions classifies a population in ranks (1, 2, ...) in
such a way that the non-dominated solutions are assigned a
rank equal to 1; then, they are removed and the procedure
is successively applied yielding to solutions with ranks 2,
3, and so on. By selecting the solutions with best ranking,

NSGA-II tries to converge towards the true Pareto front.
However, when choosing the best ranked solutions it is pos-
sible that only a subset of solutions of a given rank be
needed. In this case, it is necessary to carefully select the
most promising solutions in order to promote diversity, and
the approach taken in NSGA-II is to define a density esti-
mator. The idea of a density estimator is to assign to a set
of non-dominated solutions a value indicating in some way
the degree of proximity (or density) of nearby solutions in
the set. This way, solutions in sparse regions are preferred
compared to those in most crowded regions. As indicated
before, the density estimator in NSGA-II is called crowding
distance, and it is detailed in Deb et al. (2002). NSGA-
II has become de de facto multi-objective optimization
metaheuristic, and it has influenced many other techniques
proposed in the last ten years (Coello et al. 2007).

Another popular MOEA is the Strength Pareto Evolu-
tionary Algorithm 2 (SPEA2) (Zitzler et al. 2001). As the
NSGA-II, SPEA2 is a genetic algorithm based on Pareto
dominance. SPEA2 adopts a scheme known as strength, that
takes into account, for each solution in the population, not
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only the number of solutions that dominate it, but also the
number of solutions by which it is dominated. This provides
a finer grained estimation of the actual ranking of a solution.
The density estimator adopted in SPEA2 is based on mea-
suring the distance to the k-th nearest neighbor (i.e., it is a
clustering approach).

NSGA-II, SPEA2 and most of the multi-objective meta-
heuristics developed in the last ten years conform the so-
called second generation of multi-objective metaheuristics
(characterized for adopting some form of elitism to retain
the globally non-dominated solutions that they generate),
leading to the period when research in this field grew in
a very important manner, thus becoming a hot research
topic. A set of representative multi-objective metaheuristics
is depicted in Table 2.

A popular scheme to deal with multi-objective optimiza-
tion problems before the raising of the second-generation
algorithms was the use of aggregating functions. Under this
sort of approach, a multi-objective optimization problem
is transformed into a single-objective one, thus allowing
to apply single-objective metaheuristics. However, this sort
of approach has a number of drawbacks, from which the
main one is that it cannot generate non-convex portions
of the Pareto front (Das and Dennis 1997). Scalarizing
functions are a better choice if one is interested in using
single-objective optimizers for solving multi-objective opti-
mization problems, since they don’t have the same lim-
itations of aggregating functions and can be very effec-
tive when dealing with complicated Pareto sets. When
using scalarizing functions, the solution of a multi-objective
optimization problem is decomposed into a set of single-
objective optimizations (a set of weights are used for
this sake). This idea is indeed the basis of the Multiob-
jective Evolutionary Algorithm Based on Decomposition

(MOEAD, Zhang and Li (2008)), in which the several
single-objective optimization problems generated are solved
at the same time. By combining this idea with the definition
of neighborhood relations among the subproblems that are
being solved, MOEA/D (and, particularly, its MOEA/D-DE
variant (Li and Zhang 2009)), is considered as one of the
most powerful MOEAs currently available.

3.4 The influence of solution encoding

A key point when using metaheuristics (both for single- and
multi-objective optimization) to solve a given problem is the
encoding of the solutions. To illustrate this issue, the four-
bar plane truss depicted in Fig. 2 will be used. This problem
has four real variables, so a natural encoding in this case
is to use an array of real values (i.e., real numbers encod-
ing), but it is also possible to use a binary encoding, where
each decision variable is encoded as a binary string. Choos-
ing between these two representation has two consequences.
First, many reproduction operators are applicable only to a
given encoding; for example, single point crossover (SPX)
and bit-flip mutation are used with binary strings, while
simulated binary crossover (SBX) and polynomial-based
mutation are operators intended for real numbers encod-
ing. Given that each operator has a different behavior, the
performance of the algorithm using it, gets affected. Sec-
ond, some metaheuristics are designed to work with a given
type of encoding. Differential Evolution (DE) and Parti-
cle Swarm Optimization (PSO) are typically adopted for
solving continuous optimization problems, while other such
as Ant Colony Optimization (ACO) or Tabu Search (TS)
are intended mainly to work with combinatorial problems.
Thus, encoding is an important feature that will be included
in the survey (see Tables 6 and 7 in Section 5).

