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Abstract This paper is dedicated to the structural opti-
mization of flexible components in mechanical systems
modeled as multibody systems. While most of the struc-
tural optimization developments have been conducted under
(quasi-)static loadings or vibration design criteria, the pro-
posed approach aims at considering as precisely as possible
the effects of dynamic loading under service conditions.
Solving this problem is quite challenging and naive imple-
mentations may lead to inaccurate and unstable results. To
elaborate a robust and reliable approach, the optimization
problem formulation is investigated because it turns out that
it is a critical point. Different optimization algorithms are
also tested. To explain the efficiency of the various solu-
tion approaches, the complex nature of the design space
is analyzed. Numerical applications considering the opti-
mization of a two-arm robot subject to a trajectory tracking
constraint and the optimization of a slider-crank mechanism
with a cyclic dynamic loading are presented to illustrate the
different concepts.
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1 Introduction

Since the early sixties, structural optimization techniques
have been in constant progress and their maturity has
reached a high level. Nowadays, sizing and shape optimiza-
tions are used for industrial applications while topology
optimization is more employed as a pre-design tool in the
industry. Up to now, structural optimization has been gen-
erally applied to the design of structural components under
(quasi-)static or vibration design criteria due to the dif-
ficulties of dealing with dynamic response optimization.
However, in topology optimization problems, Bendsøe and
Sigmund (2003) pointed out that the optimal design may
be very sensitive to the supports and loading conditions
so that the precise representation of the dynamic interac-
tions between the component and the complete mechanical
system is a critical aspect in the present study.

Mechanical systems generally consist of components
interconnected by joints and force elements, which undergo
large displacements and rotations. For instance, typical sys-
tems are space structures, vehicles, robots and machine
tools. With the development of virtual prototypes in mod-
ern mechanical and aerospace engineering, the analysis of
the complete mechanical system is realized using multibody
system (MBS) simulation tools which offer a system-level
approach. However, most of the multibody dynamics for-
malisms cannot be easily extended to account for the full
flexibility of the components in an integrated way. Con-
sequently, cycles between MBS and finite element (FE)
analyses are required for the stress analysis.
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Historically, at the beginning of the optimization of
mechanical systems, the considered component to be opti-
mized was isolated from the system, then multiple static
configurations were selected for the optimization process
(Saravanos and Lamancusa 1990). This approach is quite
restrictive because the system dynamics is only represented
by a few configurations. Moreover, as the coupling between
rigid and elastic motions is omitted, some parts of the
loading are neglected which leads to inaccuracies on the dis-
placements and on the stresses. Another point is that the
multiple static configurations do not account for the con-
straint time-dependency and finally, the method selecting
the static postures is empirical.

Nowadays, a classical approach to carry out the compo-
nent dynamic optimization is to refer to the techniques of
static optimization that are well established. The dynamic
MBS problem is reformulated as a set of static problems
in a two-step approach. First, a MBS simulation software
precomputes the loads applied to each component, and in
a second step, each component is optimized independently
using a quasi-static approach. The use of the MBS simula-
tion leads to a holistic approach. Several works have been
realized using this two-step method (Oral and Kemal Ider
1997; Häussler et al. 2004; Kang et al. 2005; Hong et al.
2010). Within this method, a set of static load cases have
to be defined in order to mimic the precomputed dynamic
loads and the most common method is the equivalent static
load approach introduced by Kang et al. (2005). Häussler
et al. (2001) showed that it is important to consider the
changes of the boundary conditions and also the changes
of the system behavior along the optimization process since
these ones are subject to significant changes.

Concerning the equivalent static load method, one can
remark that it introduces a weak coupling between the
MBS simulation and the dynamic optimization. Indeed,
the equivalent static loads are assumed to be indepen-
dent of the design variables, which induces an artificial
decoupling between the simulation and the optimization
problem. In this method, the MBS simulation can be based
either on a low-accuracy model assuming a rigid behav-
ior of the moving bodies or on a more detailed model
with flexibility effects. Another remark is that the opti-
mization problem is formulated with static criteria and it is
difficult to employ criteria directly based on the dynamic
responses. Finally, the global vibration behavior of the
mechanism and the modeling of high frequency loadings is
limited.

Recently, a strong tendency to merge both finite ele-
ment analysis and MBS simulation into a unified code has
been followed. Integrated software tools resulting from this
tendency can account for the full flexibility of the differ-
ent components and allow analyzing the deformations of
mechanism undergoing fast joint motions. An example of

this type of software is Samcef Mecano (http://www.lmsintl.
com) which results from the work of Géradin and Cardona
(2001).

While in previous work, the component flexibility in
the MBS was accounted by a Component Mode Synthesis
approach (Kang et al. 2005) or was simply neglected for
the MBS simulation part to reduce computation time for
large-scale models (Hong et al. 2010), Brüls et al. (2011)
took advantages of the evolution of numerical simulations
and topology optimization codes in order to design optimal
truss structures loaded during the MBS motion. They val-
idated the approach and showed that an optimization loop
can be carried out directly based on the dynamic response
of the flexible multibody system to obtain a more inte-
grated approach. Dynamic effects are then naturally taken
into account in the optimization criteria.

Brüls et al. (2011) have pointed out that the optimiza-
tion problem must be carefully formulated to obtain a stable
and robust procedure. The optimization of MBS is not a
trivial extension of structural optimization. Naive imple-
mentations generally lead to inaccurate and unstable results.
This may explain why only a few results are available in
the literature for the component optimization based on MBS
analysis. Therefore, our research aims at establishing effi-
cient strategies for the optimal design of flexible MBS.
Coupled vibrations and interactions between components
generally result in complex design problems and in conver-
gence difficulties. This indicates that specific formulations
are required and need to be developed for this extended class
of optimization problems.

The present paper continues along this fully integrated
method and focuses on the study of the optimization prob-
lem formulations.

