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Abstract In topology optimization, restriction methods are
needed to prohibit mesh dependent solutions and enforce
length scale on the optimized structure. This paper presents
new restriction methods in the form of density filters. The
proposed filters are based on the geometric and harmonic
means, respectively, and possess properties that could be of
interest in topology optimization, for example the possibil-
ity to obtain solutions which are almost completely black
and white. The article presents the new filters in detail, and
several numerical test examples are used to investigate the
properties of the new filters compared to filters existing in
the literature. The results show that the new filters in several
cases provide solutions with competitive objective func-
tion values using few iterations, but also, and perhaps more
importantly, in many cases, different filters make the opti-
mization converge to different solutions with close to equal
value. A variety of filters to choose from will hence provide
the user with several suggested optimized structures, and
the new filters proposed in this work may certainly provide
interesting alternatives.
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1 Introduction

In topology optimization, it is well known that to ensure
mesh independence of solutions and prohibit modelling
problems such as checkerboards, measures have to be taken.
A method used in many applications is the sensitivity fil-
ter (Sigmund 1997), wherein a smoothing filter is applied
to the derivatives of the objective function. This method has
proven to work well in practice, making solutions mesh-
independent and free from checkerboards. Another way of
dealing with the problem is to use a density filter. Density
filters restrict the possible solutions by separating the design
variables, controlled by the optimizer, from the actual den-
sity variables. The filter is a function that, for given values
on the design variables, gives a density distribution. By
choosing the filter function in an appropriate way, unwanted
features, for example checkerboards, can be eliminated from
the solution. The filter also introduces a length scale to
the problem, which can make the solution mesh indepen-
dent. The linear density filter (Bruns and Tortorelli 2001;
Bourdin 2001), is an example of such a filter, and while
it does give good convergence properties, it produces solu-
tions with large gray areas. In some cases, this can be a
problem, and several other filtering techniques have been
suggested to give more black and white solutions, for exam-
ple using continuous forms of max or min operators. One
example which has proved successful in producing discrete
solutions is the Heaviside filter (Guest et al. 2004), which
works by first applying the linear density filter, and then
projecting the resulting density according to a continuous
approximation of a Heaviside function. Sigmund proposes
a new family of “morphological filters (Sigmund 2007),
and compares them to a number of other density filters,
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concluding that an issue with both the morphological and
the Heaviside filters is the need for a careful continuation of
a filter parameter, successively altering the behaviour of the
filter from linear to nonlinear, making the number of itera-
tions quite large. Recent developments (Guest et al. 2011)
suggest solver parameters that reduce the need for continu-
ation; since the proposed filters allow large changes of the
density distribution as a result of small changes in design
variables, the length of the steps taken by the solver should
be restricted.

Using the linear density filter, the filtered density of an
element can be regarded as a weighted arithmetic mean of
the design variables in its neighbourhood. In this paper,
we explore the idea of instead using the geometric mean
or the harmonic mean, which have some properties that
could be beneficial for topology optimization. The new fil-
ters are compared to some previously presented filtering
techniques using three examples, and some differences are
pointed out.

2 Background

There are already several filters suggested in the literature,
see Section 3 below, why consider some more? In an attempt
to answer this question, a short background on filters and
topology optimization is first repeated.

2.1 The relaxation and penalization (RP) approach
for topology optimization

A commonly used solution approach for topology optimiza-
tion problems with binary design variables is the relax-
ation/penalization (RP) approach in which first the binary
constraints on the variables are relaxed and then variables
which are strictly between zero and one are penalized in an
attempt to drive them (almost) binary. The most well-known
method based on this approach is SIMP, (Bendsøe and
Sigmund 1999), in which “gray” elements, corresponding
to design variables strictly between zero and one, are penal-
ized by decreasing their stiffness-to-weight ratio. Related
RP approaches are suggested in, e.g., (Stolpe and Svanberg
2001a) and (Borrvall and Petersson 2001).