Table 2 Examples of
representative multi-objective
metaheuristics

Type Algorithm Citation

Evolutionary algorithm PAES Knowles and Corne (1999)

SPEA2 Zitzler et al. (2001)

PESA-II Corne et al. (2001)

NSGA-II Deb et al. (2002)

IBEA Zitzler and Künzli (2004)

GDE3 Kukkonen and Lampinen (2005)

SMS-EMOA Beume et al. (2007)

MOEA/D Zhang and Li (2008)

Particle swarm optimization OMOPSO Reyes and Coello Coello (2005)

SMPSO Nebro et al. (2009a)

Simulated annealing AMOSA Bandyopadhyay et al. (2008)

Scatter search MOSS Beausoleil (2006)

AbYSS Nebro et al. (2008b)
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4 Structural design optimization problems

It is difficult to determine when was the first time that opti-
mization was applied to structural design, but we can say
as a historical review that in the ancient times, before the
Roman aqueducts, there were stone arches and curved bar
structures aimed at covering long spans by reducing the
weight or the amount of material.

Ohsaki and Swan included a historical review in Ohsaki
and Swan (2003) about a number of optimization techniques
applied to discrete structural topology. There periods were
stated as follows:

– Initial period where J.C. Maxwell (in 1894) and A.G.M.
Michel (in 1904) made their pioneering studies in the
field.

– Second period in the 1960s and 1970s, when the use of
computers began to arise.

– Third period, during the 1980s and 1990s, character-
ized by the extremely dramatic grown in computer
technologies.

The first applications of metaheuristics to structural opti-
mization problems can be found in works developed in
the 1970s and the begin of the 1980s, as it was pointed
out in Kicinger et al. (2005). If we focus in multi-
objective approaches, we can trace back works in the mid-
1980s (Goldberg and Samtani 1986) and the beginning of
the 1990s (Hajela 1990). Surveys about structural optimiza-
tion including both single- and multi-objective optimiza-
tion techniques were published in Andersson (2000) and
in Kicinger et al. (2005). These techniques and others were
discussed in Saitou et al. (2005).

The problems analyzed in these surveys can be divided
in two main categories:

– Bar or element design: it is a local optimization pro-
cess that affects the shapes and sizes of the elements of
a structure. It is addressed by finding the measures of a
pre-defined geometry transverse to the main axis of the
structure, or determining the variables that lead to the
optimum geometric shapes.

– Topological design: It is a global optimization pro-
cess aimed at defining the entire topology (layout) of
a structure. It is known as topological optimum design
(TOD), and it can be applied to discrete and continu-
ous structures. TOD takes into account the number of
elements and the links or continuities among them in
order to determine the optimum distribution of masses
in the considered domain, with the goal of obtaining
the stability of the structure. In this process, while
new elements are incorporated or existing ones are

removed, the shape and/or size of each element is also
optimized.

4.1 Bar or element design

In this section, bar design problems (Chapman 1994) are
classified. These problems are related to structures com-
posed of flat and spatial bars, such as trusses and frames.

Truss structures are composed of bar elements that are
linked by articulated joints. The calculation of the equilib-
rium requires to determine the areas of the cross section
of each bar, with no information about shape and sizes.
A frame structure is a more complex problem because,
besides the areas, the flexural inertia must be calculated,
so the cross shape and sizes must be previously defined in
order to determine the stability of the structure. The prob-
lem complexity might increase in case of three dimensional
structures, because there are four variables for the design:
the area, two inertia moments, and a torsional inertia.

So, in this category, the cross geometry of each bar of
the structure must be calculated, which defines the decision
variables of the problem that is to be optimized. Four sub-
categories can be distinguished, as illustrated in Fig. 4:

1. Area optimization: The decision variables represent
the areas of the bars without considering the sizes nor
the shapes of the cross sections (Fig. 4(1)).

2. Size optimization: As shown in Fig. 4(2), the shape
is pre-defined, so the problem to optimize is related to
finding the values that define the size of each part of the
shape.

3. Shape optimization: The goal is to find the geometry
and dimensions of a closed polygon inscribed within
a known frame or border (Fig. 4(3)) by the discretiza-
tion of the shape into lines or curves linked together by
nodes.

4. Topological optimization of cross-section. The fourth
sub-category is illustrated in Fig. 4(4). Starting from
a known elemental section, it must be discretized into
small elements having triangular or square sections.
The optimization process is then based on removing
pieces and re-arranging the linked elements with their
neighbors by their sides. Empty spaces can appear
inside.

