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Abstract This paper investigates collaborative optimiza-
tion (CO) for multidisciplinary design optimization prob-
lems with multi-objective subsystems. A multi-stage opti-
mization strategy is presented in the system level to enhance
the performance of CO that may be weakened by the initial
point in some cases. Resolving the multi-objective problem
in subsystems with the preference-based algorithm requires
setting the preference values for all the objective func-
tions. Therefore, we transform the incompatibility function
into a disciplinary constraint aiming to avoid providing the
preference value, and propose two transformation meth-
ods, namely, closest distance and relaxed distance. At the
end of the paper, the results of two engineering examples
demonstrate the performance of the multi-stage optimiza-
tion strategy, and the effectiveness of the transformation for
the incompatibility function.
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1 Introduction

Multidisciplinary design optimization (MDO), a tool of
concurrent engineering for large-scale and complex system
design, has gained a great deal of research attention and
application (De Weck et al. 2007). The MDO methods are
classified into single-level methods and multilevel methods.
For complex coupling problems, the key approaches are the
multilevel MDO methods that mainly include concurrent
subspace optimization (CSSO), bi-level integrated system
synthesis (BLISS), collaborative optimization (CO) and
analytic target cascading (ATC). Due to the high degree of
disciplinary autonomy, CO becomes an attractive method.
The basic idea in CO method is the decomposition of the
design problem into two levels, the system level and the sub-
system level. The system level objective is minimized under
consistency requirements among the disciplines by enforc-
ing equality constraints that coordinate the interdisciplinary
couplings (Zadeh et al. 2009).

Although many advantages are involved in CO, cer-
tain features of the framework cause a few difficulties
(Alexandrov and Lewis 2002). For example, it may be diffi-
cult for CO to find a feasible solution under the system level
equality constraints. Therefore, the following methods were
introduced: (1) The equality constraints were replaced by
the inequality constraints and the determination of a reason-
able relaxation factor was studied (Alexandrov and Lewis
2002; Li et al. 2008). (2) The penalty-function method was
provided to yield approximate solutions (Lin 2004). (3)
The equality constraints were approximated by the response
surface methodology and the approximation models were
addressed (Jang et al. 2005; Huang et al. 2008).

The experimental data and analysis in Alexandrov and
Lewis (2002) and Lin (2004) show that CO obtains differ-
ent solutions from several initial points. This phenomenon
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indicates that the CO using equality constraints, relaxation
method and penalty-function method is sensitive to the ini-
tial point for some problems. To the best knowledge of the
authors, the studies mainly focus on the computational dif-
ficulties caused by equality constraints, but no attention is
concentrated on the influence caused by the initial point.

In many industrial environments, engineering design of
complex systems is inherently multidisciplinary and multi-
objective, the character of which enhances the complexity
to obtain a satisfactory solution. Some research works focus
on re-formulating the problem so as to improve the trade-
off between multiple and conflicting objectives due to the
specific multi-objective nature of the MDO problem. For
example, Tappeta and Renaud (1997) used the weighted-
sum method to resolve the multi-objective collaborative
optimization (MOCO) problem. The goal programming and
linear physical programming (LPP) approaches (McAllister
and Simpson 2003; McAllister et al. 2004, 2005) were
introduced to resolve the MOCO problem. Huang et al.
(2008) applied the fuzzy satisfaction degree and fuzzy suf-
ficiency degree methods to handle the MOCO problem. The
multi-objective evolutionary algorithm (MOEA) was pre-
sented at both the system and subsystem levels to handle
the MOCO problem in Vikrant and Shapour (2006) and
Sébastien et al. (2007).

In most previous studies on the MOCO problem, the sub-
system objective that minimizes the incompatibility func-
tion is independent to the physical problem (Vikrant and
Shapour 2006). In the original CO framework, the sole
objective function in subsystem is to minimize the incom-
patibility function (McAllister et al. 2004). However, the
study on the MOCO problem with physical objectives in
subsystem is important because a subsystem instead of the
system level sometimes involves one or more objectives. For
example, in the design of an aircraft, the wing subsystem
has weight and deflection as physical objectives while the
system level has total weight and stress as the system level
objectives (Li and Azarm 2008). Obviously, MDO problems
with multi-objective subsystems are really involved in some
engineering problems.

In this paper, the modifications on CO framework are
presented for the employment of CO technique in MDO
problems with physical objectives in subsystem. First, in
the system level optimization framework, a multi-stage opti-
mization strategy is proposed to decrease the influence for
the optimization result caused by the initial point. Second,
in the multi-objective subsystem optimization, two transfor-
mation methods are presented to transform the incompati-
bility function into a disciplinary constraint. Therefore, one
can avoid the difficulty in setting preference value for the
incompatibility function while using the preference-based
multi-objective optimization algorithm.

