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Abstract Reliability-based design optimization (RBDO) in
practical applications is hindered by its huge computational
cost during structure reliability evaluating process. Kriging-
model-based RBDO is an effective method to overcome
this difficulty. However, the accuracy of Kriging model
depends directly on how to select the sample points. In
this paper, the local adaptive sampling (LAS) is proposed
to enhance the efficiency of constructing Kriging models
for RBDO problems. In LAS, after initialization, new sam-
ples for probabilistic constraints are mainly selected within
the local region around the current design point from each
optimization iteration, and in the local sampling region,
sample points are first considered to be located on the limit
state constraint boundaries. The size of the LAS region
is adaptively defined according to the nonlinearity of the
performance functions. The computation capability of the
proposed method is demonstrated using three mathematical
RBDO problems and a honeycomb crash-worthiness design
application. The comparison results show that the proposed
method is very efficient.
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1 Introduction

Reliability-based design optimization has received exten-
sive attention in the past few decades. Unlike deterministic
optimization, RBDO considers uncertainties of design vari-
ables stemming from various sources. A typical RBDO
problem is formulated as follows:

f ind: d,μX

min:f (d,μX)

s.t.: Prob (gi(d,X) ≥ 0) ≥ Ri, i = 1, · · · , N

dLower ≤ d ≤ dUpper ,μLower
X ≤ μX ≤ μ

Upper
X (1)

where,f (d,μX) is the objective function, Prob
(gi(d,μX) ≥ 0) is the feasible probability of satisfying the
ith constraint; gi(d, X) denotes the performance function
of the ith probabilistic constraint; d is the vector of the
deterministic design variables; X is the vector of random
design variables; μX denotes the mean vector of X; N is the
number of probabilistic constraints; Ri denotes the target
feasible probability for the ith probabilistic constraint.

The probabilistic constraints in (1) are usually implicit
functions which need to be evaluated through reliability
analysis, such as Monte Carlo simulation (MCS) (see e.g.,
Lee et al. 2008, 2011a, b; Kuczera et al. 2010; Valdeben-
ito and Schuëller 2011) or analytical reliability methods.
MCS is achieved through realizing random variables and
determining whether a particular event occurs for the simu-
lation instance (Li et al. 2010). The ratio of the number of
failures to the total number of sampling is regarded as the
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probability of failure. MCS is computationally expensive,
especially when the probability of failure is low. Analytical
reliability methods include the first order reliability analy-
sis method (FORM) (Dersjö and Olsson 2011) and second
order reliability analysis method (SORM) (Kiureghian and
Stefano 1991). The reliability index approach (RIA) (see
e.g., Enevoldsen and Sørensen 1994; Reddy et al. 1994;
Gasser and Schuëller 1997; Grandhi and Wang 1998; Niko-
laidis and Burdisso 1988; Tu and Choi 1999; Lin et al.
2011), performance measure approach (PMA) (Youn et al.
2005a) and dimension reduction method (DRM) (Lee et al.
2008, 2012) are commonly used due to their higher effi-
ciency compared to simulation methods. Also, many other
reliability methods have been developed to perform reliabil-
ity analysis efficiently, including the advanced mean value
method (AMV) (Wu et al. 1990), the hybrid mean value
(HMV) (Youn et al. 2005b) and the arc search method (Du
et al. 2004).

The integration strategies of the reliability analysis and
optimization procedures in RBDO have great influence on
the accuracy and efficiency of the results (Valdebenito and
Schuëller 2010; Aoues and Chateauneuf 2010). Double-
loop method has two nested loops which makes it inef-
ficient; Single-loop method (see e.g., Chen et al. 1997;
Kirjner-Neto et al. 1998; Kharmanda et al. 2002; Agarwal
et al. 2007; Liang et al. 2008; Shan and Wang 2008) has
only one loop through replacing the reliability analysis
by its Karush–Kuhn–Tucker (KKT) optimality conditions;
Decoupled-loop method (see e.g., Royset et al. 2001; Wu et
al. 2001; Du and Chen 2004; Cheng et al. 2006; Zou and
Mahadevan 2006; Ching and Hsu 2008; Yi et al. 2008; Cho
and Lee 2011; Chen et al. 2013a, b) performs the optimiza-
tion and reliability analysis sequentially, so it has a good
balance between the accuracy and efficiency in solving
RBDO problems.

To improve the efficiency of RBDO, metamodels are
applied in RBDO to substitute the true constraint function
evaluations. Choi et al. (2001), Youn and Choi (2004), and
Lee and Song (2011) used moving least square method
for RBDO. Kim and Choi (2008) proposed an RSM with
prediction interval estimation. Zhao et al. (2009) used
the RSM and sequential sampling for probabilistic design.
Basudhar and Missoum (2008) proposed the adaptive
explicit decision functions for probabilistic design and opti-
mization using support vector machines (SVM). Mourelatos
(2005) adopted symmetric optimal Latin hypercube sam-
pling and Kriging model for design optimization under
uncertainty. Pretorius et al. (2004) used Kriging model as
both local and global approximation for continuous cast-
ing design optimization. Ju and Lee (2008) proposed an
RBDO method using the moment method and Kriging
model. Lee and Jung (2008) applied a constraint boundary
sampling method and Kriging model for RBDO. Zhuang

and Pan (2012) proposed a new sequential sampling method
for design under uncertainty. Huang and Chan (2010) pro-
posed a modified efficient global optimization algorithm for
RBDO. Zhao et al. (2011) proposed dynamic Kriging for
design optimization. Lee et al. (2012) proposed an enhanced
dimension reduction method with variable sampling points
for RBDO.