4.2 Topological design

As commented before, TOD comprises the distribution of
internal elements, the links, and the external shape of the
structure to optimize, and it basically relies on distributing
the resistant masses of material where required as well as
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(1) (2)

(3) (4)

Fig. 4 Bar dimensioning or geometrical design problem variants: (1)
Area without sizing, (2) sizing, (3) shape, and (4) topology cross-
section

defining their size. The optimization process starts from an
initial state and the final shape, trying to find the optimum
design satisfying the objective functions and constraints.

Three categories can be established to classify this type
of problems. The issues to consider are the type of the used
element or the way in which the subdivisions are made (bars
or elements components interconnected by nodes, sides, or
surfaces). The categories are the following:

1. No topological optimization (pre-defined topologi-
cal design): the topology of the structure is defined
by the designer, and it is fixed and remains unchanged
during the optimization process concerning the num-
ber of elements, links, restriction of movements, etc.
This category is considered because it allows to classify
those TOD problems in which only bar design issues
and continuous structures are considered, as illustrated
in Fig. 5(1a) and (1b) respectively. In the first case,
the problems are composed of 2D or 3D bar struc-
tures where one of the measures stands of the other

(1a)

(1b)

(2)

(3)

Fig. 5 Topological design classification: No topological optimization
with two variants, (1a) bars and (1b) continuous structures; (2) bar
topology optimization; (3) continuous topological optimization

two (length on the measures of the cross section),
using a linear representation of the bar element that
matches the centroid of the cross section describing a
longitudinal axis; each element is linked to the others
through its nodes. Examples are truss and frame struc-
tures. The second kind of problems include continuous
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structures in which there is no variation of shape, and
the optimization is limited to the thickness equal for all
elements of the structure or the suitability of the main
lengths of the structure.

2. Discrete topological optimization: this case is similar
to the previous one, but the design of the structure is not
defined in advance, i.e., it is unknown (see Fig. 5(2)).
The starting point is the design domain, which is the
zone of study, and consists of a figure or wire body, con-
taining the boundary conditions, which can be in the 2D
or 3D domain. It is divided internally by grids in which
the coordinates of the vertices are known. The design of
the structure shall be defined by the required unions of
these points, allowing the links among the longitudinal
elements to represent the bars.

3. Continuous topological optimization: Depicted in
Fig. 5(3) it is applied to plate-like structures or con-
tinuous 2D and 3D structures. The thickness can be
constant or not, so the decision variables of the opti-
mization problem take values between the limits of the
exploration space and boundary conditions. The start-
ing point is a figure or basic body with pre-established
peripheral measures and with excess material known as
design domain. In both cases, 2D and 3D, the design
domain is discretized in small elements. The final result
will be a different figure depending on the group-
ing obtained with the optimization of the resistance
and distribution of the material, discarding the deck-
ing material on the strength of the assembly. In general,
these kinds of structures evolve to adopt bar shapes
through the discrete elements linked among them by the
adjacent sides between neighbors. When the problems
are in 3D, the design is a spatial one and evolves by
varying the sizes in the three dimensions, coupling and
uncoupling volumetric finite elements attached to their
neighbors through the contact surfaces. After the opti-
mization, the required conditions of shape and size to
meet the stability of the structure will be obtained.

5 The survey

After doing an in-depth analysis of the literature, we have
selected more than 50 references related to multi-objective
optimization applied to structural design problems, which
we have found to be the most representative of the work
that has been done in this area. Even though we have tried
to encompass a wide and thorough review, it is important to
clarify that the aim was not to be comprehensive, and there
may be other relevant works that are not included here.

The analysis of this published material is divided in two
parts. First, Section 5.1 provides all the details about the
particular structural design problem tackled by the analyzed

works. Then, an in-depth review based on the particular
algorithmic details such as the algorithm used, the encoding
of the tentative solutions, the search operators adopted, the
number of solutions managed, etc., is provided.

5.1 Structural design problems addressed
by multi-objective metaheuristics

Tables 3, 4 and 5 summarize the main features of the
structural design problems that have been addressed with
multi-objective metaheuristics in the analyzed papers. We
use n/a for those cases in which we did not find the required
information as well as in cases when that feature is not
applicable. The entries in these tables include the following
information:

– Cite: Bibliographic reference. The citations are
arranged according to their publication year and,
in a given year, they are presented alphabetically
considering the first author name.

– Mat.: Material used in the structure, e.g., steel, wood,
reinforced concrete (RF), prestressed concrete (PC),
etc. If the material is not available, this field will include
its mechanical feature such as (Elastic), when a lin-
ear relation exists between tension and distortion, or
(Plastic), when this relation is not linear.