The remainder of the paper is organized as follows.
Section 2 describes collaborative optimization framework
and provides a multi-stage optimization strategy for the sys-
tem level optimization. Section 3 presents the modification
on the multi-objective subsystem optimization and adopts
LPP as the optimization method. Two engineering exam-
ples are provided to demonstrate the applicability of the
proposed methods in Section 4. Finally, Section 5 closes the
paper with conclusion.

2 Formulation of collaborative optimization

Figure 1 illustrates CO proposed by Kroo et al. (1994). CO
is a bi-level optimization approach in which each subsystem
consists of a disciplinary level optimizer and disciplinary
constraints. The sole objective at the subsystem level is to
minimize the incompatibility function that represents the
violation of compatibility constraints.

2.1 Description of system level optimization

The system level attempts to optimize the design objec-
tive subject to n interdisciplinary compatibility constraints.
The interdisciplinary compatibility constraint J ∗

i related to
subsystem i is given by:

J ∗
i (z, x∗i (z)) = 0, i = 1, 2, · · ·n (1)

where x∗i (z) (i.e. the optimal value of subsystem i) is the
function with respect to the system level design vector z.

As the analytic expression of x∗i (z) is usually difficult
to obtain, some approximation methods are introduced. Li
et al. (2008) and Braun and Kroo (1995) adopted a con-
stant instead of the function with respect to the system level
design variables. Meanwhile, a new post optimality sensitiv-
ity analysis (POSA) was presented with a simple formula in
which x∗i is independent of the system level design variables
(Braun and Kroo 1995; Lin 2004). This result indicates that
x∗i is a constant instead of a function in the POSA definition.
In this simplified form, the value of x∗i is computed via the
optimization procedure of subsystem i. Then, the following
simplified interdisciplinary compatibility constraint can be
adopted.

J ∗
i

(
z, x∗i

) = 0, i = 1, 2, · · · , n (2)

2.2 Modification on system level optimization

Generally, relaxing the system level constraints can reduce
the computational difficulty that is caused by the nature
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of CO (Alexandrov and Lewis 2002). The system level
constraints are relaxed as

J ∗
i

(
z, x∗i

) ≤ ε, ε > 0, i = 1, 2, · · · , n (3)

where ε is the relaxation factor.
However, the solution obtained by this relaxation may be

infeasible. It is difficult to give an ideal relaxation factor
that allows one to solve the problem while not distorting the
solution to an unacceptable level. Furthermore, some start-
ing points may affect the optimization result (Alexandrov
and Lewis 2002; Lin 2004).

We present a multi-stage optimization strategy to
decrease the influence for the optimization result caused
by the starting point. An overall compatibility constraint is
introduced to restrict the distance from the solution to the
feasible region of the original problem at each optimization
stage. Then, the expression of the system level optimization
is given as follows:

min F(z)

s.t. J ∗
i (z) =

si∑

j=1

(
zj − xij

∗)2 ≤ ε i = 1, 2, · · · , n

Jn+1
∗(z) =

n∑

i=1
J ∗
i (z) =

n∑

i=1

si∑

j=1

(
zj − xij

∗)2 ≤ E

(4)

where E is the control parameter. The values of ε and E
are adjusted according to the inconsistency between subsys-
tems.

The optimization process of CO, in a sense, starts from
the infeasible region of the original problem. The process
in which the intermediate solution point enters the feasible
region of the original problem is illustrated in Fig. 2. The
process where an optimization stage shifts to the next one
repeats until the solution enters the feasible region.

If the initial point is within the feasible region of the orig-
inal problem, the system level optimization is converted into
an unconstrained problem. Usually, the solution of uncon-
strained problem is not the solution of constrained problem.
In this case, the solution point moves outside the feasible
region.

The inconsistency between subsystems is given by:

I =
n∑

i=1

√
Ji(xi)

/

n (5)

where Ji is the incompatibility function of subsystem i.
Then, the values of E and ε are given with the following

principles:

E ∝ I, E ∝ 1
/
S2, ε ∝ E (6)

where S is the number of optimization stage. The values of
E and ε vary with I and S during each optimization stage.

An optimization stage completes as the system level
objective becomes stable, and set S: = S + 1. The values of
E and ε decrease as the number of optimization stage
increases. The initial value of I is obtained from the
Formula (5) under the condition in which the optimum value
of unconstrained problem is designed as the target value
allocated by the system level.

3 Multi-objective subsystem optimization

LPP is an engineering method to deal with multi-objective
optimization problems by using the designer’s preference

Feasible region

Initial point

E decreasing direction

Optimization stage

Fig. 2 The process of solution point entering the feasible region
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(Messac et al. 1996). It is one of the typical preference-
based algorithms that require less running time than the
MOEA method does. Since the smoothness on performance
and convenience in study, we concentrate on LPP for the
multi-objective subsystem optimization.

As LPP is a preference-based algorithm, we should set
the ranges of desirability for all objective functions. How-
ever, it is difficult to set the ranges of desirability for
the incompatibility function. The incompatibility function
without physical meaning is more important than physical
objectives in CO framework. To avoid the difficulty, we pro-
pose a new method, in which the incompatibility function is
transformed into a disciplinary constraint.