Kriging models are fitted from the space-filling sam-
pling, such as Latin Hypercube sampling (LHS), which
locates evenly sample points within the whole design
domain if design and analysis of computer experiments
are concerned. However, in the optimization and reliability
analysis processes, the limit state constraint boundaries are
more critical than the other regions. The constraint boundary
sampling method proposed by Lee and Jung (2008) is more
efficient, because it approximates the limit state constraint
boundaries over the design region. However, in the RBDO
computing process, only the local region in the vicinity of
the current design point is required to be more accurate than
the others. Therefore, it will be more rational to improve the
accuracy of the Kriging model on the limit state constraint
boundaries which are in the relatively small region around
the current design point, rather than making the whole limit
state boundaries within the design region being accurate.

In this paper, the LAS method will be proposed to
improve the efficiency and accuracy of RBDO using
Kriging model. In LAS, the Kriging models will be grad-
ually constructed based on all the existing samples: after
initialization, new samples will be added within the criti-
cal LAS region to make the sampling more effective for
RBDO problems. The size of LAS region will be adap-
tively defined according to the nonlinearity of the constraint
function in the vicinity of the current design point. The con-
straint boundary sampling criterion and mean squared error
criterion are adaptively used to locate sample points for the
probabilistic constraints in RBDO. The simulation reliabil-
ity method, Monte Carlo simulation (MCS), will be selected
to perform reliability analysis in this paper.

This paper is organized as follows: the commonly
used simulation method MCS and Kriging model will be
reviewed in Section 2; the proposed LAS will be explained
in Section 3; Section 4 then uses illustrative examples to
demonstrate the application of LAS with four comparison
experiments conducted; in Section 5, the conclusion will be
drawn.

2 Commonly used method in RBDO and Kriging model

2.1 Reliability analysis method MCS

As above mentioned, MCS is achieved through realiz-
ing random variables and determining whether a particular
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event occurs for the simulation instance (Li et al. 2010).
The ratio of the number of failures to the total number of
sampling is regarded as the probability of failure. When the
probability of failure is low, MCS will be computationally
expensive. However, when combining with Kriging model,
the computational cost of MCS could be ignored, and the

sensitivity information
∂Pj

(
μk
X

)

μX
for the probability of failure

Pj

(
μk
X

)
can also be obtained as follows.

∂Pj

(
μk
X

)

∂μX

= ∂

∂μ

∫

gj (X)≤0
fX(X)dX

=
∫

gj (X)≤0

∂fX(X)

∂μX

dX (2)

=
∫

gj (X)≤0

(
∂fX(X)
∂μX

)

fX(X)
fX(X)dX

= 1

N

∑N

i=1

IF

(
Xi

)

fX
(
Xi

)
∂fX

(
Xi

)

∂μX

where X are the random design variables, fX(X) represents
the joint probability density function of X, N is the number
of test points in MCS.

The test points Xi, i = 1, · · · , N in (2) are the same as
that used for estimating the probability of failure Pj

(
μk
X

)
.

In other words, the estimation of
∂Pj

(
μk
X

)

μX
does not require

additional MCS runs, and it can be obtained while calculat-
ing the probability of failure Pj

(
μk
X

)
. Details about the (2)

are in references (Lu et al. 2009; Song et al. 2009).

2.2 Kriging model

Kriging model (also called Gaussian process model) was
proposed by a South African geostatistician (Sacks et al.
1989). In Kriging model, the response at a certain sample
point not only depends on the design parameters but is also
affected by the points in its neighborhood. The spatial cor-
relation between design points is considered (Sacks et al.
1989; Lophaven et al. 2002).

The notations for constructing Kriging models of the
constraint function g(x) are used in the description. The
corresponding Kriging approximations are denoted as ĝ(x).
Kriging is based on the assumption that the response func-
tion ĝ(x) is composed of a regression model f (x)T β and
stochastic process Z(x) as follows (Picheny et al. 2010;
Huang and Chan 2010; Kim et al. 2009a):

ĝ(x) = f (x)T β + Z(x) (3)

where f (x) is the trend function which consists of a
vector of regression functions; β is the trend coefficient

vector; Z(x) is assumed to have a zero mean and a spatial
covariance function between Z(x) and Z(w) as follows:

Cov [Z(x), Z(w)] = σ 2
ZR (θ , x,w) (4)

where σ 2
Z is the process variance and R is the correlation

function defined by its set of parameters θ (Echard et al.
2011; Kim et al. 2009b).

Several models exist to define the correlation func-
tion, but the squared-exponential function (also called
anisotropic Gaussian model) is commonly used (Bichon
et al. 2008; Rasmussen and Williams 2006; Sacks et al.
1989), and is selected here for R:

R (θ , x,w) =
∏n

i=1
exp

[
−θi (xi − wi)

2
]

(5)

where xi and wi are the ith coordinates of the points x and
w, n is the number of coordinates in the points x and w, and
θi is a scalar which gives the multiplicative inverse of the
correlation length in the ith direction. An anisotropic corre-
lation function is preferred here, as in reliability studies the
random variables are often of different natures (Echard et al.
2011).

The mean square error (MSE) of Kriging prediction
exactly at the training point is equal to zero. However, at the
testing points which are away from these training points, the
MSEs increase highly.

3 Local adaptive sampling

As mentioned above, in the design optimization and reli-
ability analysis processes, the local region in the vicinity
of the current design point should be fitted accurately, and
the limit state constraint boundaries within the local region
are more critical than the non-boundary domain. So in this
paper, after initial sampling, the proposed LAS method will
add new samples along the limit state constraint boundaries
within the local region around the current design point, this
will make the Kriging models for the probabilistic constraint
functions more precise within the critical design region, and
the sampling process will be more effective.

Section 3.1 will first discuss the size of the LAS region,
then the LAS criterions will be introduced in Section 3.2.
and the procedures and flowchart of the proposed LAS
method will be introduced in Section 3.3.