– Dom.: Domain of the problem. It can be either (2D) or
(3D) if the analysis of the structure is carried out in the
plane or the space, respectively.

– Calc.: Calculation method used to determine the effects
of loads in the structure and stability. We have used
the acronyms and names detailed next. SDC: Seismic
Design Criteria (for problems related to seismic anal-
ysis of structures), DNV-CSR: Det Norske Veritas -
Common Structural Rules (certification relating to cal-
culus and quality of ships), DGV-CPH and NBE AE-88:
Spanish construction regulations, Damage: identifica-
tion of damaged members and estimation of severity,
FEM: Finite Element Method, FEM-P: FEM and paral-
lel processing, FEM-NRH: Nonlinear Response History
FEM, SRSM: Stochastic Response Surface Method,
CFDM: Constrained Force Density Method, Equ: Alge-
braic Equations, Ad Hoc: other method, different from
the ones previously mentioned.

– Type: type of structure. We consider here Truss, Frame,
SMRF: Special Moment-Resisting Frame, Cantilever
plate, Tall building frame, etc.

– Nodes: number of nodes used in bar structures. Addi-
tionally, we use the � (triangular cell) and � (quadrilat-
eral cell) symbols to represent the shape of the discrete
structure forming a grid of continuous real problem
2D, and solid45 and solid95 to represent linear and
quadratic hexahedral solid elements, respectively.
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5

– Elem.: number of finite elements that form the
structure.

– Gr.: Number of groups of bars with similar mechanical
and geometrical features. Grouping bars means simpli-
fying the problem size with the goal of making it more
affordable to be solved.

– Design: Size, shape and topology optimization prob-
lem. An X.Y encoding of two variables has been
used only for structures with bars, where X indi-
cates the kind of structural component design (1:
area, 2: size, 3: shape, 4: topology), as presented in
Section 4.1, and Y represents the type of topology
design of the structure (1: no optimization, 2: dis-
crete, 3: continuous), as described in Section 4.2. For
example, an 1.1 code in this column means optimiz-
ing the cross section area without taking into account
shape or size, while the entire design of the structure
remains the same (number of trusses and bars, external
topology, etc.).

In the case of continuous structures, it is enough to
identify the type of optimization with one single value,
which is pointed by the Y variable. Bearing in mind the
classification of Section 4.2), Y = 1 means a size type
design optimization and it corresponds only to a plate
thickness optimization (not the geometry of the other
two dimensions, which are fixed and predefined). The
value 3 indicates a design change in the size and shape
of the structure (topology design). In the 2D domain,
the optimization is targeted to the main axis of the struc-
ture, being the constant the thickness or depth. In the
3D domain, the optimization is global, considering all
the design variables.

– Obj.: Objective functions to be optimized.
– Const.: Constraints used to define a feasible structure.
– No Var.: Number of decision variables of the problem.

We have used the following symbols, names, and acro-
nyms to refer to the different objectives and side constraints
that are considered in the analyzed works:

– α, β: function of the geometrical parameters
– δ: displacement of node or point
– δave: deviation between the actual output path of the

mechanism and the desired path
– γ : safety
– λ: compressive slenderness or buckling factor
– ωi : ith natural frequency
– σ : axil stress limits (or allowable); in case the val-

ues of stress (+) and compression (-) are different, the
corresponding sign will appear

– σA: stress in the anchorages
– σB : Euler buckling stress
– σVM : Von Misses stress
– ϑ: allowable values for rotation
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– a1 = e1: restriction associated with the dimensions of
each group

– A: cross sectional area
– c: structural compliance
– CMA: constrained mass average
– Cost: cost of material, design, analysis, execution, etc.
– Da: boundary constraints of the numerical values of

damage that are acceptable
– Dcb: distance away from the constraint boundary
– DI: diversity index
– Dist: Euclidean distance considering the loading point,

desired support point and actual support
– DR: interstory drift ratio among all stories correspond-

ing to all the seismic motions for the initial Peak
Ground Velocity (PGV) level

– DS: diversity of structure
– DyR: dynamic response
– Ei: input energy
– Ec: equations which take into account the allowable

stresses of materials and other features
– Env: counts the environmental impact of the structure
– Ep: dissipated energy
– Erh: hysteretic energy dissipation ratios
– EVS: first mode eigenvalue of the structure
– f v : vulnerability function (VF) of robust multi-

objective and multi-level optimization (RMOL)
– f v

M : VF for mass of the structure
– f v

δ VF to the maximum displacement at a specific point
– F: force or load
– Fr: frequency
– Fb: bound on the applied load needed to cause the

mechanism to achieve the desired path
– FEV: first eigen period
– FRF(ωi ): frequency response function crest parameter

with respect to the ωi

– FRF : mean value of FRF crest parameters at
ω1, ω2, ω3

– FT(ωi ): force transmissibility crest parameter with
respect to ωi

– FT : mean value of FT crest parameters at ω1, ω2, ω3

– gBDS : constraint requirement that each member meets
the AASHTO LRFD Bridge Design Specifications
(BDS) throughout opening