3.1 Transformation of the incompatibility function

The incompatibility function is used to make the optimal
value match the target value allocated by the system level
as closely as possible, the value of which trends to zero
gradually as the bi-level optimization proceeds.

Considering these characters, the transformation is
expressed as follows:

si∑

j=1

(
xij − zj

∗)2 − Jcnst ≤ 0 (7)

where Jcnst is the transformation constant and z∗j is the jth
target value allocated by the system level.

The value of Jcnst influences the distance from the opti-
mization result to the target point allocated by the system
level. Two transformation methods, namely, closest distance
and relaxed distance, are proposed to define the value of
Jcnst .

Closest distance transformation The value of Jcnst is
defined by the closest distance from the target point to the
feasible region of subsystem i. The closest distance ddstn
is calculated as follows:

min ddstn =
si∑

j=1

(
xij − zj

∗)2

s.t. ci(xi ) ≤ 0
(8)

Then, Jcnst is defined by

Jcnst = ddstn (9)

In addition, the effect of the closest distance transfor-
mation method is similar to the method provided in
McAllister et al. (2005) where minimization of phys-
ical objectives was addressed preemptively only after
minimization of the incompatibility function.

Relaxed distance transformation Through the closest dis-
tance transformation, the feasible region of the subsystem
greatly decreases leading to the points closest to the tar-
get point allocated by the system level. Therefore, the

closest distance transformation is usually disadvantage of
physical objectives obtaining better solutions.

To get better solutions for physical objectives, a dynamic
intermediate parameter is given to adjust the value of Jcnst .
The dynamic intermediate parameter is expressed by:

ddnmc = kd · d0

(
1 − SSi

SSN

)
(10)

where SSi is the iteration number of the bi-level optimiza-
tion, SSN is the estimated value of the maximum iteration
number, kd is the control parameter given by a decision
maker, and d0 is the distance from the optimum point of
unconstrained problem to the feasible region of the origi-
nal problem. Formula (10) guarantees that ddnmc gradually
decreases as the bi-level optimization proceeds.

Choose the larger one from ddstn and ddnmc as the final
value of Jcnst , i.e.,

Jcnst = max {ddstn, ddnmc} (11)

Formula (11) guarantees that the multi-objective subsystem
is feasible. When ddstn ≥ ddnmc, ddstn is chosen as the
value of Jcnst to guarantee the feasibility. When ddstn <

ddnmc (i.e. the interdisciplinary consistency is strengthen-
ing), ddnmc is chosen as the value of Jcnst to obtain better
solutions for physical objectives.

3.2 Formulation of multi-objective subsystem optimization

Transforming the incompatibility function into a disci-
plinary constraint yields the formulation of the multi-
objective subsystem optimization:

min
{
fi1(xi), fi2(xi), · · · , fins (xi)

}

s.t. ci(xi) ≤ 0
si∑

j=1

(
xij − zj

∗)2 − Jcnst ≤ 0
(12)

where fi1(xi ) ∼ fins (xi) denotes physical objectives of
subsystem i. When LPP method is utilized to solve these
conflicting objectives, the formulation is given as follows:

min J̃i =
ns∑

p=1

5∑

s=2

(
w̃−

ps
d−ps + w̃+

ps
d+ps

)

s.t. fip(xi)− d+ps ≤ t+p(s−1), fip(xi) ≤ t+p5,

d+ps ≥ 0 (Classes 1S, 3S, 4S) ,

fip(xi)+ d−ps ≥ t−p(s−1), fip(xi) ≥ t−p5,

d−ps ≥ 0 (Classes 2S, 3S, 4S) .

ci(xi) ≤ 0
si∑

j=1

(
xij − zj

∗)2 − Jcnst ≤ 0

(13)

where d−ps denotes the negative deviation value between fip

and t−p(s−1), and d+ps denotes the positive deviation value
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between fip and t+
p(s−1). The calculation of the weight w̃−

ps

and w̃+
ps

is referred to Messac et al. (1996).

4 Engineering examples

4.1 Speed reducer

The speed reducer example is a typical MDO problem with
two formulations (Li et al. 2008; Vikrant and Shapour 2006;
Li and Azarm 2008; Gong et al. 2009; Kodiyalam 1998).
One is the single objective MDO problem, and the other
is the multi-objective MDO problem with multi-objective
subsystems.