3.1 Size of the LAS region

In the reliability analysis process, the β-sphere region
whose radius is equal to the target reliability index
|| u || = βt is very important. So the LAS region should be
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larger than the β-sphere region. Zhao et al. (2009) proposed
a local support for reliability analysis, which is defined as
a super-sphere whose radius is cβt , where c is the scaling
factor which is chosen as 1.2 ∼ 1.5.

The Kriging prediction error in the boundary of the local
window is usually very large, especially for highly non-
linear functions. So, in this paper, to ensure the accuracy
of the Kriging model within βt -sphere, the local window
should be enlarged for highly nonlinear functions due to the
Kriging prediction boundary effect.

This paper adaptively chooses the scaling factor accord-
ing to the nonlinearity of the performance functions.

For linear and moderate nonlinear performance functions
as in Fig. 1a, it is easy to improve the accuracy of the Krig-
ing model within a small local sampling region. However,
for highly nonlinear performance functions in Fig. 1b, to
ensure the accuracy of Krging models within the βt -sphere,
a larger local sampling region should be selected due to the
Kriging prediction boundary effect.

If the gradient values of a performance function are con-
stant as in Fig. 1a, it means the performance function is
linear; otherwise, if the gradient values of a constraint func-
tion vary widely as in Fig. 1b, then the constraint function is
highly nonlinear. In other words, the variance σ 2

i of the gra-
dient values can reveal the nonlinearity of the ith constraint
function. The nonlinearity coefficient nc of a performance
function is defined as follows:

nc = 2

π
arctan

(
max

∥
∥
∥σ 2

i

∥
∥
∥
)

, i = 1, · · · , N (6)

where σ 2
i = variance

(∇ĝi (x
1), · · · ,∇ĝi

(
xM

))
,

∥
∥σ 2

i

∥
∥ =√

σ 2
i ·

(
σ 2

i

)T
, ∇ĝi (x) is the gradient value predicted

by Kriging model for the ith performance function,(
x1, · · · , xM

)
are the M testing points evenly located

within the β-sphere region. N is the number of performance
functions.

The length of the variance
∥∥σ 2

i

∥∥ in (6) is converted from∥
∥σ 2

i

∥
∥ ∈ [0,+∞ ) to nc ∈ [0, 1), and the radius of the LAS

region is defined as follows:

R = 1.2βt + 0.3ncβt = (1.2 + 0.3nc)βt (7)

where βt is the maximum target reliability index among
the N probabilistic constraints βt = max

(
βt

i

)
, i =

1, · · · , N.

Equation (7) shows that the LAS region is larger than the
β-sphere region. For linear constraint function, nc is equal
to 0, then the radius in (7) is 1.2βt . For highly nonlinear
performance function, nc is close to 1, and the radius in (7)
is equal to (1.2 + 0.3)βt = 1.5βt . So the size of the LAS
region is adaptively defined according to the nonlinearity of
the performance functions, and the range of the LAS region
1.2βt ∼ 1.5βt is identical with that from Zhao et al. (2009).

3.2 LAS criterion

For simplicity, we use the vector x to replace the design
variables (d,μX) from RBDO, then the constraint functions
in (1) become gi(x), i = 1, · · · , N. The proposed LAS is
used to construct Kriging models for these constraint func-
tions. In each design iteration, the LAS method will add
new samples to the existing sample sets to reconstruct the
Kriging models, and these new samples are selected from
a local region around the current design point. Within the
local region, new samples will first be selected along the
limit state constraint boundaries which are more critical in
RBDO than the others. However, if this region does not con-
tain any limit state constraint boundary, the mean square
error of the Kriging prediction will be used to select sample
points within this region.

3.2.1 Constraint boundary sampling (CBS) criterion

The CBS criterion was proposed by Lee and Jung (2008).
When there is sufficient sample data to construct the

Fig. 1 a Linear performance
function. b Non-linear
performance function
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Kriging model, the prediction of g(x) approaches the nor-
mal distribution with mean ĝ(x) and standard deviation√

MSE(x), where
√

MSE (x) is the mean square error
(MSE) of the Kriging prediction ĝ(x).

If the failure region is defined as g(x) < 0, then the prob-
ability of the Kriging prediction satisfying the constraint
g(x) ≥ 0 is as follows:

p(x) = 1 − Φ

(
0 − ĝ (x)√
MSE(x)

)
= Φ

(
ĝ (x)√

MSE(x)

)
(8)

Then the probability density function
φ

(
ĝ (x)

/√
MSE(x)

)
can be used to measure the closeness

of the Kriging prediction ĝ(x) to the limit state constraint
g(x) = 0. The CBS criterion is defined as follows:

CBS =
⎧
⎨

⎩

∑N
i=1 φ

(
ĝi (x)√

MSEi(x)

)
· D, if ĝi (x) ≥ 0, ∀i

0 otherwise
(9)

where D is the minimal distance from the current sample
point x to the existing sample points.

3.2.2 MSE criterion

If the LAS region does not contain any constraint bound-
ary, then we use the MSE multiplied by D from (9) as the
sampling criterion:

CMSE =
∑N

i=1

√
MSEi(x) · D (10)

A large value of CMSE means the Kriging prediction
might have a large error at this point, so we need to add this
point to the training points set.

In order to determine appropriate number of sample
points, it is necessary to define termination criterion. In this
paper, we use the relative prediction error of the Kriging
model at the new sample point x′ as follows:

Error = max

{∣
∣̂gi(x

′) − gi(x′)
∣
∣

Range(gi(x))

}

, i = 1, · · · , N (11)

where Range(gi(x)) = max(gi(x)) − min(gi(x)), x ∈(
x1, · · · , xm

)
, gi(x

′) is the ith true constraint function
value at the new sample point, ĝi (x

′) is the Kriging pre-
diction value, m is the number of existing sample points,
and Range(gi(x)) denotes the difference between the maxi-
mum and minimum values of the ith true constraint function
among the existing sample points.

