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Abstract In replying to a valuable Discussion by Mariano
Vázquez Espi, the authors show that the problem of friction
forces in general can be handled by the Prager-Rozvany lay-
out theory, and the optimal Michell layout does not always
correspond to the maximum value of the static friction force.
Moreover, it is explained that discontinuities in the specific
cost function can be accommodated by an extended version
of the Prager-Shield optimality criteria, which was already
demonstrated in the second author’s first (1976) book.

Keywords Topology optimization · Michell trusses ·
Support costs · Prager-Rozvany layout theory ·
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1 Introduction

This text was prompted by a Discussion by Vázquez Espi
(2013), subsequently called the ’Writer’, who is to be com-
mended for putting forward highly constructive ideas about
a research paper by the authors (Rozvany and Sokół 2012).
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It will be explained subsequently that discontinuous cost
functions in general, and reaction forces consisting par-
tially of friction forces in particular, can be handled by
the layout theory of Prager and Rozvany (1977), or an
extension (Rozvany 1974, 1976) of the Prager and Shield
(1967) conditions.

The Writer has also suggested (Vázquez Espi 2013) the
correct optimal region layout for a generalization of the
much-cited ’MBB-beam’ benchmark example (Lewiński
et al. 1994) to non-vertical reaction forces, as will be
explained below.

2 Truss with friction forces at the supports

In his Discussion, the Writer considered a Michell-type
truss (Michell 1904) with a central vertical point load, and
two supports having horizontal reaction components con-
sisting of friction forces. These he denoted by X, subject
to X ≤ μY , where μ is the static friction coefficient
and Y is the vertical reaction component. It is known
that a solid body resting on a horizontal surface does not
start sliding if the above inequality is satisfied. According
to the Writer, this example was mentioned originally by
Cox (1965).

Some exact optimal truss topologies for the above prob-
lem, considering various μ-values, are shown in Fig. 1.
Very similar solutions were presented by the Writer in his
Discussion.

For μ = 0, the exact analytical solution, shown in Fig. 1a
or b, has been originally derived by Lewiński et al. (1994).

For μ = 1, the well-known analytical solution, also
reviewed recently (Rozvany 2011, Fig. 4d), is shown in
Fig. 1d. It consists of two R-regions (see e. g., Rozvany
et al. 1995 for optimal regions). The interesting aspect
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of this solution is that it has been derived for two hinge
supports, which would allow any arbitrary horizontal reac-
tions. The optimality of this topology implies that it has a
lower volume than a truss topology for any other horizontal
reaction, which means that it is optimal also for μ > 1. If
we had, for example μ = 1.5, then the horizontal friction
force could be X = 1.5Y , but the optimal topology would
only use up part of this, with the optimal horizontal reaction
value of X = Y .

The above result implies that the optimal truss topology
does not necessarily use up the highest possible value of the
static friction force.

Naturally, the Writer is correct that for μ < 1 the solu-
tion in Fig. 1d is not feasible, and the solution makes use
of the highest feasible value of the friction force. The latter
observation can be concluded from the fact that in Table 1
below the optimum volume monotonically decreases with
increasing friction coefficients, provided that μ < 1. These
solutions are of the type shown in Fig. 1c, which consists of
a circular fan CDE, a both-way curved Hencky-net DEGF
and a straight member AF. This most interesting feature
was pointed out by the Writer. As μ tends to zero, the
length of the bar AF converges to zero (see Fig. 1a). If
μ tends to 1, then the region DEGF disappears, only one
bar (i.e. CD) of the circular fan CDE will have a non-zero
cross-sectional area, and this bar becomes collinear with the
bar AF.

Table 1 A comparison of numerical solutions by the writer and the
first author and the analytical solution derived in Section 3 (percentage
errors in brackets)

V̄ = V σP /PL

μ Numerical writer Numerical first author Analytical

0.00 1.435 (0.14 %) 1.4333 (0.025 %) 1.432959

0.25 1.310 (0.12 %) 1.3087 (0.023 %) 1.308394

0.50 1.190 (0.08 %) 1.1892 (0.016 %) 1.189034

0.75 1.084 (0.02 %) 1.0838 (0.009 %) 1.083750

1.00 1.000 (0.00 %) 1.0000 (0.000 %) 1.000000

The First Author has derived accurate numerical solu-
tions by his method (Sokół 2011), using half a billion
potential truss elements for the problems in Fig. 1 of the
Writer (Vázquez Espi 2013). The results by the Writer and
those by the First Author show a good agreement. This is
shown in Table 1 (here σP is the permissible stress).

It can be seen that there is a three-digit agreement
between the solutions of the Writer and those of the
First Author, and an at least four digit agreement between
the (rounded) analytical solutions and the numerical solu-
tions by the First Author. The numerically and analytically
derived optimal topologies for the above cases are shown in
Fig. 2.

Fig. 1 Optimal layouts for
selected friction coefficients a b

c d
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Fig. 2 Numerical (a–e) and
analytical (f–j) solutions for
various friction coefficients
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3 Details of the analytical derivation of the exact
solutions in Fig. 1 and Table 1

The general topology of the problem investigated, see
Fig. 1c, consists of a truss-like continuum CEGFD and the
straight bar AF. The solution can be derived by adjusting the
angles α and β to properly link these two substructures.