4.1.1 Formulation without multi-objective subsystems

First of all, the proposed multi-stage optimization strategy
in the system levle is used to demonstrate its effectiveness
for the problem without multi-objective subsystems. Li et al.
(2008) and Kodiyalam (1998) gave the single-objective
formulation as follows:

min f (x) = 0.7854x1x
2
2

(
3.3333x2

3 + 14.9334x3 − 43.0934
)

− 1.5079x1
(
x2

6 + x2
7

)+7.477
(
x3

6 + x3
7

) + 0.7854
(
x4x

2
6 + x5x

2
7

)

(14)

s.t. g1 = 27/
(
x1x

2
2x3

) − 1.0 ≤ 0
g2 = 397.5/

(
x1x

2
2x

2
3

) − 1.0 ≤ 0
g3 = 1.93x3

4/
(
x2x3x

4
6

) − 1.0 ≤ 0
g4 = 1.93x3

5/
(
x2x3x

4
7

) − 1.0 ≤ 0

g5 =
√(

745x4
x2x3

)2+1.69×107

110x3
6

− 1.0 ≤ 0

g6 =
√(

745x5
x2x3

)2+1.575×108

85x3
7

− 1.0 ≤ 0

g7 = x2x3/40 − 1.0 ≤ 0
g8 = 5x2/x1 − 1.0 ≤ 0
g9 = x1/12x2 − 1.0 ≤ 0
g10 = (1.5x6 + 1.9)/x4 − 1.0 ≤ 0
g11 = (1.1x7 + 1.9)/x5 − 1.0 ≤ 0
2.6 ≤ x1 ≤ 3.6 0.7 ≤ x2 ≤ 0.8
17 ≤ x3 ≤ 28 7.3 ≤ x4 ≤ 8.3
7.3 ≤ x5 ≤ 8.3 2.9 ≤ x6 ≤ 3.9
5.0 ≤ x7 ≤ 5.5

where x1 is gear face width; x2 is teeth module; x3 is num-
ber of teeth pinions; x4 and x5 are respectively distances
between bearings 1 and bearings 2; x6 and x7 are respec-
tively diameters of shaft 1 and shaft 2; g1 is upper bound
on the bending stress of the gear tooth; g2 is upper bound
on the contact stress of the gear tooth; g3 and g4 are upper
bound on the transverse deflection of the shaft; g5 and g6

are upper bound on the stresses of the shaft; g7, g8 and g9

are dimensional restrictions based on experience; g10 and
g11 are design conditions for the shaft based on experience.

The decomposed formulation involves several cases (Li
and Azarm 2008). We follow the decomposed formulation
reported by Li et al. (2008). This problem is decomposed
into two subsystems: the first and second gear shafts. The
constraints are grouped into each subsystem: the first gear
shaft with constraints g1 ∼ g3, g5, g7 ∼ g10 and the second
gear shaft with constraints g4, g6, g11.

The experimental data in Alexandrov and Lewis (2002)
and Lin (2004) indicate that the optimization result of CO is
sometimes affected by the initial point. The relaxing method
was used in Alexandrov and Lewis (2002) and the penalty-
function method was used in Lin (2004).

The equality constraints, the relaxing method, the
penalty-function method and the proposed multi-stage opti-
mization strategy are adopted. The initial points are listed in
Table 1.

The “fmincon” function of Matlab optimization tool-
box is used. Tables 2, 3, 4 and 5 present the optimization
results. The optimization result of single-objective formula-
tion using single-level formulation (Azam and Li 1989) is
x∗0 = [3.5, 0.7, 17, 7.3, 7.71, 3.35, 5.29] and f0

(
x∗0

) =
2996. The solution for a single-level formulation is also
a solution for the CO problem (Lin 2004). The error of
objective f (x∗) to objective f0

(
x∗0

)
is calculated by

error =
∣∣∣∣
f − f0

f0

∣∣∣∣ × 100 % (15)

Table 2 lists the results obtained from equality constraints.
From the error calculated by Formula (15), the solutions
starting from points 1 and 3 are the worst with an error of
55.77 % and the best with an error of 0.05 %, respectively.
Therefore, the results obtained from equality constraints are
affected by the initial point. Fortunately, the iteration times
and the interdisciplinary inconsistency (i.e. I) are almost not
affected by the starting point. The values of I in Table 2 can
be treated as zero, which indicates that the interdisciplinary
consistency is satisfactory.

Table 3 lists the results obtained from the relaxing CO
method. The solutions obtained from ε = 0.0001 are bet-
ter than those obtained from ε = 0.001 with respect to the
values of error and I, which indicates that smaller the relax-
ation factor (i.e. ε) is better the interdisciplinary consistency
and objective function are. However, the iteration times
increases as the relaxation factor decreases. In this case, the
values of I can not be treated as zero, which indicates that
the relaxing CO method is accomplished by staying away
from realizable design.
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Table 1 Design of initial points

Initial point x1(mm) x2(mm) x3(mm) x4(mm) x5(mm) x6(mm) x7(mm)

1 28.00 7.10 250.00 79.00 75.99 30.00 50.99

2 26.50 6.30 180.00 68.00 64.00 30.00 50.99

3 35.00 7.00 170.00 73.00 77.15 33.50 52.87

4 20.00 4.00 90.00 40.00 45.00 15.00 30.00

Table 2 Optimization results from CO using equality constraints (ε = 0)