– GAM: geometric advantage of the mechanism.
– GC: geometric constraints related to the position of

nodes which support the distributed loads acting on the
deck

– HMAWV: hybrid mode aerial working vehicle
– L: length
– LSDC: life time seismic damage cost
– M: mass
– MD: modal damage
– MF: modal flexibility

– n: number of transversely stiffening flat bars which
expresses in a simple way the complexity of design or
workmanship expenses

– n/a: not available
– nt : dynamical and recursive constraint
– NCST: number of different cross-section type
– NEC: number of elements within this area that contains

material
– Ns : constructability through the number of longitudinal

bars
– p: lateral pressure
– PAS: prescribed area must be fully solid
– q: maximum non-dimensional ratio under a combina-

tion of axial force and bending moments
– r: normalized mass or the ratio of structural mass to the

maximum mass
– SDCV: standard deviation of the constraints violation
– SDL: standard deviation of ultimate load carrying

capacity taken as a measures of robustness of a structure
– SIE: supplied input energy
– Sust: environmental cost of the most sustainable solu-

tion
– t: plating of thickness
– t/h: ratio between flat bars of thickness t and height h
– V: volume
– Vr : volume ratio
– W: weight
– WS: allowable modulus section

5.2 Algorithms and parameter settings

This section aims at analyzing the literature from the point
of view of the components of the multiobjective metaheuris-
tic used for addressing structural design problems.

The columns in the tables are the following ones:

– Algorithms: name of the multiobjective algorithm used
to solve the structural design problem. The algorihtms
in parentheses are included for comparison purposes in
the cited work.

– Fam.: metaheuristic family to which the algorithm
belongs (GA: Genetic Algorithm, SA: Simulated
Annealing, ES: Evolution Strategy, GP: Genetic Pro-
gramming, AIS: Artificial Immune System, PSO: Parti-
cle Swarm Optimization, EDA: Estimation of Distribu-
tion Algorithm, TS: Tabu Search).

– PS: this column shows the number of solutions (PS =
Population Size) used by the algorithm (if applicable).

– Encod.: representation used for the solutions manipu-
lated by the multiobjective metaheuristics. The values
that may appear in this column are: B: Binary encoding;
BG: Binary Gray, IN: Integer, FP: Floating Point, DV:
Discrete Values.
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– Sel.: selection operator used (RW: Roulette Wheel,
T: Tournament, BT: Binary Tournament, UST: Uni-
form Stochastic and Truncation, IS: Interval Selection,
SS: Sequential Selection, RS: Random Selection). This
method is the one in charge of providing (either explic-
itly or implicitly) an ordering for the solutions managed
by the multiobjective metaheuristic.

– Rec.: recombination operator used (SBX: Simulated
Binary Crossover, UX: Uniform crossover, IX: Inter-
mediate Crossover, DPX: Two-points crossover). When
more than one operator is used, we use the label
“Mult.”.

– Mut.: mutation operator (BF: Bit Flip, UM: Uniform
Mutation, PM: Polynomial Mutation, DM: Displace-
ment Mutation, SM: Shift Mutation, RM: Random
Mutation). When more than one operator is used, we
use the label “Mult.”.

– FA-DP (Fitness Assignment and Diversity Preserva-
tion): these are the two most important design issues
when proposing a new multiobjective metaheuristic. It
is worth noting that in some cases, these two compo-
nents are merged into a single measure that translates
the vector of objective functions of a multiobjective
problem into one single scalar value which is used to
rank solutions properly. We consider here the follow-
ing techniques: UIS: Uniform Interval Selection, St.:
Strength, PR: Pareto Ranking, CD: Crowding Distance
(density estimator of NSGA-II), WS: Weighted sum,
G: Grid, AG: Adaptive Grid, SD: SPEA2’s Density
estimator, FS: Fitness Sharing, Cl.: Clustering

It must be noted that the columns including the selection,
recombination, and mutation operators are mainly applica-
ble to EAs (such as GA and ES). However, we can find
in the literature that, for example, several PSO algorithms
employ mutation as a perturbation operator. The choice of
considering these three operators has its rationale in that

Fig. 7 Number of problems in each design category

more than the 90 % of the found works are about EAs, and
the information about the used operators is, therefore, rel-
evant. Detailing the operators used by non-EA algorithms
(e.g., PSO, SA, AIS) would make the tables very complex
to understand and, therefore, we omitted such details.