Flowchart of the LAS process is shown in Fig. 2. After
initialization and definition of the LAS region, the CBS cri-
terion is first used to select a new sample point within the
local region along the limit state constraint boundaries. If
no boundary sample point is found using the CBS criterion,
then the MSE criterion will be applied to select sample point

Initialize the design point
d 0 and sample set s0

)(ˆ xig

Select a new sample point xk using
CBS, and add it to the sample set sk

Evaluate the responses of the constraint
functions at sample points sk and then

rebuild the kriging model .

Termination?

No boundary
samples found ?

Y

N

Y

N

Evaluate the responses of the constraint
functions at sample points s0 and then

build the kriging model .

Select a new sample point
xk using MSE, and add it

to the sample set sk

)(ˆ xig

end

k=k+1

Fig. 2 LAS sampling process

where the prediction error is large. And then responses of
the constraint functions at the new sample point are evalu-
ated, and the Kriging models are reconstructed based on all
the existing samples. This process will be conducted until
the termination criterion is satisfied.

As seen in Fig. 3, there are two constraints, the region
within the dotted-line is the LAS region, dk is the design
point from the kth design iteration, and βt is the target
reliability index. The LAS region around dk is completely
located within the feasible domain, when CBS is first used
to select sample point along limit state constraints, no
boundary sample point could be found, then the MSE cri-
terion is applied in this region to add new samples to the
existing sample sets. dk+1 is the design point from the

kd

1kd

d

0)(xig

Feasible domain

0)(1 xg

0)(2 xg

LAS region

βt

βt
>

*

Fig. 3 Local adaptive sampling
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(k + 1)th design iteration, d∗ denotes the optimal RBDO
design. Constraint boundaries pass through the LAS regions
around dk+1 and d∗, so the CBS could find sample points
efficiently in these regions along the limit state constraint
boundaries, and the MSE criterion will not be used.

3.3 Procedures and flowchart of the LAS method

The flowchart of the LAS method is in Fig. 4, and the
procedures are as follows:

1. Initialize the sample set s0 for probabilistic constraints
using Latin hypercube sampling method, and initialize

the design variables
(
d0,μ0

X

)
.

2. Evaluate the responses of the constraint functions in
RBDO at the initial sample points s0, then construct the
Kriging models for the constraint functions based on the
initial sample points and the corresponding responses.

3. In the kth iteration, before starting the LAS process, this
paper first defines the size of the LAS region accord-
ing to the nonlinearity of the constraint functions in the
vicinity of the current design point

(
dk,μk

X

)
.

4. Within the LAS region defined in step (3), add new
samples to the existing sample set sk using the pro-
posed LAS criterions. Evaluate the responses of the
probabilistic constraints at the sample point, then
reconstruct the Kriging models for the probabilistic

Initialize the sample point
set and design ),( 00 µd

 

Calculate the size of the LAS region according
to the nonlinearity of the constraint functions

0s

Add new sample points for constraint functions
within the local region using the LAS

method and reconstruct the Kriging prediction
based on all the existing samples .

Perform RBDO using MCS and the kriging
prediction .

Convergence?

End

Y

N
),( 11 kk µd

 

Response evaluations of the constraint
functions at the sample points and

then construct the Kriging models .

0s),( Xdig
),(ˆ Xdig

),( Xdig

),(ˆ Xdig

k=k+1

LAS

),(ˆ Xdig

Fig. 4 Flowchart of the LAS method

constraints based on all the existing sample points and
the corresponding responses.

5. With the reconstructed Kriging models in step (4), con-
duct optimization using the MCS method to solve the
RBDO problem.

6. If converged, then end, otherwise, k = k + 1, go to
step (3).

4 Application

In order to verify the accuracy and efficiency of the pro-
posed LAS method, four examples are tested and compared
to analytical method (Anal.) which calls the true prob-
abilistic functions, Kriging-model-based RBDO methods
using Latin Hypercube sampling (LHS), constraint bound-
ary sampling (CBS) and the sequential sampling method
(SS) (Zhao et al. 2009). In all methods, Monte Carlo sim-
ulation (MCS) is used to perform reliability analysis. The
design results will be assessed through the relative error∥
∥d∗ − d∗

A

∥
∥/

∥
∥d∗

A

∥
∥, where d∗

A is the design from analytical
method which directly calls the true performance func-
tions or computer simulations. Also, the design results are
assessed through Monte Carlo simulation (MCS) with a
million sampling size.

4.1 Example 1

This example (Lee and Jung 2008) has two random design
variables and two probabilistic constraints. All random
variables are statistically independent and have normal dis-
tributions as follows:

f ind: d = [d1, d2]T

min : f (d) = (d1 − 3.7)2 + (d2 − 4)2

s.t. : prob [gi(X) < 0] ≤ Φ
(−βt

i

)
, i = 1, 2

g1(X) = −X1 sin (4X1) − 1.1X2 sin (2X2)

g2(X) = X1 + X2 − 3

0.0 ≤ d1 ≤ 3.7, 0.0 ≤ d2 ≤ 4.0

Xi ∼ N
(
di, 0.102

)
, i = 1, 2

βt
1 = βt

2 = 2.0, d(0) = [2.50, 2.50]T

(12)

The target function decreases up and to the right in the
design domain. The first constraint g1(X) = 0 is highly
nonlinear, as seen in Fig. 5a. The shaded area is the feasible
region. The optimal RBDO design point “+” is located at
(2.8421, 3.2320). The circle around the optimal design point
dopt is the βt -circle.