The first part of the paper describes the nonlinear FE-
based approach and its capacity to model the flexible MBS
dynamics (Géradin and Cardona 2001). The generality of
the solution procedure, the fidelity of the model and there-
fore the accuracy of the results are the main motivations
to develop a multibody approach based on finite elements.
The FE approach for the MBS simulation allows taking into
account the flexibility of the model in an integrated way
at the price of an increase of the model size. The compo-
nent flexibility in MBS is an important feature and must
be modeled at least for two important reasons. First, flex-
ibility and inertia produce vibrations, which can influence
the precision of the machine and its control strategy. Sec-
ond, with FE modeling of components, accessing to the
strains and stresses in the material is direct and these are
needed for the optimal design of structural components.
Stress-based optimization is important as reported by Tobias
et al. (2010) who used a similar approach based directly
on elastic multibody system simulation results without
any post-processing to realize durability-based structural
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optimization. Furthermore, the FE approach enables to
extend the field of dynamic simulations to higher frequency
ranges and to include strong material and geometrical non-
linearities, while keeping the possibility of classical MBS
analyses.

The following part introduces the general framework of
optimization problems where the major part is devoted to
the introduction of different optimization problem formu-
lations in a general form. The formulation is based on the
dynamic responses coming directly from the flexible MBS
simulation. These are analyzed in order to conduct robust
and effective optimization runs.

Our investigations are conducted on two numerical appli-
cations considering optimal sizing and shape optimization.
First, the academic test problem consisting in optimizing
the weight of the arms of a two-dof robot with a trajec-
tory tracking constraint (Ata 2007; Kang et al. 2005) is
solved with different optimization algorithms and the com-
plex nature of the design space is examined for different
formulations. Second, the different optimization problem
formulations are investigated on the optimization of a con-
necting rod in a reciprocating engine taking advantage that
the dynamic loading is cyclic. The influence of the formu-
lations on the convergence history is also illustrated. An
attention is paid to the optimization problem formulation
accounting for stress constraints.

The optimization strategy is developed using the cou-
pling of the flexible MBS code Samcef Mecano with
the code BOSS Quattro, an optimization task manager
(Radovcic and Remouchamps 2002).

2 Finite element approach of MBS

2.1 Equations of motion

The modeling of flexible MBS using a nonlinear finite ele-
ment formulation is based on an inertial frame description.
The absolute nodal coordinates are employed to represent
the motion of each flexible body. The vector q contains
the displacement and orientation of each node of the FE
mesh.

The motion of the system is subject to kinematic con-
straints, denoted by �(q) = 0, which typically ensure
the connection between the bodies at joints. They impose
nonlinear kinematic constraints between generalized coor-
dinates. The constrained dynamic problem is formulated
using an augmented Lagrangian approach based on the
kinetic and potential energies of the system. The aug-
mented Lagrangian approach introduces a penalty term
in the formulation of the constraint notably for conver-
gence reasons. After some developments (see Géradin and
Cardona 2001), the motion of the system is obtained by

solving the following system of differential-algebraic equa-
tions (DAE)

Mq̈ + �T
q (kλ + p�) = g(q̇, q, t) (1)

k�(q) = 0 (2)

associated with the initial conditions

q(0) = q0 and q̇(0) = q̇0. (3)

In this system, M is the mass matrix, q̈, q̇ and q are the
accelerations, the velocities and the displacements respec-
tively, while g gathers the internal and external forces, k is
a scaling factor, p is a penalty factor, λ are the Lagrange
multipliers and the subscript q denotes the derivative with
respect to q.

2.2 Time integration

Géradin and Cardona (2001) suggested that the set of non-
linear differential-algebraic equations can be solved using
the generalized-α integration time scheme developed by
Chung and Hulbert (1993). Arnold and Brüls (2007) demon-
strated that despite the presence of algebraic constraints and
the non-constant character of the mass matrix, this integra-
tion scheme leads to accurate and reliable results if a small
amount of numerical damping is present.

At time step n + 1, the numerical variables q̈n+1, q̇n+1,
qn+1 and λn+1 have to satisfy the system of (1–2). Accord-
ing to the generalized-α method, a vector a of acceleration-
like variables is defined by the following recurrence relation

(1 − αm)an+1 + αman = (1 − αf )q̈n+1 + αf q̈n (4)

with a0 = q̈0. The integration scheme is obtained by
employing a in the Newmark integration formulae:

qn+1 = qn + hq̇n + h2
(

1

2
− β

)
an + h2βan+1 (5)

q̇n+1 = q̇n + h(1 − γ )an + hγ an+1 (6)

where h denotes the time step. If the parameters αf , αm, β

and γ are properly chosen according to Chung and Hulbert
(1993), second-order accuracy and linear unconditional sta-
bility are guaranteed. Going one time step further requires to
solve iteratively the dynamic equilibrium at time tn+1. This
is performed by using the linearized form (7–8) of (1–2) and
by employing the Newton-Raphson method. The iterations
try to bring the residual r = Mq̈ + �T

q (kλ + p�) − g and
� to zero using

M�q̈ + Ct�q̇ + Kt�q + k�T
q �λ = �r (7)

k�q�q = �� (8)

where Ct = ∂r/∂q̇ and Kt = ∂r/∂q denote the tangent
damping and tangent stiffness matrices respectively.
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3 Optimization problem of MBS

3.1 General statement of the optimization problem

The general statement of an optimization problem is given
in (9) and consists in minimizing the objective function
f0(x) subject to some constraints gj (x) which typically
insure the feasibility of the structural design. The design
variables are gathered in the vector x where side-constraints
limit the range of their values and generally reflect techno-
logical considerations.

minimize
x

f0(x)

subject to gj (x) ≤ gj , j = 1, . . . , m,

xi ≤ xi ≤ xi, i = 1, . . . , nv.

(9)

In our case, the functions f0(x) and gj (x) are struc-
tural properties or structural responses like mass, displace-
ments (instantaneous, peak or mean value) and stresses for
instance. The design parameters xi can be either sizing,
shape or topology parameters.

When the optimization problem is casted into this for-
mulation, different optimization algorithms can be used
to solve the problem. This formulation provides a gen-
eral and robust framework to the solution procedure and
several non-specific algorithms can be used more or less
successfully.

3.2 Design variables

As in static structural problems, several kinds of design
variables can be considered. In this paper, we only con-
sider parameters that modify the component itself while the
position of connections as well as the connectivity of the
members are preserved. Here, we focus on two types of
variables: sizing and shape. Concerning the optimal sizing,
design variables can be the plate thickness, the cross section
of bars and beams, the stiffness and damping properties of
joints, etc. For shape optimization, we only consider shape
parameters of CAD entities which modify the geometry of
the components.

3.3 Optimization algorithms

In the field of structural and applied mechanics, several
types of optimization algorithms have been developed to
solve optimization problems. According to the problem
characteristics and the available information (existence of a
gradient for instance), only one or several methods can be
selected.