Whenever an item is not applicable to a given algorithm,
or the paper does not report information to infer it, we write
‘n/a’ in the corresponding cell.

6 Analysis

In this section, we perform an analysis of the table contents
presented in the previous section. We use bar plots to sum-
marize the most relevant issues that can be extracted from
all the collected data. We have considered: the number of
publications per year, the type of problems addressed within
each design category, and the multi-objective metaheuristics
used to tackle these problems.

The total number of papers finally included in the sur-
vey is 51. Figure 6 includes the number of publications per

Fig. 6 Number of reviewed
publications per year
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year. The first conclusion that can be drawn from this fig-
ure is that, up to 2004, very few papers (oscillating between
1 and 3 per year, and only one before 2000) had been pub-
lished. This makes sense because the use of multi-objective
metaheuristics became popular at the beginning of the last
decade, when the first two monographs on evolutionary
multi-objective optimization were published (Deb (2001)
and the first edition of Coello et al. (2007), which became
available in 2002). From 2005 onwards (with the excep-
tion of 2006, in which no papers were found), the tendency
increases up to 2011, where 11 papers appeared in the
specialized literature. Regarding 2012, 4 papers have been
considered for the survey. Our guess is that more papers are
expected in the following years due to the evident benefits

that multi-objective metaheuristics have produced in struc-
tural optimization. We want to remark here that this survey
is intended to serve to both expert practitioners and new-
comers as the basis of cutting edge ideas and state-of-the-art
algorithms to further improve this field.

We focus now on the 84 problems tackled according to
the design categories established in Section 4, which are
summarized in Fig. 7 and Table 6. The most studied prob-
lems fit into the categories with keys 1.1 (area optimization,
no topological optimization) where 26 problems have been
considered, and 2.1 (size optimization, no topological opti-
mization), with 17 problems addressed. Continuous topo-
logical optimization (labelled as 3 in Table 7) has received
also a lot interest, with 17 problems. A second group is

Table 6 Algorithms and parameter settings

Cite Metaheuristics

Algorithms Fam. PS Encod. Select. Rec. Mutat. FA-DP

Hajela and Lin (1992) Sharing GA, VEGA GA 100 B RW DPX BF Sharing

Coello and Christiansen (2000) GAminmax GA 100 B, FP BT DPX BF Weighted Min-Max

Deb et al. (2000) NSGA-II (NSGA) GA 100 FP BT SBX Pol. PR+CD

Deb and Goel (2000) NSGA-II + LS GA 30 B BT FCX BF PR+CD+Cl.

Büche and Dornberger (2001) SDM (SPEA, NSGA) GA 60 B IS UX UM UIS

Ray et al. (2001) MOEA GA n/a n/a Ad hoc Ad hoc No Mut. PR

Hamda et al. (2002) NSGA-II GA 300 Voronoi BT Ad hoc Mult. PR+CD

Ray and Liew (2002) PSO PSO 100 FP SS n/a n/a PR+CD

Liu et al. (2003) MOGA GA 1000 IN BT DPX UM Weighted Min-Max

Kicinger and Arciszewski (2004) ES ES 12 + 60 B UST UX UM WS

Luh and Chueh (2004) CMOIA (NSGA-II) AIS 100, 160 B T Ad hoc Ad hoc PR

Madeira et al. (2004) NSGA-II GA 768 B BT Ad hoc Ad hoc PR+CD

Coello and Toscano (2005) μGA (NSGA-II, PAES) GA 4+100 B BT DPX UM PR+AG

Greiner et al. (2005) NSGA-II, SPEA2 GA 100 BG BT UX n/a PR+CD/SD

Lagaros et al. (2005) ESMO ES n/a DV Ad hoc Ad hoc Ad hoc FS

Liu et al. (2005) GA GA 1000 IN BT DPX UM PR+CD

Tai and Prasad (2005) GA GA 100 B Ad hoc Ad hoc Ad hoc PR

Valdez Peña et al. (2005) MASO EDA B n/a n/a n/a PR

Greiner et al. (2007) DENSEA (NSGA-II, SPEA2) GA 50 B, BG RW UX n/a PR+CD

Herrero et al. (2007) ε-MOGA GA 100 FP RS Ad hoc RM G

Kelesoglu (2007) GA GA 100 B SS DPX BF n/a

Kicinger et al. (2007) SPEA2 GA 100∼500 IN BT UX RM St+SD

Perera et al. (2007) NPGA GA 50∼100 n/a BT n/a n/a FS

Ohsaki et al. (2007) SA, TS SA, TS n/a IN n/a n/a n/a FS

Izui et al. (2008) MPOSO PSO 100 FP SS n/a Ad hoc AG

Payá-Zaforteza et al. (2008) SMOSA SA 1 FP n/a n/a n/a n/a

Paya et al. (2008) SMOSA SA 1 FP n/a n/a n/a n/a

Perera and Ruiz (2008) SPGA GA 100 n/a T SPX n/a St.