The geometry and displacement field of the most impor-
tant region EGFD were derived by Lewiński et al. (1994).
In particular, using (194) and (195) from this paper we can
define the coordinates of point F as

xF = x(α, β) = L

2
(cos(β − α) [F1(β, α) − F3(α, β)]

+ sin(β − α) [F2(β, α) − F2(α, β)])

yF = y(α, β) = L

2
(− cos(β − α) [F2(β, α) − F2(α, β)]

+ sin(β − α) [F1(β, α) − F3(α, β)]) (1)

The functions F1, F2 and F3 in (1) and G1 and G0 in (8),
were defined in the above paper (Lewiński et al. 1994).

Note that the external chord AFDC has to pass smoothly
through the point F, hence

β − α = γ (2)

where γ is the angle of inclination of bar AF (measured
from vertical axis y, see Fig. 1c) and defined as

γ = arctan μ (3)

Moreover, the tangent to the curve DF at point F has to pass
through the point A, hence

xF + μyF = L
/

2 (4)
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Using the above compatibility equation together with (1)–
(3), one can prove that the optimal angle α has to satisfy the
following transcendental equation:

cos γ − F1(α + γ, α) + F3(α, α + γ ) = 0 (5)

It can be shown that the solution to this equation is unique
(the left-hand side is monotonically decreasing function
with respect to α).

Now, using dual formulation, we can derive the volume
of the optimal structure as the work of external loads over
the adjoint displacements. The member compression force
in the bar AF is known and given by

N = P

2 cos γ
(6)

This force works along the length LAF =√
(L/2 − xF)2 + (yF)2, implying by (1)

LAF = L

2
(F2(α, α + γ ) − F2(α + γ, α)

+ tan γ [F1(α + γ, α) − F3(α, α + γ )]) (7)

and on the corresponding displacement of point F (see (203)
in the paper by Lewiński et al. 1994) which is defined by

uF = L

2
[G0(α, α + γ ) + 2γ G1(α, α + γ )

+ 2F2(α, α + γ )] (8)

Finally, the volume of the whole structure can be written as

V = 2
N

σP

(
uF + LAF

)
(9)

or

V = P L

2 σP

1

cos γ
(3F2(α, α + γ ) − F2(α + γ, α)

+G0(α, α + γ ) + 2γ G1(α, α + γ ) + sin γ ) (10)

where α is solution of (5).

4 Answering the query about discontinuous
cost functions

The Writer is asking an interesting question, how the
Prager and Shield (1967) condition and the Prager and
Rozvany (1977) layout theory can be applied to discontin-
uous cost functions. This problem was discussed already in
the author’s first book (Rozvany 1976, pp. 85–87), and even
earlier in a paper (Rozvany 1974). It will be explained in
the context of discrete value problems involving beams (and
grillages), but the same method can be extended to other
classes of problems.

a

b

c

d

Fig. 3 Extension of the layout theory to discontinuous cost functions
illustrated with beam and grillage optimization: a Discintinuity in the
cost function, b corresponding impulse in the adjoint strain (i.e. curva-
ture) field, c Strain field (moment diagram), d concentrated rotation in
the adjoint beam (i.e. adjoint displacement field) (after Rozvany 1974,
1976)

Figure 3a shows part of a functional relation between the
cross-sectional area of a beam (it can be in a grillage), and
the bending moment in it. This is a discrete value prob-
lem, with a finite number of discrete cross sections available
for our design. It can be seen that there is a discontinu-
ity of � A in the cost function at M = MC . It is shown
in the above publications, that this discontinuity causes in
the adjoint strain field (here: curvature field κ̄) an impulse
or Dirac delta ‘function’ (actually generalized function),
whose magnitude depends on (a) the magnitude (� A) of
the discontinuity and (b) the first derivative (here denoted
by S for slope) of the beam moment M with respect to the
longitudinal spatial coordinate x (see Figs. 3b and c).
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The impulse in the adjoint curvature causes a concen-
trated rotation in the ‘adjoint beam’ having the adjoint dis-
placements ū (Fig. 3d). For examples the reader is referred
to the publications cited above.

Returning to the problem of Michell trusses with fric-
tion forces, the horizontal component X of the support force
can take on the range of values 0 ≤ X ≤ μY . The Writer
correctly suggests that one way of formulating the upper
constraint is making the cost of the horizontal reaction zero
for X ≤ μY , and infinity for X > μY . This makes the
cost function for the horizontal reaction component dis-
continuous, which prompted the Writer to ask the above
mentioned question about suitability of the Prager and
Rozvany (1977) layout theory for problems with discontin-
uous cost functions.

It was explained above that the layout theory can handle
discontinuous cost functions, but the Authors believe that
the problems discussed in Section 1 can be formulated in
a simpler fashion, for example by imposing the constraint
0 ≤ X ≤ μY on our volume minimization problem.

Finally, the Authors agree with the Writer that the verti-
cal reaction components do not influence the volume of the
truss, because these components are invariable and are given
uniquely by equilibrium.

5 Concluding remarks

The Authors would like to thank the Writer of the Discus-
sion (Vázquez Espi 2013) for extremely constructive and
useful ideas and questions. They have also resulted in a new
class of optimal truss topologies, which constitute a general-
ization of the much cited ‘MBB-beam’ solutions (Lewiński
et al. 1994).
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