The main advantage of an RP approach is that some
gradient-based nonlinear programming (NLP) method can
be used for solving the corresponding optimization problem
with continuous design variables. An inevitable drawback,
however, is the fact that the penalization of gray elements
makes the optimization problem intrinsically nonconvex,
with possibly a large number of different locally opti-
mal solutions. Since no NLP method, or optimality critera
(OC) method, is able to find anything better than a locally

optimal solution to a nonconvex problem of realistic size,
the user must accept that RP approaches are in this sense
heuristics.

Consequently, there are no theoretical results of how
“well” a certain RP approach solves various topology opti-
mization problems, simply because it is virtually impossible
to control which local optimum the underlying NLP method
will converge to. It is not very difficult to find test exam-
ples where a small change of the move limiting parameter
in the underlying NLP or OC method, or a small change
of the starting point, results in a different final structure
with even a different number of holes. Attempts have been
made to gradually and slowly increase the penalty, but this
does not help in general since the trajectory of globally
optimal solutions when (e.g.) the SIMP penalty parame-
ter increases may be discontinuous with large jumps, see
(Stolpe and Svanberg 2001b). Nevertheless, the success of
SIMP is indisputable, with repeated good experiences by
numerous users over the years.

2.2 The role of the filter in RP approaches

Without filter, the NLP method typically ends up in a solu-
tion to the RP problem which is more or less worthless
from a practical point of view since it corresponds to a scat-
tered structure with too thin structural parts and/or too many
small holes, e.g. checkerboards. The purpose of the filter
is to modify the RP problem (by restricting the set of fea-
sible solutions) in such a way that the NLP method, when
applied to this modified problem, tends to find a solution
corresponding to a useful structure. Ideally, the filter should
also help the underlying NLP method to end up in a local
optimum with low objective value! But since there are no
scientific results on how a filter should accomplish such a
task, the value of a new filter must be judged on experience,
i.e. how it seems to work in practice. A natural first test is
to apply new filters on various academic problems.

2.3 Why suggest new filters?

There are two main reasons for suggesting certain new
filters in this study.

First reason There are some natural filters missing in
the topology optimization literature, namely filters based
on the second and third Pythagorean means (geometric
mean and harmonic mean). Since, so far, only the first
Pythagorean mean (arithmetic mean) has been considered,
it seems inevitable to investigate the missing Pythagorean
filters, in particular since they possess some theoreti-
cal properties which might be advantageous for topology
optimization.



Density filters for topology optimization based on the Pythagorean means 861

Second reason It may be argued that an extensive “fil-
ter tool box” is in practice better than a small one. Then
main argument goes as follows: When topology optimiza-
tion is applied in practice for designing a new structure,
the most demanding task for the user is to formulate the
problem in a correct and well-defined way. This includes
setting up a reasonable FE-model, and specifying relevant
load cases, boundary conditions, objective function, and
constraint functions. When this has been done, a topology
optimization software can be applied to calculate an “opti-
mal” solution. But then, if a filter tool box is available,
it takes just a small additional effort to solve the consid-
ered problem several times with alternative filters. Since the
penalized problem is nonconvex, and since different filters
restrict the set of feasible solutions in different ways, this
repetition will typically provide the user with several differ-
ent “optimal solutions”, each corresponding to a (hopefully
clever) suggestion of how the structure should be designed.
Since there are almost always some aspects which are not
properly considered by the optimization model, like manu-
facturing aspects, it should be valuable for the user to have
more than one suggestion to choose between before further
post processing. This does not mean that any filter should be
included in the tool box, but if a new filter is able to, on at
least some nontrivial test problems, obtain relevant topolo-
gies and/or geometries not obtained by other filters, then
this new filter should be a candidate for inclusion. In fact,
the different filters considered in this study do indeed pro-
duce different solutions on the considered test problems. In
particular, this holds for the suggested “Pythagorean” filters.