Sharma et al. (2008) NSGA-II GA 240 B BT Ad hoc 1/n PR+CD

Shih and Kuan (2008) IMEA AIS 200 FP RS Ad hoc Ad hoc WS

Wang et al. (2008) GA+LS GA 200 FP n/a n/a n/a PR
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Table 7 Algorithms and parameter settings (cont)

Cite Metaheuristics

Algorithms Fam. PS Encod. Select. Rec. Mutat. FA-DP

Noilublao and Bureerat (2009) PAES ES 1 B n/a n/a n/a AG

NSGA-II GA 50 B, FP BT n/a n/a PR+CD

SPEA2 GA 50 B, FP BT n/a n/a St.+SD

OMPSO PSO 50 FP SS n/a n/a AG

PBIL EDA 50 B n/a n/a n/a AG

Guedri et al. (2009) NSGA GA 20 n/a n/a n/a n/a FS

Sharma et al. (2009) NSGA-II GA 240 B BT Ad hoc Ad hoc PR+CD

Bin et al. (2010) NSGA-II GA n/a n/a n/a n/a n/a PR+CD

Su et al. (2010) AMISS-MOP (NSGA-II) GA 100 Ad hoc BT Ad hoc Ad hoc PR+CD

Winslow et al. (2010) NSGA-II GA 100 FP BT SBX, UX Non-uniform PR+CD

Sharma et al. (2011) NSGA-II GA 240 B BT Ad hoc Ad hoc PR+CD

Byrne et al. (2011) GE GP 100 n/a T n/a n/a PR

Descamps et al. (2011) MOGA GA n/a FP+IN n/a n/a n/a n/a

Greiner et al. (2011) NSGA-II, SPEA2 GA 200 BG BT UX n/a PR/St.+CD/SD

Ghanmi et al. (2011) GA GA 30 FP n/a n/a n/a PR

Kunakote and Bureerat (2011) PAES ES n/a B n/a n/a n/a AG

SPEA2, NSGA-II GA 35 B, FP n/a n/a n/a PR/St.+CD/SD

MPSO PSO 35 FP n/a n/a n/a AG

PBIL EDA 35 B n/a n/a n/a AG

Kaveh and Laknejadi (2011) CSS-MOPSO PSO 50 FP n/a n/a RM Ad hoc

Nafchi et al. (2011) Bees Bees 80, 100, 150 n/a n/a n/a n/a n/a

Noilublao and Bureerat (2011) SPEA2 GA 200 FP BT Ad hoc Ad hoc St.+SD

AMOSA SA 1 FP n/a n/a n/a SD

PBIL EDA 200 B n/a n/a n/a AG

Stankovic et al. (2011) NSGA-II GA 60 BG BT SPX BF PR+CD

Tang et al. (2011) NSGA-II GA 100 FP+B n/a n/a n/a PR+CD

Gong et al. (2012) GA GA 15 B T n/a n/a CD

El Semelawy et al. (2012) SPEA GA n/a n/a n/a n/a n/a St.+Cl

Stanović et al. (2012) NSGA-II GA 60 B BT Ad Hoc BF PR+CD

Thrall et al. (2012) MOSA SA 1 FP n/a n/a n/a Ad hoc

formed by the 8 and 12 problems belonging to area/size
optimization plus discrete topological optimization (cate-
gories 1.2 and 2.2 respectively). Finally, no problems have
been found related to the 3.1 and 4.1 types (shape/cross-
section topology plus discrete no topological optimization),
and 4 problems belongs to the class labelled as 1.

Front the point of view of the algorithms that have been
applied, Fig. 8 clearly confirms that NSGA-II is the most
widely used technique (it appears in 20 publications), as
it could be expected a priori given the popularity of this
algorithm. The second metaheuristic most frequently used is
SPEA2 (7 occurrences), being the following ones different
variants of MOPSO and MOSA algorithms. The rest of
algorithms include a mix of techniques including PAES,
PBIL, NSGA, SPEA, etc. Fig. 8 Multi-objective algorithms used in the reviewed papers
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7 Conclusions and perpectives

Multi-objective optimization with metaheuristics has
become a hot research topic in the last decade mainly
because metaheuristics have shown to be an easy and effec-
tive approach for solving real-world problems. The survey
carried out in this paper confirms this fact in the field of
structural design. Our purpose has been to provide the
reader with a comprehensive review of relevant papers with
the goal of offering a source of useful information about the
most salient studies in this area.