Initial point Objective (cm3) Error (%) I (inconsistency) Iteration times

1 4666.9 55.77 4.1030 × 10−4 37

2 3175.1 5.98 4.0673 × 10−4 28

3 2994.4 0.05 2.6866 × 10−6 4

4 3006.4 0.35 7.5994 × 10−5 33

Table 3 Optimization results from the relaxing CO

Initial point ε (factor) Objective (cm3) Error (%) I (inconsistency) Iteration times

1 10−3 2971.4 0.82 0.0316 1600

10−4 2983.3 0.42 0.0100 5100

2 10−3 2959.6 1.22 0.0316 210

10−4 2983.3 0.42 0.0100 650

3 10−3 2959.6 1.22 0.0316 7

10−4 2983.7 0.41 0.0098 4

4 10−3 2959.8 1.21 0.0316 8

10−4 2983.6 0.41 0.0100 10

Table 4 Optimization results from CO using the penalty-function method

Initial point p (factor) Objective (cm3) Error (%) I (inconsistency) Iteration times

1 103 2713.4 9.43 0.2592 172

105 4601.9 53.60 0.0039 438

2 103 2713.4 9.43 0.2592 26

105 3166.8 5.70 0.0029 15

3 103 2713.4 9.43 0.2590 9

105 2991.4 0.15 0.0026 3

4 103 2713.4 9.43 0.2592 11

105 2991.1 0.16 0.0029 12
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Table 5 Optimization results from CO using the multi-stage optimization strategy
(
E = 0.5I

S2 , ε = 2
3E

)

Initial point Objective (cm3) Error (%) I (inconsistency) Iteration times

1 2994.4 0.05 1.4155 × 10−4 96

2 2994.1 0.06 3.0473 × 10−4 58

3 2994.3 0.06 4.4011 × 10−4 58

4 2994.4 0.05 1.0524 × 10−4 62

In addition, the values of iteration times are larger when
initial points 1 and 2 are used, which indicates that the iter-
ation times of the relaxing CO method is affected by the
initial point.

Table 4 lists the results obtained from the penalty-
function method with penalty factors p = 1, 000 and p =
100, 000. The system level minimizes

F(z) = f (z)+ p
(
J ∗

1 (z)+ J ∗
2 (z)

)
(16)

The values of I obtained from p = 100, 000 are smaller
than those obtained from p = 1, 000. The interdisciplinary
consistency becomes better as the penalty factor enlarges,
where the effect of the penalty factor (i.e. p) is similar to
that of the relaxation factor in the relaxing CO. The data
in Table 4 show that the interdisciplinary consistency is not
satisfactory.

When p = 1, 000, the solutions are not affected by the
starting point. When p = 100, 000, the solutions starting
from points 1 and 3 are the worst with an error of 53.60 %
and the best with an error of 0.15 %. Therefore, the solutions
are still affected by the initial point.

Referring to the results in Table 5, the solutions obtained
from four initial points are similar to the result provided by
Azam and Li (1989). The errors calculated by Formula (15)
are small enough to be accepted. Therefore, the solutions
are not affected by the initial point like the cases in which
the equality constraints and the penalty-function method are
used.

The values of I can be treated as zero, which indicates
that the interdisciplinary consistency is satisfactory. The bi-
level optimization is implemented with less iteration times
due to the larger relaxation factor at the earlier optimization
stage. The iteration times is not affected by the initial point
like the case in which the relaxing CO method is used.

4.1.2 Formulation with multi-objective subsystems

A three-objective formulation, namely, minimization of the
total speed reducer volume, minimization of the maximum
stress in the first and second gear shafts, is given in Vikrant

and Shapour (2006) and Li and Azarm (2008). The formu-
lation is given by Formulas (17)–(19):

min f1(x) = 0.7854x1x
2
2

(
3.3333x2

3 + 14.9334x3 − 43.0934
)

−1.5079x1
(
x2

6 + x2
7

)+7.477
(
x3

6 + x3
7

) + 0.7854
(
x4x

2
6 + x5x

2
7

)

(17)

min f2(x) =

√(
745x4
x2x3

)2 + 1.69 × 107

0.1x3
6

(18)

min f3(x) =

√(
745x5
x2x3

)2 + 1.575 × 108

0.1x3
7

(19)

The decomposed formulation for objective functions
reported in Vikrant and Shapour (2006) is stated as follows.
The first objective f1 is split into two objectives f11 and f21,
the sum of which forms one of the system level objectives.
The objectives of the system level are f1, f2 and f3. The
objectives of the first gear shaft are f11 and f12 (i.e. f2). The
objectives of the second gear shaft are f21 and f22 (i.e. f3).

Class-1 of LPP method is used for the multi-objective
optimization problems in the system and subsystem levels.
The preferences are listed in Table 6.

Four initial points listed in Table 1 are chosen as the
target points allocated by the system level. The “clos-
est distance” and “relaxed distance” methods presented in
Section 3.2 are adopted to calculate the transformation con-
stant of the incompatibility function. The relaxing method
and the multi-stage optimization strategy are used in the sys-
tem level. The optimization results obtained from these four
cases are listed in Tables 7, 8, 9 and 10.