Latin hypercube sampling with 45 sample points is
shown in Fig. 5b. The solid-line curves are the limit state
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Fig. 5 True limit state functions
and sampling process of LHS
for example 1

constraints predicted by the Kriging models, and the dotted-
line curves are the true constraints. “×” denote locations of
the sample points. It can be seen that the sample points are
evenly located within the whole design domain when using
LHS, even in the infeasible region in the left bottom of the
design space. However, the first constraint is inaccurate in
the region around the optimal design point dopt .

The constraint boundary sampling adopts grid sampling
with nine points, 3-level full factorial design, as initial sam-
pling. Forty-five points are used to approximate the two
constraints. As seen in Fig. 6a, most of the sample points are
located along the limit state constraints, and the two limit
state constraints are precisely approximated in the whole
design domain. However, there are only three sample points
in the region around the optimal design point dopt . So most
of the sample points are not fully exploited in improving the
accuracy of results.

The SS method builds several separate local Kriging
models as shown in Fig. 6b. In each design iteration, the SS
method chooses a local window, and the Kriging models are
constructed only using the samples within the current local
window. It can be seen that the local windows gradually
approach to the optimal design point. Although a lot of sam-
ples are selected, but only the samples which locate within
the current local window are used to build the Kriging
models. Therefore, these samples are not fully exploited.

The LAS also uses grid sampling with nine points as
initial sampling. Twenty-two sample points are adopted to
approximate the two constraints. we can see from Fig. 7,
although the first constraint reveals inaccuracy in the region
away from the optimal design point, the accuracy of the
optimal design point can still be ensured, because the LAS
selects sample points on the limit state constraint bound-
aries in the vicinity of the current design point, and during
the optimization process, all the existing samples are used
to construct the Kriging models, so the Kriging models
are gradually becoming precise while the new samples are
added.

The comparison results for the example 1 are shown in
Table 1. ‘Anal.’ is the analytical method which directly calls
the true functions. For the Kriging-model-based RBDO
methods, CBS is more accurate than LHS, the SS is more
efficient than CBS, the LAS uses the smallest number of
samples and it is also the most accurate Kriging-model-
based RBDO method.

The iteration histories of the SS method and LAS method
are shown in Tables 2 and 3. “Obj”. denotes the objective
function value, “Radius” is the scaling factor c for the size of
the local LAS region cβt , “New samples” denotes the new
samples added in each design iteration. It can be seen that
both of the SS and LAS methods use five iterations, but the
LAS method is more accurate.

Fig. 6 Sampling processes of
CBS and SS for example 1



408 Z. Chen et al.

Fig. 7 Sampling processes of LAS for example 1

4.2 Example 2

This is a non-linear mathematical problem (see e.g., Zhao
et al. 2009; Lee et al. 2011a, b). There are two random
design variables X1, X2 and three probabilistic constraints
g1, g2, g3. No deterministic design variable or random
parameter exists. All random variables are statistically inde-
pendent and have normal distributions.

f ind : d = [d1, d2]T

min :f (d) = 10 − d1 + d2

s.t. : prob [gi(X) ≤ 0] ≤ Φ
(−βt

i

)
, i = 1, 2

g1(X) = X2
1X2/20 − 1

g2(X) = 1 − (0.9063X1 + 0.4226X2 − 6)2

−(0.9063X1 + 0.4226X2 − 6)3 + 0.6

× (0.9063X1 + 0.4226X2 − 6)4

+(−0.4226X1 + 0.9063X2)

g3(X) = 80/
(
X2

1 + 8X2 + 5
) − 1

0.0 ≤ di ≤ 10.0, Xi ∼ N
(
di, 0.502

)
, i = 1, 2

βt
1 = βt

2 = βt
3 = 2.0, d(0) = [5.00, 5.00]T

(13)

The target function decreases down and to the right in
design space. The second constraint is highly nonlinear, as
seen in Fig. 8a. The optimal design point dopt for RBDO is
located at (4.6868,2.0513). The shaded area is the feasible
region. The circle around the optimal design is the βt -circle.

Latin hypercube sampling is shown in Fig. 8b. The
solid-line curves are the limit state constraints predicted
by Kriging models, and the dotted-line curves are the true
constraints. 50 points are evenly located within the whole
design space. However, many sample points are located out
of the feasible region, and the limit state constraints 2 and 3
are not accurate.

As seen in Fig. 9a, with nine grid points as initialization,
the CBS applies 43 points to approximate the three con-
straints. Most of these samples are located on the boundaries
of the limit state constraints within the feasible region. The
boundaries of the feasible region are well approximated.
However, very few sample points are located in the region
around the optimal design points, which means many sam-
ple points are not well explored in improving the accuracy
of the results.

The SS method is shown in Fig. 9b. It can be seen that
the local windows move to the optimal design gradually,
and many samples are selected in the vicinity of the opti-
mal design point. However, most of these samples are not
located on the limit state functions, and the SS method
only uses the samples within the current local window to
construct Kriging models, therefore, the Kriging model for
constraint g2(X) is not accurate.

LAS uses nine grid samples as initial sampling, and total
31 sample points are used to approximate the three con-
straints. As seen in Fig. 10, the local sampling region moves
to the optimal design point gradually, and when the local
region contains limit state constraints, most of these sample
points will be located on the limit state constraint bound-
aries. So the boundaries of constraint 1 and 2 around the
optimal design point are well fitted, and they will ensure the
accuracy of the optimal design.

The comparison results for the example 2 are shown in
Table 4. The CBS is more accurate and efficient than the
LHS. The SS method is more efficient than CBS. The num-
ber of samples for LAS is equal to 31, which means that

Table 1 Summary of the
optimization results for
example 1

Methods Optimal Obj. Sample Error β1 β2
design size

Anal. (2.8421,3.2320) 1.3259 \ \ 2.000 Inf.