From the analyzed information, a summary of issues and
a number of open research lines can be indicated. We can
subdivide them in two classes: (1) those related to structural
design problems and (2) those having to do with the multi-
objective techniques.

Design problems From the analyzed papers in Tables 3, 4,
and 5 and Fig. 7, we can conclude that most of the studied
engineering problems related to area dimensioning with no
structural topology design (1.1) have been chosen because
they are typically adopted as benchmarks to test multi-
objective algorithms. In these problems, the use of static
loads and truss structures is common (e.g., truss bridges).
Somewhat more complex studies are those of class 2.2,
e.g., tall building frames, which include the design of bar
sizes as well as structural topological design. Similarly,
problems of designs 1.2 (trusses), 2.1 (frames), 1 (slab,
cantilever plate, etc.) and 3 (cantilever plate, beam, etc.)
have been addressed in the specialized literature. Among
the problems that have not been studied yet, we have the
optimization of the cross sections of bars defining the shape
of the boundary (design 3.1) and the transversal topology
(design 4.1).

Multi-objective metaheuristics A rather quick look at the
tables and figures suggests that, from an algorithmic point
of view, there are many open research lines which can
be largely exploited. For example, many of the problems
reported in the specialized literature are encoded using
floating point representation (i.e., real numbers are used
for all the decision variables), and we found no study
in which differential evolution was used to solve any of
these problems. This is rather surprising if we consider
that differential evolution is a very powerful approach for
solving problems in which all the decision variables are
real numbers. Some of the multi-objective metaheuristics
based on differential evolution that could be used for these
problems are GDE3 (Kukkonen and Lampinen 2005) and
MOSADE (Huang et al. 2009).

Another interesting finding is that NSGA-II and SPEA2
are still the most commonly used multi-objective meta-
heuristics in the literature on structural optimization. This

is a bit surprising considering that these two MOEAs were
introduced more than 10 years ago. Remarkably, the use of
other, more recent, MOEAs such as those based on decom-
position (e.g., MOEA/D by Zhang and Li (2008) and Li
and Zhang (2009)), MOEAs based on structuring the pop-
ulations into a grid (Nebro et al. 2009b), indicator-based
MOEAs (e.g., SMS-EMOA by Beume et al. (2007) and
HyPE by Bader and Zitzler (2011)), algorithms based on
local approximations (e.g., ANC by Gobbi et al. (2013),
NBI by Das and Dennis (1998), UPS-MOEA by Aittokoski
and Miettinen (2010)), and non-evolutionary metaheuristics
such as scatter search (Nebro et al. 2008a), has not been
reported yet in structural optimization problems. The use of
coevolution and game theory (Sim and Kim 2004; Tan and
Teo 2009) in structural optimization would also be an inter-
esting choice. In fact these approaches may be quite useful
in some applications (Barbosa 1997). For example, coevolu-
tionary approaches are known to be very effective for deal-
ing with large-scale optimization problems (i.e., problems
having a very large number of decision variables) (see for
example the work of Li and Yao (2012)). However, its use in
large-scale multi-objective optimization has been very rare
until now.

The use of parallel MOEAs (Nebro et al. 2005), surrogate
methods (Ray et al. 2009), fitness approximation (Reyes
Sierra and Coello Coello 2005) and incorporation of domain
knowledge during the search (Landa-Becerra et al. 2008)
could also bring important savings in terms of CPU time
when solving multi-objective structural optimization prob-
lems. However, the use of these techniques has been very
relatively scarce until now in multi-objective optimization
problems (Ray and Smith 2006).

Finally, another aspect that has been only scarcely
explored in multi-objective structural optimization using
metaheuristics, is the incorporation of user’s preferences
in the search engine (Sanchis et al. 2008). These prefer-
ences allow, for example, to focus the search into a specific
region of the Pareto front, and also helps the decision maker
to choose one (or very few) solution from the many that
a multi-objective metaheuristic normally generates (Thiele
et al. 2009).

Evidently, more work in these directions is expected to
appear in the next few years, as we expect that the use of
multi-objective metaheuristics becomes more common not
only in structural optimization, but also in engineering in
general.
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