In this paper, mathematical programming methods as
well as heuristic methods are employed to solve the
numerical applications and then, the different methods

are compared. ConLin (Fleury and Braibant 1986), GCM
(Bruyneel et al. 2002), SQP (Schittkowski 1986), Genetic
Algorithm (GA) (Coelho et al. 2002) and Surrogate Based
Optimization (SBO) (Colson et al. 2010) are the different
algorithms that are tested.

3.4 Sensitivity analysis

When gradient-based optimization methods are used, a sen-
sitivity analysis is necessary to compute the first order
derivatives of the structural responses and to provide them
to the optimization algorithm so that it can determine the
search direction. When the number of variables becomes
huge, this computational problem turns out to be crucial.

A first simple strategy to compute the sensitivities is to
employ a finite difference scheme. This method is notably
useful when no analytical or semi-analytical sensitivity
analysis is available in the analysis code. However, the sen-
sitivity analysis requires one (or two for central difference)
additional simulation per perturbed design variable. Despite
its computational inefficiency for large-scale problems, this
method can be used to carry out, for instance, a feasibility
study.

When the simulation time and/or the number of design
variables increase, this method becomes unadapted and it
is better to develop an analytical or a semi-analytical sen-
sitivity analysis for classical structural responses, because
the computational effort is largely reduced in compari-
son with a finite difference scheme. A semi-analytical
approach for flexible MBS based on a direct differentia-
tion method has been investigated by Brüls and Eberhard
(2008).

In this paper, both strategies are employed following the
considered application and the chosen one is pointed out
before conducting the optimization process.

4 Optimization problem formulation

The solution of an optimization problem of flexible com-
ponents in MBS is challenging. Inertial effects, vibra-
tions, design variables dependent-loading, time integration
schemes, etc. make the problem extremely complex and
the convergence towards a solution is very difficult. Naive
implementations of the optimization problem generally fail
or turn to be not robust. The optimization problem formu-
lation is crucial for this type of problem and moreover, the
objective function and the constraints have to be formulated
in a way that reflects the engineering approach of the design
at best.

Inspired by topology optimization, in order to consider
the precision of the mechanism, a formulation based on the
maximization of the stiffness or the minimization of the
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compliance under the dynamic loading can be employed.
Considering the compliance of component b at time t , the
mathematical expression is

Cb(x, t) =
∫

VE

εT (x, t)D ε(x, t) dV (10)

where ε denotes the strain tensor, D is the Hooke tensor, VE

is the volume of the considered component and x represents
the design variable vector. For mechanical systems, Brüls
et al. (2011) used the averaged compliance of all bodies
estimated over a sufficiently long integration time T

C(x) = 1

T

∫ T

0

∑
b

Cb(x, τ )dτ. (11)

The advantage of this compliance (energy) formulation is
that this measure is positive definite and therefore, by min-
imizing the compliance, the deflections of the mechanism
are minimized. However, when the damping is small, the
number of necessary oscillations to come to a stationary
behavior can be very large so that the reference time T must
be taken very long.

Depending on the mechanism and on design consider-
ations, different formulations more specific to the treated
problem can be considered to reflect the engineering
approach of the problem better. When an ideal behavior is
known, the formulation can be a comparison between the
actual behavior taking into account the flexibility of the sys-
tem, the imperfect actuators and controllers of the system to
the ideal behavior. In this case, a function �l is introduced
to measure the difference between the two behaviors. This
function can be considered as the objective function or can
be treated as a constraint

�l(x, t) ≤ �lmax, ∀ t ∈ [0, T ]. (12)

After time discretization, the expression becomes

�l(x, tn) ≤ �lmax, ∀ n = 1, . . . , tend (13)

where n is the index of the time step.
The definition of the function �l deserves further com-

ments. Imagine that the tip of a flexible robot has to follow
a desired trajectory. Two definitions are illustrated in Fig. 1.
On the left, the position distance considers the deviation
between the ideal and the actual trajectory at synchronized
time steps while on the right, the deviation between both
curves is defined as the normal distance between spatial
curves. Basically, the major differences are that only the
position distance includes a time component. The choice of
the definition influences the optimization process and their
impact needs to be investigated. In the numerical applica-
tions, the most suitable choice will be discussed and the
differences will be pointed out. In both cases, �l is a
positive quantity.

Generally, the mass steps in the optimization problem
formulation. The mass is defined as

m =
∫

VE

ρ dV (14)

where ρ is the volumic mass. This definition generally rises
no difficulty.

When minimizing the compliance, the mass can be intro-
duced as a constraint. However, with the �l formulation, in
an engineering approach, it is more classical to try to reduce
the mass while some criteria have to be satisfied as in the
following formulation

minimize
x

m(x)

subject to �l(x, t) ≤ �lmax, ∀t ∈ [0, T ].
(15)

Considering a constraint on the function �l at each time
step, the number of constraints can become extremely large.
These constraints can be denoted by local constraints as
these introduce a high accuracy on the design control. How-
ever, mathematical treatments enable to transform these
local constraints into a global constraint. Even though these
global constraints offer less control on the design, the num-
ber of constraints managed by the optimizer is drastically
reduced.

A first possibility is to employ a Max function which is
often available in many commercial codes

�l(x, t) ≤ �lmax ⇐⇒ max
t

�l(x, t) ≤ �lmax. (16)

This formulation only provides the maximum value and it is
important to note that this function is non-smooth, which is
sometimes ignored by non-expert users.

A second possibility is to use an average function of �l

over all the period T

1

T

∫ T

0
�l(x, t) dt ≤ �lmax. (17)

This second formulation has been introduced by Brüls et al.
(2011) and they showed that this average formulation is
more suitable than the compliance one for the optimiza-
tion of mechanical system. While this mean formulation
is interesting to force a tendency all along the consid-
ered period of time, the control on the design is loose
since only a general constraint is considered and this con-
straint only imposes an upper bound on the average value
and not upon the actual dynamic response. The effects
of these mathematical treatments are studied in the next
section.