Referring to the results listed in Tables 7 and 8, the values
of I are similar to those listed in Table 3, which indicates
that the interdisciplinary consistency is not affected by the
transformation of the incompatibility function. Meanwhile,
the relaxation factor distorts the solutions to an unacceptable
level.

Referring to the results listed in Tables 9 and 10, the val-
ues of I are similar to those listed in Table 5, which also indi-
cates that the interdisciplinary consistency is not affected by
the transformation of the incompatibility function.
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Table 6 Desirable ranges of each criterion

Objective f1(cm3) f2(cm3) f3(kPa) f11(cm3) f12(cm3) f21(cm3) f22(kPa)

t+p1 3100 500 600 1900 500 1200 600

t+p2 3500 700 700 2100 700 1400 700

t+p3 3800 900 780 2300 900 1500 780

t+p4 4000 1000 800 2400 1000 1600 800

t+p5 4200 1300 850 2500 1300 1700 850

Table 7 Optimization results obtained from the relaxing method with the closest distance (ε = 0.001)

Initial point f1(cm3) f2(cm3) f3(kPa) f11(cm3) f12(cm3) f21(cm3) f22(kPa) I

1 3297.3 697.8 754.9 2036.9 698.4 1258.1 764.5 0.0316

2 3297.3 697.8 754.9 2036.8 698.5 1258.2 764.5 0.0316

3 3297.3 697.8 754.9 2036.9 698.4 1258.1 764.5 0.0316

4 3297.3 697.8 754.9 2036.9 698.4 1258.2 764.5 0.0316

Table 8 Optimization results obtained from the relaxing method with the relaxed distance (ε = 0.001)

Initial point f1(cm3) f2(cm3) f3(kPa) f11(cm3) f12(cm3) f21(cm3) f22(kPa) I

1 3297.3 697.8 754.9 2036.2 699.5 1258.3 764.4 0.0316

2 3297.3 697.8 754.9 2036.2 699.4 1258.2 764.5 0.0316

3 3297.3 697.8 754.9 2036.4 699.1 1258.2 764.5 0.0316

4 3300.6 698.2 754.9 2040.6 698.2 1258.2 764.5 0.0316

Table 9 Optimization results obtained from the multi-stage optimization strategy with the closest distance

Initial point f1(cm3) f2(cm3) f3(kPa) f11(cm3) f12(cm3) f21(cm3) f22(kPa) I

1 3310.2 697.8 754.9 2037.3 697.8 1273.3 754.9 7.0084 × 10−4

2 3310.2 697.8 754.9 2037.3 697.8 1273.2 754.9 7.5987 × 10−4

3 3310.0 697.8 754.9 2037.3 697.8 1273.0 755.1 8.9443 × 10−4

4 3310.3 697.8 754.9 2037.3 697.8 1273.2 754.9 4.2641 × 10−4

Table 10 Optimization results obtained from the multi-stage optimization strategy with the relaxed distance

Initial point f1(cm3) f2(cm3) f3(kPa) f11(cm3) f12(cm3) f21(cm3) f22(kPa) I

1 3310.3 697.8 755.1 2037.3 697.8 1272.9 755.1 4.2757 × 10−4

2 3311.2 697.8 754.9 2037.3 697.8 1273.2 754.9 2.6255 × 10−4

3 3310.9 697.8 754.9 2037.3 697.8 1273.2 754.9 5.4259 × 10−4

4 3310.2 697.8 754.9 2037.3 697.8 1273.3 754.9 3.3102 × 10−4
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Therefore, the method of transforming the incompati-
bility function into a disciplinary constraint proposed in
Section 3.2 is reasonable. Meanwhile, the multi-stage opti-
mization strategy avoids the phenomenon where the solu-
tions stay away from realizable design in the relaxing CO
method.

The results listed in Tables 7 and 9 are similar to those
listed in Tables 8 and 10 respectively, indicating that the
closest distance and the relaxed distance have the same

effect. The main reason is that the objectives of the system
level are similar to the objectives of the subsystem level.

4.2 Parameter design of rolling mill stand

The parameter design of rolling mill stand is modeled
as a MDO problem (Cui 1989; Bai and Li 2006) with
multi-objective subsystems. The formulation is given as
follows:

f1(x) = 1.91 × 10−6 × (x1 + 0.59)3 ×
(

1

x4x
3
3

+ 1

x6x
3
5

)⎧
⎨

⎩
1 − 3

4
×

[

1 + (x3 + x5 + 4.3) x4x
3
2x6x

3
5

(x1 + 0.59) x2x
3
1

(
x4x

3
3 + x6x

3
5

)

]−1
⎫
⎬

⎭
(20)

f2(x) = 3.704 × 10−6 × (x1 + 0.59)×
(

1

x3x4
+ 1

x5x6

)
(21)

f3(x) = 5.119 × 10−6 × 1

x1x2
(22)

f4(x) = 0.9671 × 10−6 ×
[
8 (x2 + 0.656)3 − 0.64 (x2 + 0.656)+ 0.064 + 8 (x2 + 0.256)3 ×