3 Some existing filters

In standard topology optimization, there is a density vari-
able ρj associated with each element j in the finite element
model of the design space. The physical properties of the
element, that is, the mass density and the stiffness, are
then controlled by this density variable via some interpola-
tion scheme, e.g. SIMP(Simplified Isotropic Material with
Penalization) (Bendsøe and Sigmund 1999). When using a
filter, variables called ρ̃j are introduced, related to the vari-
ables ρj through a function called a filter as ρ̃ = F(ρ),
where ρ and ρ̃ are vectors containing the respective vari-
ables ρj and ρ̃j for all elements. The quantity ρ̃j , identified
as the physical density of element j, is then used to interpo-
late material properties, while the ρj , now denoted design
variables, are to be interpreted as non-physical variables
controlling the structure indirectly. All evaluations of struc-
tural behaviour are performed using the physical densities
ρ̃j . The optimizer is controlling the structure indirectly via
the design variables ρj , and all derivatives are therefore
calculated through the chain rule.

3.1 Linear density filter

The linear density filter (Bruns and Tortorelli 2001; Bourdin
2001) can be described by:

ρ̃i =
∑

j

wij ρj , (1)

where wij are weighting factors based on the distance
between element i and element j. A reasonable requirement
is that if all of the design variables are equal to a certain
value, then the filtered density should also obtain this value.
This motivates the condition:
∑

j

wij = 1 , ∀i, (2)

which will be used throughout this article. The weighting
factors are normally taken �= 0 in some neighbourhood Ni

of element i, and equal to zero outside the neighbourhood.
The neighbourhood is usually taken circular (although this
does not necessarily have to be the case), and its radius is
commonly known as the filter radius, or simply R, in which
case Ni = {j : d(i, j) ≤ R}, where d(i, j) is the dis-
tance between the centroids of element i and j. Two choices
of weight factors are studied in this work, constant weights,
where all weight factors in the neighbourhood are taken
equal, and conic weights, taken as linearly decaying out-
wards from the neighbourhood center. Constant weights are
defined by:

wij =
{

1
|Ni | j ∈ Ni

0 j /∈ Ni

, (3)

where |Ni | is the number of elements in the set Ni . Conic
weights are defined by:

wij =
⎧
⎨

⎩

R−d(i,j)∑
k∈Ni

(R−d(i,k))
j ∈ Ni

0 j /∈ Ni

(4)

3.2 Sensitivity filter

The original sensitivity filter (Sigmund 1997), is not a
density filter in the sense indicated above. No filtering is
conducted regarding the density itself, hence ρ̃ = ρ. How-
ever, the sensitivities (derivatives) of an objective function
φ, are filtered, using:

∂̃φ

∂ρi

=
∑

j∈Ni

∂φ
∂ρj

wij ρj

ρi

. (5)

This modification of the derivatives has proven to be effec-
tive in producing mesh-independent solutions.
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3.3 Morphology-based filters

Sigmund proposes two morphology-based filters called
Dilate and Erode (Sigmund 2007), both using continuous
approximations of, respectively, the max and min operator.
The Dilate filter is formulated as:

ρ̃i = log

(∑
j∈Ni

eβρj

|Ni |

)
/β = log

⎛

⎝
∑

j

wij eβρj

⎞

⎠ /β, (6)

where the weights used by Sigmund are constant, but could
well be of for example cone type. The filter could also be
stated as:

eβρ̃i =
∑

j

wij eβρj . (7)

The erode filter is the opposite of the dilate filter, switching
white to black by replacing ρ with 1−ρ, and ρ̃ with 1−ρ̃:

1− ρ̃i = log

⎛

⎝
∑

j

wij eβ(1−ρj )

⎞

⎠ /β. (8)

In the limit where β gets large, the dilate/erode filters turn
to max/min operators. For β approaching zero on the other
hand, the filters converge to the linear density filter.