The difference between the rigid and the actual trajectory
of a flexible mechanism can sometimes be represented by a
signed distance defined as �f . Unlike �l, the function �f

can be either positive or negative. Considering each time
step, one can resort to a set of local distance criteria similar
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Fig. 1 Two definitions of the
distance between two different
trajectories: a Position distance,
b Normal distance

(a) (b)

to the local stress criteria in stress analysis. It results that
one has to consider the constraints

−�fmin ≤ �f (x, t) ≤ �fmax, ∀t ∈ [0, T ]. (18)

In optimization problems with dynamic loading, the con-
sideration of stress constraints strongly increases the num-
ber of restrictions. Indeed, considering the stresses defined
on elements, the number of stress constraints is equal to
the number of elements multiplied by the number of time
steps and it leads to the creation of huge scale optimization
problems

σ (x, Pe, tn) ≤ σmax,

∀ n = 1, . . . , tend and ∀ e = 1, . . . , ne,

(19)

where Pe is the eth mesh element and ne the number of ele-
ments. To consider strength and life time prediction as in
automotive suspensions, it is necessary to consider stresses
and strains in the components.

All these different possibilities concerning the optimiza-
tion problem formulation are investigated and compared in
the numerical applications. Both advantages and drawbacks
are going to be pointed out.

5 Numerical applications

Two numerical applications are carried on. The first one is
an academic application of a 2-dof robot and enables various
investigations. Some of the presented results concerning this
first numerical application come from Emonds-Alt (2010).
The second application is related with an industrial prob-
lem where the robustness and the stability of the method
depending on the formulation are studied.

5.1 Two degrees of freedom robot

The first application is based on a 2-dof robot made of
aluminum with a volumic mass of 2700 [kg/m3], a Young
modulus of E = 72 [GPa] and a Poisson ratio of ν = 0.3,

inspired from Oral and Kemal Ider (1997). The length of
each arm is 600 [mm] and a constant mass of 1 [kg] is
attached at the tip (Fig. 2a). The functions θ1(t) and θ2(t)

represent the angle variations at the hinges during the robot
motion. In Fig. 2b, the ideal trajectory of the tip is illustrated
and the trajectory equations are:

�XT ip(t) = 0.6 sin

(
πt

2

)
(20)

�YT ip(t) = t

2
+ sin(2πt)

4
(21)

with t ∈ [0, 0.5] second.
A rigid-body kinematic model is used to compute the

functions θ1(t) and θ2(t) resulting from the desired tra-
jectory since rigid-body models prevent deformations and
vibrations. These functions will be later applied as imposed
rotations at the hinges of the flexible robot. As the robot
has an initial velocity, initial velocity conditions consis-
tent with the prescribed trajectory are imposed to the MBS
simulation.

Concerning the flexible model, plate elements are consid-
ered. The components are linked with rigid hinge elements.
Since deformations and vibrations will appear during the
motion of the flexible robot, the tip trajectory will not corre-
spond to the ideal one. The Chung-Hulbert scheme is used
for the time integration with a fixed time step of 0.01 [s].
Each arm is divided into 3 parts which leads to 6 sizing
design variables, the thickness of each part (Fig. 3a), and to
8 shape design variables, the width of the arm at each change
of section as the shape is described by piecewise-linear
profiles (Fig. 3b)

Concerning the sensitivity analysis, when it is required,
a finite difference scheme is employed for this academical
example.

5.1.1 Sizing optimization

This first application illustrates that the optimization of a
MBS is not a simple extension of a static optimization
problem and that naive implementations can lead to the
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Fig. 2 The 2-dof robot and its
prescribed trajectory (a) (b)

non-convergence of the optimization problem. In this intro-
ductory part concerning the MBS optimization problem
formulation, only one gradient-based optimization algo-
rithm is considered: GCM (Bruyneel et al. 2002) is adopted
for its robustness.

The goal is to minimize the mass of the robot arms while
the deviation from the ideal trajectory has to be kept under
10 [mm] when considering the position distance (Fig. 1a).
The design variables are the plate element thicknesses. Each
arm is divided into three equal zones with constant thick-
ness and thus, one design variable is assigned to each zone
leading to 6 design variables (Fig. 3a).

Initially, the deviation from the ideal trajectory is con-
sidered at each time step as in (15), i.e. by introducing 51
inequality constraints in the optimization problem. Mathe-
matically, the design formulation is expressed as follows:

minimize
x

m(x)

subject to �l(x, tn) ≤ �lmax

(22)

where x corresponds to the thickness design variables, n =
1, . . . , tend is the index of the time steps, tend is equal to 51
and �lmax is equal to 10 [mm].

The optimization process fails: after a few iterations,
the constraints are violated because the thickness variable
T6, the nearest zone from the tip, drops to its minimum
thickness and prevents the system to satisfy the constraints
(Fig. 4). The variable T6 is stuck to its minimal value
even though the constraints are violated. Surprisingly, when
beginning with different starting points, the optimization
process is sometimes able to converge to a feasible solution.

To investigate this observation, a slice in the design space
for the variables T5 and T6 is plotted while the other design
variables are fixed at 100 [mm]. Figure 5 illustrates the
design space configuration for the deviation at the 20th time
step. The feasible part of the design space lies below the
plane 10 [mm]. The explanation comes from the complex-
ity of the design space where a gradient-based algorithm has
difficulties to converge. The information given by each con-
straint may be contradictory and when the algorithm tends
to satisfy a constraint, another one becomes violated. Con-
vex approximations as ConLin (Fleury and Braibant 1986)
or MMA (Svanberg 1987) are likely to be inappropriate to
tackle such complex constraints.

To simplify the shape of the design space, a formulation
with a global constraint seems to be interesting. The Max

formulation expressed in (16) is considered where only

Fig. 3 Introduction of the
design variables: a Sizing design
variables, b Shape design
variables

(a) (b)
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Fig. 4 Results of the sizing
optimization of the 2-dof robot
with GCM

the maximum value of the deviations for any time step is
retained. The mathematical formulation of this optimization
problem is:

minimize
x

m(x)

subject to max
n

�l(x, tn) ≤ �lmax

(23)

where �lmax is also equal to 10 [mm].
Despite the non-smooth characteristic of this function,

the plot of the constraint indicates that the non-differential
points are so close that the function tends to become quite
smooth (Fig. 6). The shape of the design space seems now
to be more adapted to a gradient-based method.

However, the results of the optimization process for dif-
ferent starting points show that the optimization process is
not more stable. Moreover, oscillations appear during the
optimization process and prevent a fast convergence.