(
218.8x4

7 − 1
)]

/x4
7 (23)

f5(x) = 1.533 × 10−5 ×
[
(x2 + 0.656)− 0.2 + (x2 + 0.256)×

(
14.79x2

7 − 1
)]

/x2
7 (24)

f6(x) = 0.263 × 10−4 ln
[
0.5904 × 105 × (x7 + 0.28)

]
(25)

f7(x) = 15.6 × [2.15x1x2 + (x3x4 + x5x6)(x1 + 0.295)] (26)

s.t. g1(x) = x7 − 0.42 ≤ 0
g2(x) = 0.336 − x7 ≤ 0
g3(x) = 0.829 × 106 ×√

1 + 0.28/x7 − 1.61 × 106 ≤ 0
g4(x) = 0.1678 × 106 × (x2 + 0.256)− 0.125 × 106 ≤ 0
g5(x) = 500

x1x2
+ 750(x1+0.59)

x2
1x2

× 1[
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3
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)
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− 0.055 × 106 ≤ 0

g7(x) = 1.5×103(x1+0.59)
x6x

2
5

×

⎧
⎪⎪⎨
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1 − 1
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[
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− 0.055 × 106 ≤ 0

g8(x) = x2 − x1 ≤ 0
g9(x) = x4 − x3 ≤ 0
g10(x) = x6 − x5 ≤ 0
g11(x) = 0.26 − x2 ≤ 0
g12(x) = −x4 ≤ 0
g13(x) = −x6 ≤ 0
g14(x) = x3 − 2.5x4 ≤ 0
g15(x) = x5 − 2.5x6 ≤ 0
g16(x) = 15.6 × [2.15x1x2 + (x1 + 0.295)(x3x4 + x5x6)] − 7.484 ≤ 0
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Table 11 Desirable ranges of each criterion for beam and backup roll disciplines

Objective f1(mm) f2(mm) f4(mm) f5(mm) f6(mm)

t+p1 0.0100 0.0100 0.1500 0.0500 0.1000

t+p2 0.0253 0.0309 0.3000 0.1200 0.2200

t+p3 0.0278 0.0367 0.4900 0.1500 0.2900

t+p4 0.0400 0.0500 0.5400 0.2000 0.3500

t+p5 0.0550 0.0600 0.6500 0.2500 0.4500

This problem has seven objectives: the sum of bending
deflection caused by bending moment of upper and lower
beam (f1), the sum of bending deflection caused by shearing
force of upper and lower beam (f2), the tensile deforma-
tion of column (f3), the sum of bending deflection caused
by bending moment of backup roll (f4), the sum of bending
deflection caused by shearing force of backup roll (f5), the
sum of elastic flattening between working roll and backup
roll (f6), and the weight of stand (f7). In addition, the design
is subject to sixteen inequality constraints. The constraints
are diameter restrictions of backup roll body (g1 and g2),
contact strength restriction of roll (g3), bending strength
restriction of dangerous section of roll neck on the juncture
of body and neck of backup roll (g4), composite strength
restriction of bending and tensile strength of column (g5),
bending strength restrictions of upper and lower beam (g6

and g7), the geometric restrictions of column and beam
(g8 ∼ g15), and weight restriction of stand (g16).

The decomposed formulation consists of one system
level sub-problem (i.e. weight), and three subsystem level
sub-problems (i.e. column, beam and backup roll). The
objective in the system level sub-problem is to minimize
objective f7. The column sub-problem is to minimize objec-
tive f3 with constraints g5, g8 and g11. The beam sub-
problem is to minimize objectives f1 and f2 with constraints
g6, g7, g9, g10 and g12 ∼ g15. The backup roll sub-problem
is to minimize objectives f4, f5 and f6 with constraints
g1 ∼ g4.

The target value allocated by the system level is z0 =
[16.8, 985.3, 1110.8, 1008.1, 348.5, 150.1, 350.5]. The
optimum objective values provided by Cui (1989) are
f1 = 2.53 × 10−2, f2 = 3.67 × 10−2, f3 =
5.71 × 10−2, f4 = 0.416, f5 = 0.137, f6 = 0.279
and f7 = 7.11. The preference values of physical

objectives are listed in Table 11 with the data provided by
Cui (1989).

Referring to the experimental analysis in Section 4.1,
it can be declared that the solutions obtained from the
equality constraints method and multi-stage optimization
strategy have a satisfactory interdisciplinary consistency.
The relaxing and penalty-function methods distort the solu-
tions to a certain unacceptable level that is determined by
the relaxation factor and penalty factor, respectively.

A good interdisciplinary consistency is the most impor-
tant property of MDO problem. Therefore, the equality
constraints method and multi-stage optimization strategy
are adopted in the system level optimization. Two trans-
formation methods (i.e. the closest distance and relaxed
distance) are used to transform the incompatibility func-
tion into a disciplinary constraint in the subsystem level
optimization.