LHS (3.2409,3.1275) 0.9720 45 0.1440 −0.827 Inf.

CBS (2.8485,3.2350) 1.3103 45 0.0024 1.934 Inf.

SS (2.8400,3.2339) 1.3264 29 0.0009 2.002 Inf.

LAS (2.8408,3.2334) 1.3259 22 0.0006 2.001 Inf.
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Table 2 Iteration history of
the SS method for example 1 Iterations Optimal design Obj. Radius New Error β1 β2

samples

0 (2.5000,2.5000) 3.6900 1.2000 7 0.2565 Inf. Inf.

1 (3.3072,3.1948) 0.8027 1.2000 13 0.1641 −1.7268 Inf.

2 (2.5370,3.4460) 1.6595 1.5000 7 0.1261 −0.5233 Inf.

3 (2.9664,3.2122) 1.1588 1.2000 1 0.0442 1.1210 Inf.

4 (2.8215,3.2614) 1.3174 1.5000 1 0.0116 1.9391 Inf.

5 (2.8400,3.2339) 1.3264 \ \ 0.0009 2.0019 Inf.

Table 3 Iteration history of
the LAS method for example 1 Iterations Optimal design Obj. Radius New Error β1 β2

samples

0 (2.5000,2.5000) 3.6900 1.3967 9 0.2565 Inf. Inf.

1 (2.8657,3.7314) 0.7681 1.4471 6 0.1547 −2.2739 Inf.

2 (2.8984,3.2046) 1.2752 1.4687 3 0.0215 1.7254 Inf.

3 (2.8482,3.2241) 1.3276 1.4704 2 0.0032 2.0045 Inf.

4 (2.8464,3.2276) 1.3252 1.4698 1 0.0021 1.9957 Inf.

5 (2.8408,3.2334) 1.3259 \ \ 0.0006 1.9999 Inf.

Fig. 8 True limit state functions
and sampling process of LHS
for example 2

Fig. 9 Sampling processes of
CBS and SS for example 2
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Fig. 10 Sampling processes of the LAS for example 2

LAS is the most efficient. The relative error from LAS
is 0.04 %, and the MCS results are very close to the tar-
get value 2.0, so the proposed LAS method is also very
accurate.

The iteration histories of the SS method and LAS method
are shown in Tables 5 and 6. It can be seen that both of
the SS and LAS methods use four iterations, but the LAS
method is more accurate.

4.3 A speed reducer

A speed reducer shown in Fig. 11 is used to rotate the engine
and propeller with efficient velocity in light plane (Cho and
Lee 2011). This problem has seven random variables and 11
probabilistic constraints. The objective function is to mini-
mize the weight and probabilistic constraints are related to
physical quantities such as bending stress, contact stress,
longitudinal displacement, stress of the shaft, and geome-
try constraints. The random design variables are gear width
(X1), gear module (X2), the number of pinion teeth (X3),
distance between bearings (X4, X5), and diameter of each
shaft (X6, X7).

All random variables are statistically independent and
have normal distributions. The description of the RBDO
model of the speed reducer is as follows:

f ind : d = [d1, d2, d3, d4, d5, d6, d7]T

min :f (d) = 0.7854d1d
2
2

(
3.3333d2

3 + 14.9334d3

− 43.0934) − 1.5080d1
(
d2

6 + d2
7

)

+7.4770
(
d3

6 + d3
7

)+0.7854
(
d4d

2
6 + d5d

2
7

)

s.t. : prob[gi(X) > 0] ≤ Φ
(−βt

i

)
, i = 1, · · · , 11

g1(X) = 27/X1X
2
2X3 − 1, g2(X)=397.5/X1X

2
2X

2
3−1

g3(X)=1.93X3
4/X2X3X

4
6−1, g4(X)=1.93X3

5/X2X3X
4
7−1

g5(X) =
(√

(745X4/(X2X3))
2 + 16.9 × 106

)

/
(
0.1X3

6

) − 1100

g6(X) =
(√

(745X5/(X2X3))
2 + 157.5 × 106

)

/
(
0.1X3

7

) − 850

g7(X)=X2X3−40, g8(X)=5 − X1/X2

g9(X)=X1/X2 − 12, g10(X)=(1.5X6+1.9)/X4−1

g11(X) = (1.1X7 + 1.9)/X5 − 1

2.6 ≤ d1 ≤ 3.6, 0.7 ≤ d2 ≤ 0.8, 17 ≤ d3 ≤ 28

7.3 ≤ d4 ≤ 8.3, 7.3 ≤ d5 ≤ 8.3, 2.9 ≤ d6 ≤ 3.9

5.0 ≤ d7 ≤ 5.5, Xj ∼ N(dj , 0.0052), j = 1, · · · , 7

βt
1 = · · · = βt

11 = 3.0

d(0) = [3.2, 0.75, 23, 8.0, 8.0, 3.6, 5.0]T

(14)

The comparison results for the speed reducer are shown
in Tables 7 and 8. The initial sampling sizes for CBS, SS
and LAS are all 36 using LHS. From Table 7, it can be seen
that the CBS is more accurate and efficient than the LHS,
but the SS method is not accurate. The number of samples in
LAS is equal to 46, so it is very efficient. The design results

Table 4 Summary of the
optimization results for the
example 2

Methods Optimal design Obj. Sample Error β1 β2 β3
size

Anal. (4.6868,2.0513) −1.6851 \ \ 2.0010 2.0008 Inf.

LHS (4.4825,2.3386) −1.5658 50 0.1467 2.2555 2.6615 Inf.

CBS (4.6768,2.0576) −1.6825 43 0.0038 2.0025 2.0236 Inf.