Finally, the Mean formulation as defined in (17) is
employed to express the deviation constraints. The bound
has been heuristically reduced to 5 [mm] to account for a
looser control of the deviations at each time step. The design
is formulated mathematically as:

minimize
x

m(x)

subject to
1

tend

tend∑
n=1

�l(x, tn) ≤ �lmax

(24)

Fig. 5 Illustration of the design
space configuration for the local
constraint formulation at the
20th time step with respect to
the sizing design variables T5
and T6. The others variables are
fixed at 100 [mm]
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Fig. 6 Illustration of the design
space configuration for the Max
deviation constraint formulation
with respect to the sizing design
variables T5 and T6. The others
variables are fixed at 100 [mm]

where �lmax is equal to 5 [mm].
Figure 7 illustrates a smooth design space. Nevertheless,

despite the fact that the design space is smooth, oscillations
are present during the first part of the optimization pro-
cess to finally disappear and allow the convergence of the
optimization process. This simplification of the formulation
leads to a weaker control of the solution at each time step
and it is difficult to find the value of the upper bound in
order to avoid violating the physical constraint of 10 [mm]
at all the time steps.

The problems encountered in this section are not spe-
cific to the algorithm employed, i.e. GCM, but they have
also been observed for other gradient-based algorithms.

They are thus intimately related with the formulation of the
optimization problem.

5.1.2 Shape optimization

This section is dedicated to the shape optimization of the
2-dof robot. The design variables are the width of the
arms at eight different locations Zi (Fig. 3b). For any
value of the design variables, the robot keeps its sym-
metry with respect to its longitudinal axis. The goal is
also to minimize the mass of the robot arms while the
deviation from the ideal trajectory has to be kept under
10 [mm] when considering the normal distance (Fig. 1b).

Fig. 7 Illustration of the design
space configuration for the Mean
deviation constraint formulation
with respect to the sizing design
variables T5 and T6. The others
variables are fixed at 100 [mm]



1198 E. Tromme et al.

The normal distance can be defined as a signed distance
or not, and in this Section 5.1.2, the signed distance is
considered.

Two formulations of the optimization problem are inves-
tigated. The first formulation referred to as the expression
“local constraints” below, considers the signed distance
constraints at each each time step and is defined mathemat-
ically as

minimize
x

m(x)

subject to �fmin ≤ �f (x, tn) ≤ �fmax

(25)

where �fmin corresponds to −10 [mm] and �fmax to
10 [mm]. The second formulation referred to as the expres-
sion “global constraints” thereinafter, only accounts for the
maximum positive deviation and the maximum negative
deviation in the optimization problem. Mathematically, the
optimization problem formulation is

minimize
x

m(x)

subject to max
n

�f (x, tn) ≤ �fmax

min
n

�f (x, tn) ≥ �fmin

(26)

Before running the optimization, parametric studies
are carried out to identify the behavior of the structural
responses. The deviations between the flexible trajectory
and the ideal (i.e. rigid) one are plotted for four time steps
when the values of Z4 and Z7 vary between their side
constraints (Fig. 8). For each time step, the function is con-
tinuously differentiable but each profile is very different
from one another. The nature of the design space is less tor-
tuous compared to the previous case (Fig. 5) because the
shape design variables considered have a smoother impact
on the robot behavior. The maximum deviation and the
maximum negative deviation (here called minimum devia-
tion) are plotted in Fig. 9. The non-smooth nature of the
maximum and minimum global deviations can be clearly
observed.

Fig. 8 Illustration of the design space at 4 different time steps for a
local constraint formulation with respect to the variables Z4 and Z7

Fig. 9 Illustration of the design space for the minimum (left) and max-
imum (right) deviations between rigid and flexible trajectories with
respect to variables Z4 and Z7

First, only gradient-based algorithms such as ConLin,
GCM and SQP are considered. With a feasible starting
point (Zi = 50 [mm]), all algorithms converge towards
the same optimum point that lies on the constraint bound-
ary as illustrated in Fig. 10 for a slice of the design space
corresponding to Z4 and Z7 (unfeasible parts of the design
space are in white color). Concerning the local constraints
(Fig. 10a), the feasible design space is made of disconnected
domains, which reveals a great complexity for optimization
algorithms. For both constraint formulations, ConLin pro-
vides the fastest convergence rate, which is quite surprising
as we would have expected that GCM, a more advanced
algorithm, gives better results. Concerning the global for-
mulation, at some iterations of the optimization process,
large constraint violations can be observed for GCM and
SQP (Fig. 10b).

Fig. 10 Design point trajectories with ConLin, GCM and SQP for
a feasible starting point (Zi = 50 [mm]). The unfeasible parts of
the design space are in white color. a Local constraints, b Global
constraints
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Fig. 11 Design point trajectories with ConLin, GCM and SQP for
an unfeasible starting point (Zi = 20 [mm]). The unfeasible parts
of the design space are in white color. a Local constraints, b Global
constraints

Starting with an unfeasible point (Zi = 20 [mm])
and employing a local formulation of the constraints, none
of the gradient-based optimizer is able to reach the opti-
mal point found in the previous experiment, see Fig. 11a.
The iteration trajectories are trapped in a separated part
of the design space and the optimizer is not able to go
back to the best sub-domain. Moreover, the different algo-
rithms do not converge towards the same point. With
the global formulation, the design space is composed of
only one single feasible domain and all the algorithms
can bring the optimization process back to the feasi-
ble domain and then converge towards an optimal point
(Fig. 11b). Again, ConLin gives better results than the
others.

Second, gradient-based algorithms are compared to
meta-heuristic optimization methods. The latter have the
advantage of exploring the entire design space and there-
fore should provide better performances in complex design
space configurations. For the optimization process, a fea-
sible starting point (Zi = 50 [mm]) is considered. Con-
cerning GA, a population of 40 individuals is employed
with 20 generations. For the SBO, the Latin hypercube
method is used to generate an initial set of 20 points.
Surrogates are neural networks (with 1000 iterations for
training) and each iteration allows an enrichment of the
database with up to 5 points while sensitivity information
is not used to enhance the model. The surrogates are solved
using a GA.