Table 12 lists the optimization results obtained from
the following four cases. (i) The equality constraints in
the system level with the relaxed distance transformation
in multi-objective subsystems. (ii) The equality constraints
in the system level with the closest distance transforma-
tion in multi-objective subsystems. (iii) The multi-stage
optimization strategy in the system level with the relaxed
distance transformation in multi-objective subsystems. (iv)
The multi-stage optimization strategy in the system level
with the closest distance transformation in multi-objective
subsystems.

Referring to the results obtained from cases (iii) and (iv),
the values of system level objective f7 are better than those
obtained from cases (i) and (ii). The multi-stage optimiza-
tion strategy contributes to achieving better solutions for
system level objective f7. The reason is that the CO using
the multi-stage optimization strategy in the system level is

Table 12 Table 12 Optimization results from the four cases

Case f1(mm) f2(mm) f3(mm) f4(mm) f5(mm) f6(mm) f7(t)

(i) 2.3528 × 10−2 2.5174 × 10−2 7.5725 × 10−2 3.7328 × 10−1 1.3437 × 10−1 2.7955 × 10−1 7.4836

(ii) 5.5600 × 10−2 5.6032 × 10−2 7.5725 × 10−2 4.2059 × 10−1 1.3708 × 10−1 2.7842 × 10−1 7.4213

(iii) 5.5930 × 10−2 4.8363 × 10−2 5.9259 × 10−2 4.1221 × 10−1 1.3680 × 10−1 2.7865 × 10−1 5.7069

(iv) 5.5538 × 10−2 4.3052 × 10−2 7.3218 × 10−2 5.0745 × 10−1 1.4129 × 10−1 2.7700 × 10−1 4.9481



Improving collaborative optimization for MDO problems 619

improved on decreasing the sensitivity to the initial point,
which can be observed from the experimental analysis in
Section 4.1 (i.e. the comparisons of several CO methods).
The values of f7 obtained from cases (iii) and (iv) are also
better than the result provided in Cui (1989) where the
result is obtained from the weighted-sum method without
the multidisciplinary decomposed formulation.

Using the equality constraints in the system level opti-
mization, physical objectives of three subsystems obtained
from the relaxed distance transformation (i.e. cases (i)) are
better than those obtained from the closest distance trans-
formation (i.e. cases (ii)) except for a slight difference for
objective f6.

Using the multi-stage optimization strategy in the sys-
tem level optimization, case (iii) achieves better results for
objectives f3, f4 and f5 than case (iv) does. The value of
f2 obtained from case (iii) is larger than that obtained from
case (iv). The results obtained from cases (iii) and (iv) show
no significant difference on the values of f1 and f6.

The relaxed distance method, in a sense, contributes to
obtaining better solutions for physical objectives of subsys-
tems than the closest distance method does. This character
can be observed from the results obtained by using the
equality constraints and the multi-stage optimization strat-
egy in the system level optimization.

5 Conclusion

On the one hand, the modification on the system level is
studied for reducing the influence for optimization results
of CO caused by the starting point. The multi-stage opti-
mization strategy is employed to guide the solution point to
enter the feasible region of the original problem. The disad-
vantage of the multi-stage optimization strategy is that the
setting of the control parameter for the relaxation factor may
affect the performance improvement. The value of the con-
trol parameter will be studied in the future work to get the
best performance for the system level optimization.

On the other hand, the modification on the subsystem
level is studied for MDO problems with multi-objective
subsystems when the preference-based multi-objective opti-
mization algorithm is used. The difference between the
incompatibility function and physical objectives is consid-
ered. Two transformation methods, namely, closest distance
and relaxed distance, are proposed to transform the incom-
patibility function into a disciplinary constraint.

Two engineering examples with multi-objective sub-
systems are used to demonstrate the effectiveness of the
proposed methods. In the speed reducer example, it is
observed that the solutions obtained from the multi-stage
optimization strategy are less sensitive to the initial point
than the classic cases (i.e. the equality constraints, the

relaxing method and the penalty-function method) do.
Meanwhile, the interdisciplinary consistency is satisfactory,
which indicates that the proposed method (i.e. transforming
the incompatibility function into a disciplinary constraint)
is reasonable when the preference-based multi-objective
optimization algorithm is adopted.

During the parameter design of rolling mill stand, it is
observed that the relaxed distance transformation method
achieves better physical objectives of the subsystem level
than the closest distance transformation method does, at
the expensive of worse objectives of the system level.
Therefore, the relaxed distance transformation method can
contribute to achieving better solutions for physical objec-
tives of the subsystem level. The multi-stage optimization
strategy may contribute to achieving better solutions for
objectives of the system level.

Although the proposed method of transforming the
incompatibility function into a disciplinary constraint can
resolve the difficulty in setting the preference value when
the preference-based multi-objective optimization algo-
rithm is used, some efforts are still required to provide
more specific parameters on a decision-maker’s preference
for the relaxed distance transformation method. This is a
motivation for further development of the proposed method.
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