SS (4.7004,2.0430) −1.6886 35 0.0050 2.0003 1.9707 Inf.

LAS (4.6868,2.0521) −1.6848 31 0.0004 2.0022 2.0017 Inf.
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Table 5 Iteration history of
the SS method for example 2 Iterations Optimal design Obj. Radius New samples Error β1 β2 β3

0 (4.0000,6.0000) −0.5333 1.2000 7 1.9306 4.2849 Inf. 1.8438

1 (5.3633,1.7160) −1.8364 1.2000 18 0.2181 1.9210 0.6014 4.3468

2 (4.6835,2.0557) −1.6833 1.5000 8 0.0023 2.0057 2.0112 Inf.

3 (4.6999,2.0434) −1.6884 1.5000 2 0.0047 2.0003 1.9707 Inf.

4 (4.7004,2.0430) −1.6886 \ \ 0.0050 2.0002 1.9708 Inf.

Table 6 Iteration history of
the LAS method for example 2 Iterations Optimal design Obj. Radius New samples Error β1 β2 β3

0 (4.0000,6.0000) −0.5333 1.4897 13 1.9306 4.2762 Inf. 1.8440

1 (2.8894,5.7879) −0.4786 1.4957 2 1.8615 2.0227 Inf. 3.7814

2 (3.9681,2.6612) −1.4441 1.4893 7 0.3346 2.0022 3.8226 Inf.

3 (4.7089,2.0421) −1.6045 1.4855 9 0.1164 1.9984 2.6947 Inf.

4 (4.6868,2.0521) −1.6848 \ \ 0.0004 2.0022 2.0017 Inf.

from the LAS method are almost identical with that from the
analytical method, which conforms that the proposed LAS
is also very accurate.

The iteration histories of the SS and LAS methods are
shown in Tables 9, 10, 11 and 12. Both of the two methods
have two design iterations. However, the SS method uses
only the samples within the local window to construct the
Kriging models, so in the second design iteration, the SS
needs 36 new samples to build the Kriging models. But the
LAS applies all the existing samples to build the Kriging
models, so in the second iteration of the LAS method, only
10 new samples are selected. It can be seen that the LAS is
more efficient and accurate.

Fig. 11 A speed reducer

4.4 Honeycomb crashworthiness design

As shown in Fig. 12, this example (Sun et al. 2010) is about
the Honeycomb cellular materials or structures that have
been an important research topic recently for its outstand-
ing potential in energy absorption, thermal isolation and
dynamic and acoustic damper. This study deals with the pre-
dominantly axial (H-direction) crushing of aluminum hon-
eycombs, as it provides the best mechanical performance
and has been most often utilized in practice.

The dimension of each cell is described as follows: w

is the cell size defined by the distance of opposite sides in
the cell, d the side length of honeycomb cell, D the width
of honeycomb cell, t the thickness of single foil. The foil
material used in the experiment is an aluminum alloy, whose
constitutive behavior is assumed to be elastoplastic with
von-Mises isotropic plastic hardening, given by

σ = σ0 + σtε (15)

The objective is to maximize the specific energy absorption
(SEA) defined in the crash energy absorbed by unit weight
of the honeycomb as

SEA = Total absorbed energy

Total structural weight
(16)

The deceleration peak αmax during crashing is the proba-
bilistic constraint. It is known that the variations of factors t

and σ0 appears more sensitive to SEA and αmax. Therefore,
these two parameters are selected as the design variables to
optimize the honeycomb structure for the crashworthiness
criteria.
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Table 7 Summary of the
optimization results for
example 3

Methods Optimal design Obj. Sample size Error

Anal. (3.5765,0.7000,17.0000,7.3000,7.7542,3.3652,5.3017) 3038.6347 \ \
LHS (3.5772,0.7000,17.0000,7.3000,7.7543,3.3688,5.3015) 3039.7223 150 0.0011

CBS (3.5766,0.7000,17.0000,7.3117,7.7541,3.3674,5.3017) 3039.3171 80 0.0017

SS (3.5778,0.7000,17.0000,7.7780,7.9371,3.3447,5.2993) 3040.6091 72 0.0699

LAS (3.5765,0.7000,17.0000,7.3000,7.7543,3.3651,5.3017) 3038.6244 46 0.00004

Table 8 Summary of the MCS
results for example 3 Methods β1 β2 β3 β4 β5 β6 β7 β8 β9 β10 β11

Anal. Inf. Inf. Inf. Inf. 2.9946 2.9948 Inf. 3.0016 Inf. Inf. 2.9895

LHS Inf. Inf. Inf. Inf. 3.7190 2.9679 Inf. 3.0193 Inf. Inf. 3.0425

CBS Inf. Inf. Inf. Inf. 3.4316 3.0045 Inf. 2.9995 Inf. Inf. 3.0136

SS Inf. Inf. Inf. Inf. −1.2848 2.5114 Inf. 3.0490 Inf. Inf. Inf.