Table 1 gathers the results of the optimization process
with a constraint at each time step. Only ConLin is able to
give an acceptable optimal solution. Surrogate optimization
and GA give poor performances and a bad solution from an
engineering point of view, the minimum and the maximal
values are far from the bounds. GA needs 5.5 times more
function evaluations than the other algorithms while the

Table 1 Comparison of different optimization algorithms when a
local constraint formulation is adopted, i.e. a constraint at each time
step

Algorithm Bounds ConLin Surrogate GA

Mass [kg] / 5.0384 15.1304 11.6271

devmin [mm] −10 −10.00 −3.01 −2.97

devmax [mm] 10 8.656 2.13 2.51

Funct. Eval. / 135 214 711

optimal solution is not as good (11.6 [kg] against 5.04 [kg]
for ConLin).

Table 2 compares the results of the optimization process
with global constraints, one constraint for the maximum
positive deviation and one constraint for the maximum neg-
ative deviation. The results are better than the previous case
with a constraint at each time step. ConLin gives the same
optimal result while the best result is obtained with the
Surrogate algorithm, 0.3 % better than ConLin. GA gives
a better result than in the previous case but it is still far
from the solution obtained using the other methods despite
the larger number of function evaluations. However, GA
might give better results with a finer tuning of the algorithm
parameters.

Figure 12 shows the optimal configurations obtained
with ConLin and the Surrogate algorithm. The solution pro-
vided by ConLin seems better from an engineering point of
view.

5.1.3 Influence of the distance definition

As introduced in Section 4, the distance definition influ-
ences the optimization process. In order to study this impact,
a parametric study is conducted for different values of
the shape variables Z4 and Z7. The position distance is
described with the function �l while the normal distance is
expressed with �f as a signed distance is considered for the
latter distance formulation.

Figure 13 illustrates two situations where a constant ratio
of 2 between the two variables is considered. It can be
observed that the most important difference occurs during
the starting time. Indeed, due to the inertia effects, the tip
of the flexible robot has a delay compared to the tip of the

Table 2 Comparison of different optimization algorithms when a
global constraint formulation is employed

Algorithm Bounds ConLin Surrogate GA

Mass [kg] / 5.0384 5.0202 8.9895

devmin [mm] −10 −10.00 −9.98 −5.39

devmax [mm] 10 8.656 9.00 4.63

Funct. Eval. / 135 155 751
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Fig. 12 Comparison of two optimal configurations of the robot arms obtained with two different optimization algorithms: ConLin and the
Surrogate algorithms

rigid robot. This phenomenon is not rendered by the nor-
mal distance as this one only considers the perpendicular
distance between both spatial curves. However, the position
distance is able to capture this phenomenon as it includes
a time component. In general, when the inertia effects play
a role, the normal difference is not able to give appropriate
information.

From an optimization point of view, the position distance
also seems to be more suitable. In Fig. 14, the constraints for
each time step are superimposed which leads to the feasi-
ble design space. The shape of the feasible design space for
the position distance exhibits smoother features. Therefore,
this domain seems to be better adapted for the optimization
process.

To illustrate the previous observations, the mass opti-
mization of the robot is carried out with ConLin algorithm
and with only 2 design variables, Z4 and Z7. The initial
width of the arms is 50 [mm] and the goal is to mini-
mize the mass while the deviation of the tip has to be
kept under 1 [mm] at each time step. The optimal mass is
6.8025 [kg] with the normal distance and is 6.9323 [kg]
with the position distance. These results were expected due
to the fact that the normal distance is less restricting for the
optimization process as it gets rid of a time dependency.
With the normal measure, due to the non-smooth features
of the design space, more iterations are needed to obtain
convergence and oscillations may appear in the structural
responses.

(a)

(b)

Fig. 13 Evolution of the deviation between the ideal and the real
trajectories for 2 distance definitions



Optimization problem formulation for flexible components in MBS 1201

Fig. 14 Illustration of the feasible design space for: a Normal dis-
tance, b Position distance

5.2 Optimization of a connecting rod

5.2.1 Modeling of a slider-crank mechanism

The second numerical application consists in the shape
optimization of a connecting rod within a slider-crank
mechanism, which models a single-cylinder in a four-stroke
internal combustion diesel engine (Fig. 15). The material is
steel with a volumic mass of 7800 [kg/m3], a Young mod-
ulus of E = 210 [GPa] and a Poisson ratio of ν = 0.3.
The rotation speed of the crankshaft is 4000 [Rpm]. At this
rotation speed, the dynamic loading due to inertia forces
represents about 15 % of the loading at the top dead center.

The numerical simulation is conducted by imposing the
rotation speed of the crankshaft which goes from 0 to
4000 [Rpm] in 0.01 [s] in a kinematic simulation. After,
the dynamic analysis is performed: a period of 0.0025 [s] is
needed to stabilize the dynamic response, then the rotation
speed stays at 4000 [Rpm] during one cycle (0.03 [s]) where
the gas pressure is introduced. One complete four-stroke
cycle corresponds to a rotation of 720 [◦] of the crankshaft.
The pressure gas is known from experimental measurements
of a real diesel engine at 4000 [Rpm] and is introduced as
an external force in the multibody system.

The connecting rod has been modeled by plate elements
with a thickness of 12 [mm] since a 2D model is consid-
ered while the crankshaft is considered as a rigid body. The

Fig. 15 Slider-crank mechanism

piston is represented by its mass (0.456 [kg]) and by a cylin-
drical joint. The connecting rod is defined thanks to 7 shape
parameters (Fig. 16):

x = [D1 D2 R1 R2 R3 R4 R5]T . (27)

A transfinite mesh is used to mesh the connecting rod.
The components are linked with ideal kinematic joints. The
Chung-Hulbert time integration scheme is used with a fixed
time step 0.00025 [s] for the dynamic analysis.

Concerning the sensitivity analysis, this step is crucial for
this numerical application as the computation time is much
larger. In consequence, a semi-analytical method based on a
direct differentiation scheme is employed.

The connecting rod is subject to elongation during its
working and it is critical to know precisely this deformation
because it can destroy the engine if the piston bumps into
the valves.

For the definition of the function �f , a signed distance
indicator element is placed between the center of the crank
pin and the center of the piston pin. This element measures
the deformation of the connecting rod at each time step.

In the next section, the influence of the optimization
problem formulation on the convergence, the stability and
the robustness of the optimization process is investigated.
Gradient-based algorithms are considered for their effi-
ciency as the computation time of the MBS simulation
increases, and more particularly, GCM algorithm which is
an improved version of ConLin is adopted for its robustness.
As the service conditions of the connecting rod are known a
priori, the optimization problem formulation can take profit

Fig. 16 Parametric model of the connecting rod (in [mm])
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of this knowledge and a stress-based optimization can be
considered.

5.2.2 Investigation on the elongation constraint
formulations

The first formulation (28) suggests minimizing the mass
while the elongation constraints are taken into account at
each time step and must be kept locally under a certain
value.

minimize
x

m(x)

subject to �f (x, tn) ≤ �fmax

(28)

with n = 1, . . . , tend the index of the time steps and where
�fmax is equal to 0.015 [mm].

The signed distance formulation defined in Section 4
is adopted since the sign is essential. Indeed, the prob-
lem is to keep the elongation below a limit value while no
constraint is imposed on the compression. However, in com-
parison with the constraint in (18), only an upper bound
constraint is considered as there is no bound on the maxi-
mum compression which correspond to the minimum of the
�f function.

Accounting for an elongation constraint at each time step
gives a tight control on the design. However, the large num-
ber of constraints creates a design space quite complex for

(a)

(b)

Fig. 17 Formulation considering the constraints at each time step
(28): a Evolution of the mass, b Evolution of the maximum elongation
and of the maximal stress

the optimizer. Nevertheless, the elongation occurs only dur-
ing the transition between the exhaust phase and the intake
phase when there is no compression force and that the iner-
tia forces are very large. Thus, thanks to a selection process
of the active constraints embedded in Boss Quattro (the opti-
mization shell), the number of constraints retained for the
optimization process may be reduced.

The optimizer is able to converge in a monotonic and sta-
ble way (Fig. 17a). Nonetheless, the optimization process
continues until the predefined maximum number of itera-
tions even though the convergence of the objective function
seems to be reached. Observing the constraints in Fig. 17b,
the maximum elongation is lower than the upper bound.
This explains why the optimization process continues and
tries to further decrease the mass. Unfortunately, the very
sensitive design variables have reached their optimal value
whereas the less sensitive variables are still modified slowly.
This causes that the convergence of the problem is not
totally obtained and continues slowly towards the optimal
solution. This problem could be avoided by selecting a crite-
rion based on the variation of the objective function instead
of the variation of the variables. The CPU time for this opti-
mization process is about 5 hours and 30 minutes on a basic
laptop (Intel Core i7, QuadCore Q740, 1.73 GHz).

The second formulation proposed in (29) is similar to
the previous one except that the elongation constraints are
expressed with an absolute value. This formulation can offer
a faster convergence (12 iterations and CPU time about 2
hours) and a stable and monotonic convergence curve of
the objective function. The results are illustrated in Fig. 18.
Nevertheless, this formulation is not totally suitable to solve
this problem as the sign of the displacement is important
here. Indeed, a positive number denotes an elongation while
a negative one stands for a compression. In a combustion
engine, the compression of the connecting rod is much
larger than its elongation and therefore, with this formula-
tion, the optimizer will focus on the compression but not
on the elongation. However, as this formulation imposes
indirectly a limit on the maximal deformation, the prob-
lem can be solved indirectly but the major difficulty is to
determine the upper bound value �fmax to obtain a maxi-
mal elongation of 0.015 [mm] as this formulation mixes the
compression and the elongation phenomena.

minimize
x

m(x)

subject to |�f (x, tn)| ≤ �fmax

(29)

where �fmax is equal to 0.21 [mm].
The formulations proposed in (28)–(29) are local formu-

lations where the constraints are considered at each time
step. The next two formulations are global formulations, i.e.
a constraint sums up the constraints for all time steps.
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(a)

(b)

Fig. 18 Formulation considering the absolute value of the constraints
(29): a Evolution of the mass, b Evolution of the maximum elongation
and of the maximum value of the constraint

The first global formulation (30) is expressed with a Max
function which selects the maximum elongation amongst all
time steps.

minimize
x

m(x)

subject to max
n

�f (x, tn) ≤ �fmax.
(30)

Using the Max formulation, the behavior of the con-
straint function evolution with respect to the design vari-
ables becomes non-smooth. However, it is straightforward
to impose the upper bound value on the elongation con-
straint. In Fig. 19a, the convergence curve is monotonic
and stable. However, the same phenomenon as in the first
formulation appears where some design variables, not very
sensitive, keep on evolving, which prevents the process from
ending. The CPU time is about 2 hours and 30 minutes
which gives a gain of 3 hours compared to the formulation
in (28). The optimal design of the connecting rod is illus-
trated in Fig. 20. Nevertheless, it should be pointed out that
the maximum elongation occurs at nearly the same time
step during all the optimization process and therefore, the
non-smooth behavior is almost negligible.

(a)

(b)

Fig. 19 The first formulation considers the maximum elongation of
the constraints (30) and the second one the mean value of the elon-
gation constraints (31): a Evolution of the mass, b Evolution of the
elongation

(a) (b)

Fig. 20 Optimal design of the connecting rod for the Max formulation
(30): a Initial design, b Optimal design
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The second global formulation (31) takes the elongation
constraints at each time step into account but summa-
rizes them in one constraint thanks to a Mean function as
following

minimize
x

m(x)

subject to
1

tend

tend∑
n=0

|�f (x, tn)| ≤ �lmax.
(31)

This formulation has also the advantage of reducing the
number of constraints but has also the same problem as
in the formulation (29) concerning the upper bound value.
Indeed, there is no clear relation between the maximal elon-
gation and the mean deformation. It is tricky to determine
the value of the upper bound in order to get the maximum
elongation under 0.015 [mm]. The problem due to the small
sensitivities of some variables is also present (Fig. 19a). The
CPU time is similar to the Max formulation (30).

If we compare these global formulations (Fig. 19),
their behavior is the same: they are stable and monotonic.
The difference is due to the difficulty of determining the
upper bound value of the global constraint when the con-
straints at each time step are aggregated with an average
formulation.

5.2.3 Investigation on the problem formulation with stress
constraints

The second part is dedicated to the optimization taking
stresses into account. To better capture the stresses and to
obtain reliable values of the stress concentrations, the mesh
has been refined. Nevertheless, the influence of the mesh
refinement is studied.