LAS Inf. Inf. Inf. Inf. 2.9826 3.0122 Inf. 2.9900 Inf. Inf. 2.9922

Table 9 Iteration history of
the SS method for example 3 Iter. Optimal design Obj. Radius New Error

samples

0 (3.2000,0.7500,23.0000,8.0000,8.0000,3.6000,5.0000) 4256.2829 1.2000 36 0.3988

1 (3.5769,0.7000,17.0000,8.3000,7.9156,3.0959,5.2980) 2983.8215 1.2000 36 0.1600

2 (3.5778,0.7000,17.0000,7.7780,7.9371,3.3447,5.2993) 3040.6091 \ \ 0.0699

Table 10 Iteration MCS
results of the SS method for
example 3

Iter. β1 β2 β3 β4 β5 β6 β7 β8 β9 β10 β11

0 Inf. Inf. Inf. Inf. Inf. -Inf. Inf. -Inf. Inf. Inf. Inf.

1 Inf. Inf. −0.9667 Inf. -Inf. 2.2477 Inf. 3.0087 Inf. Inf. Inf.

2 Inf. Inf. Inf. Inf. −1.2848 2.5114 Inf. 3.0490 Inf. Inf. Inf.

Table 11 Iteration history of
the LAS method for example 3 Iter. Optimal design Obj. Radius New Error

samples

0 (3.2000,0.7500,23.0000,8.0000,8.0000,3.6000,5.0000) 4256.2829 1.3980 36 0.3988

1 (3.5758,0.7000,17.0000,7.3000,7.7593,3.3931,5.3039) 3047.1292 1.3976 10 0.0083

2 (3.5765,0.7000,17.0000,7.3000,7.7543,3.3651,5.3017) 3038.6244 \ \ 0.00004

Table 12 Iteration MCS
results of the LAS method for
example 3

Iter. β1 β2 β3 β4 β5 β6 β7 β8 β9 β10 β11

0 Inf. Inf. Inf. Inf. Inf. -Inf. Inf. -Inf. Inf. Inf. Inf.

1 Inf. Inf. Inf. Inf. Inf. 3.4672 Inf. 2.9865 Inf. Inf. 3.3773

2 Inf. Inf. Inf. Inf. 2.9826 3.0122 Inf. 2.9900 Inf. Inf. 2.9922



A local adaptive sampling method for reliability-based design optimization 413

Fig. 12 Nomenclature of the hexagonal honeycomb

Fig. 13 Axial impact test

Fig. 14 Experimental and
numerical deformation pattern at
different time steps
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Table 13 Summary of the
optimization results for
example 4

Methods Optimal design Obj. Sample Error β1
size

Anal. (0.0500,0.3099) −29.9701 \ \ 3.0010

LHS (0.0500,0.3103) −29.9931 30 0.0013 2.9585

CBS (0.0500,0.3098) −29.9645 18 0.0003 3.0118

SS (0.0500,0.3099) −29.9675 18 0.0002 3.0056

LAS (0.0500,0.3099) −29.9694 15 0.00003 3.0021

Table 14 Iteration history of
the SS method for example 4 Iterations Optimal design Obj. Radius New Error β1

samples

0 (0.1000,0.3000) −28.6716 1.2000 7 1.0005 -Inf.

1 (0.0500,0.3101) −29.9811 1.2000 7 0.0006 2.9814

2 (0.0500,0.3098) −29.9627 1.5000 3 0.0004 3.0145

3 (0.0500,0.3098) −29.9626 1.5000 1 0.0004 3.0141

4 (0.0500,0.3099) −29.9675 \ \ 0.0002 3.0060

Table 15 Iteration history of
the LAS method for example 4 Iterations Optimal design Obj. Radius New Error β1

samples

0 (0.1000,0.3000) −28.6716 1.3996 9 1.0005 -Inf.

1 (0.0500,0.3097) −29.9575 1.3986 3 0.0007 3.0232

2 (0.0500,0.3098) −29.9626 1.3959 1 0.0004 3.0150

3 (0.0500,0.3098) −29.9658 1.3965 2 0.0003 3.0093

4 (0.0500,0.3099) −29.9694 \ \ 0.00003 3.0025

Axial impact test was conducted on honeycomb struc-
tures as in Fig. 13 to validate the computational modeling.
Figure 14 shows the deformation with its buckling and
folding pattern for element size = 1 mm at different time
steps.

The optimization problem is defined as below:

f ind : μt , μσ0

max : SEA(μt , μσ0)

s.t. : prob [αmax ≤ αconst] ≥ Φ(βt )

t ∼ N
(
μt , 0.0042

)
, σ0 ∼ N

(
μσ0 , 0.0062

)

0.05 ≤ μt ≤ 0.20, 0.15 ≤ μσ0 ≤ 0.40,

βt = 3.0,
(
μ

(0)
t , μ

(0)
σ0

)
= [0.10, 0.30.]T

(17)

Where (t , σ0) is the random design variable vector, αconst is
the upper limit of the peak acceleration, which is set as 30 g
herein.

The comparison results for the Honeycomb crashworthi-
ness design are shown in Table 13. CBS is more efficient
than the LHS, and the SS method is more accurate and effec-
tive than CBS. In LAS, the number of samples is only 15,
so it is very efficient. The optimal design from the LAS

method is almost identical with that in analytical method;
and the relative error is 0.003 %, therefore the LAS is also
very accurate.

The iteration histories of the SS and LAS methods are
shown in Tables 14 and 15, from which it can be seen that
LAS has the same number of the iterations, but it is more
accurate than the SS method.

5 Conclusion

The LAS method is proposed to improve the efficiency
and accuracy of Kriging-model-based RBDO. It selects new
samples from the local region which is around the current
design point in each optimization iteration, and within the
local region, sample points are first considered to be located
on the limit state constraint boundaries. The size of the LAS
region is adaptively defined according to the nonlinearity of
the performance functions.

Several examples are tested in order to verify the accu-
racy and efficiency of the proposed method. Through the
examples it is seen that the proposed LAS method is very
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efficient. The MCS results for LAS are almost identical with
the target values, which verifies that the proposed LAS is
very accurate. Also, the LAS uses the smallest number of
samples, which shows that the computational cost can be
reduced significantly.

There are still many work can be done to improve the
accuracy of RBDO problems. For example, when samples
are close to the limit state boundaries, it is better to use
the support vector regression (SVR) method to the fit the
implicit models; and the active constraints strategy will also
improve the efficiency of the RBDO problem. In the future
work, we will study these issues to make the LAS method
more applicable to RBDO problems.
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