A stress constraint imposed at each time step for each ele-
ment is not reasonable. Indeed, considering a coarse mesh
with 600 elements and 120 time steps for the complete
cycle, it leads to 72000 restrictions. The trick is that a crit-
ical instant is observed for this mechanism as the behavior
is cyclic and known a priori. When the explosion occurs,
the stresses strongly increase and therefore, the optimization
can be bond on stresses at this instant only. In the present
case, the critical time step does not evolve with the optimiza-
tion process. However, the analysis could be easily extended
to account for several time steps in the neighborhood of the
initial critical time step.

The adopted formulation (32) is to minimize the mass
while the stresses at the critical time are kept under σmax =
550 [MPa] using

minimize
x

m(x)

subject to σ (x, P, tcrit ) ≤ σmax

(32)

where vector P gathers all the finite element of VE .

(a)

(b)

Fig. 21 Minimization of the mass with stress constraints (32): a Evo-
lution of the mass, b Evolution of the maximum elongation and the
maximal stress

When the mesh is rather coarse (600 elements), the
convergence is fast, monotonic and is achieved within a rea-
sonable number of iterations. However, when the mesh is
refined, from 600 to 3832 elements, the convergence is not
monotonic anymore (Fig. 21a). After a descent part, the
mass slightly increases with oscillations and then stabilizes.
As the stress concentrations are better captured, it is normal
that the optimized mass is a little bit heavier.

Concerning the stress constraints (Fig. 21b), it is
observed that the maximal stress, for the coarse mesh, goes
until the limit and activates the constraint until the end of
the process. For the refined mesh, the maximal stress vio-
lates the constraint during the oscillating part of the process
and then reaches and gets stuck to the upper bound of the
constraint. It is interesting to notice that, as the number of
constraints increases and makes the optimization problem
more complex, the middle part of the optimization process
oscillates. The gradient-based method has more difficul-
ties to find the way of convergence. However, even if the
optimization process is slower, the process converges.

The CPU time for one simulation with the coarse mesh is
175 [s] while the CPU time is 280 [s] with the refined mesh.

To help the convergence of the process, a two-step strat-
egy may be employed. First, the optimization is run with
the coarse mesh until convergence and then these optimal
design variables are introduced as the initial starting point
for the optimization with the finer mesh.
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(a)

(b)

Fig. 22 Minimization of the mass with stress constraints and an unfea-
sible starting point (32): a Evolution of the mass, b Evolution of the
maximum elongation and the maximal stress

5.2.4 The feasibility of the starting point

For the previous optimization processes, the starting points
were always chosen feasible due to the observation that
gradient-based methods converge more easily with a feasi-
ble starting point. However, it is not always straightforward
to find a feasible starting point. This last case investigates
the previous optimization process (32) with an unfeasible
starting point. It turns out that the optimization process con-
verges for the coarse mesh even if the starting point is
unfeasible. The process needs 4 more iterations (Fig. 22).
An interesting point is that, beginning with two different
starting points, very far from each other in the design space,
leads to the same optimal solution. This may indicate that
the optimal solution could be considered as a global opti-
mal solution. Nevertheless, concerning the finer mesh for
which the convergence is not monotonic and not stable with
a feasible starting point, the optimization process does not
converge for a unfeasible starting point.

6 Conclusions and perspectives

Optimization of structural components is carried out in the
framework of flexible multibody simulations. This approach
has several advantages compared to a quasi-static approach.
First, this approach follows a natural evolution of virtual

prototyping and computational mechanics in which the aim
is to define as precisely as possible the loading conditions
of the different bodies under service. Second, this method
takes properly into account the dynamic coupling between
large overall rigid-body motions and deformations. Only
one dynamic analysis is required by the optimizer per itera-
tion and design-dependent loads can be considered. Finally,
the objective function and the design constraints can be
defined with respect to the actual dynamic problem. The
system-based approach presented here offers more possi-
bilities than an isolated component optimization approach
since it is able to capture more complex and coupling
behaviors.

The fully integrated approach for the optimization of
flexible components in MBS has been validated by Brüls
et al. (2011) with the topology optimization of truss compo-
nents in MBS. This study pointed out that the formulation
is essential for the stability of the optimization of dynamic
problems and the formulation has to be well-suited to the
actual dynamic problem.

This work has proposed and compared several optimiza-
tion problem formulations. Local and global formulations
have been investigated. When considering a constraint at
each time step, the control of the design is very accu-
rate but the problem becomes so complex that algorithms
developed in structural optimization may have difficulties to
find feasible optima. Robustness seems to be improved by
using global constraints. The Max formulation, despite its
non-smooth behavior, simplifies the design space configu-
ration and may allow a faster convergence if the non-smooth
behavior is small and if the generated oscillations stabi-
lize rapidly. However, even if global constraints increase the
robustness, a Mean formulation is not suitable if the control
at each time step needs to be strictly guaranteed.

When comparing the actual behavior of a mechanism to
its ideal one, the comparison function definition is essential
and the influence of two different definitions has been stud-
ied. It turns out that from a physical and an optimization
points of view, it is more suitable to compare the behavior
when the definition considers synchronized times. Indeed,
this consideration introduces a time component and the iner-
tia effects are correctly taken into account. A definition
based on the normal distance between two spatial curves,
for instance the trajectories of the robot tip, is not conve-
nient as the inertia effects are omitted due to the lack of
a time component. Furthermore, considering synchronized
times makes the design space configuration smoother than
with a normal distance formulation and it therefore offers
more easiness for gradient-based algorithms.

Optimization with stress constraints has been realized
in a case where the critical instant is known a priori. The
optimization process converges and a quite large number
of stress constraints can be taken into account. Moreover,
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an analysis of the mesh refinement influence has been con-
ducted as well as an investigation on the feasibility of the
starting point. It turns out that the optimizer is able to con-
verge from an unfeasible starting point when the mesh is
relatively coarse.

Different kinds of optimization algorithms have also
been tested: gradient-based (ConLin, GCM, SQP) and
meta-heuristic algorithms (GA, SBO). Surprisingly, Con-
Lin which is the less sophisticated algorithm, gives the
best performances for the 2-dof robot. Concerning the sec-
ond application, GCM outperforms all the other algorithms.
It appears that conservative approximation techniques may
fail in case of very complex design spaces as encoun-
tered in dynamic loading problems when strong interactions
between the design variables are present.

At the light of the results, a future work will be to find
out innovative optimization problem formulations to tackle
such complex and nonlinear problems as faced here. A sec-
ond point will be to re-investigate structural optimization
methods to better handle the optimization of these difficult
problems.
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