3.4 Heaviside filters

Guest et al. (2004) propose a filter for obtaining 0/1 solu-
tions, based on a continuous approximation of a Heaviside
step. The design variables, ρ, are first filtered using the lin-
ear density filter (1), and the result is then mapped to a
physical density by a Heaviside approximation:

ρ̃i = 1− e−β
∑

j wij ρj + e−β
∑

j

wij ρj , (9)

where β is a parameter controlling the approximation of the
Heaviside step. For β equal to zero, the filter turns into the
linear density filter, whereas for β approaching infinity, the
mapping turns into a Heaviside step, meaning that if any
design variable in the neighbourhood is larger than zero, the
physical density is equal to one. This behaviour resembles
that of the Dilate filter, which suggests that this filter could
be named the “Heaviside Dilate”. Note that instead of the
nodal design variables used by Guest et al, in this work,
as done by Sigmund (2007), elemental design variables are
used to make comparisons between the filters fair.

Switching ρ with (1 − ρ), and ρ̃ with (1 − ρ̃), we get
the ”modified Heaviside filter”, as proposed by Sigmund
(2007):

1−ρ̃i = 1−e−β(1−∑j wij ρj )+e−β

⎛

⎝1−
∑

j

wij ρj

⎞

⎠ . (10)

This filter is the opposite of the Heaviside filter, still con-
verging to the linear density filter as β goes to zero, but
having the property that for beta tending to infinity, the
physical density is set to zero unless every design variable
in the neighbourhood has value 1.

Since the behaviour for large β and binary design vari-
able distributions is similar to the morphological Erode
filter, which is approximating the min operator in each
neighbourhood, we will refer to this filter as the “Heavi-
side Erode”. To avoid confusion, the morphological filters
suggested by Sigmund will hereby be denoted “Exponential
Dilate” and “Exponential Erode”, respectively.

4 Two filters based on the geometric mean

Using the linear density filter, the density of an element is
defined as a weighted arithmetic mean of the design vari-
ables in the neighborhood. It it natural to consider other
means, for example the geometric mean. A filter based on
the geometric mean can be formulated as:

ρ̃i =
∏

j∈Ni

ρ
wij

j . (11)

It is clear from the definition that if any design variable in
the neighborhood is equal to zero, the filtered density will
be zero. This suggests that this filter will be able to create
more black and white structures than the linear density filter.
The filter can be rewritten as:

log(ρ̃i ) =
∑

j

wij log(ρj ). (12)

Since taking the logarithm of zero is not defined, we intro-
duce a positive parameter, α:

log(ρ̃i + α) =
∑

j

wij log(ρj + α). (13)

For α approaching infinity, it can be shown that the filter
is equivalent to the linear density filter, with smooth tran-
sitions between black and white. Since the behaviour for
small α is similar to the Exponential erode filter, we will
refer to this filter as the “Geometric Erode”. Note however,
that the geometric erode filter is not in general an approx-
imation of a min operator, the behaviour is only similar to
that of the Exponential erode filter for binary design variable
distributions.

When α = 0, the derivative of an objective function φ

with respect to the design variables using the new filter is,
by the chain rule:

∂φ

∂ρi

=
∑

j
∂φ
∂ρ̃j

wji ρ̃j

ρi

. (14)
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Fig. 1 An illustration of the behaviour of the geometric filters in one
dimension

Recalling (5), we see that (14) is almost the derivatives
obtained by using the sensitivity filter:

∂̃φ

∂ρi

=
∑

j
∂φ
∂ρj

wij ρj

ρi

. (5)

Thus, the sensitivity filter gives “almost” the derivatives of
the objective function obtained by applying the geometric
erode filter.

By switching ρ and ρ̃ with 1−ρ and 1−ρ̃ in (13), a second
geometric filter is obtained:

log(1− ρ̃i + α) =
∑

j

wij log(1− ρj + α). (15)

This filter does the opposite, that is, for α = 0, any black
pixel will be filtered to a black circle with radius equal to
the filter radius. This behaviour resembles that of the Expo-
nential dilate filter, which suggests that this filter could be
named the “Geometric Dilate”. The behaviour of the geo-
metric filters can be studied in a one-dimensional example
in Fig. 1, where the geometric filters have been applied to a
one dimensional example with 100 elements. Elements 1–
50 have ρi = 1, while elements 51–100 have ρi = 0. The
filter radius is 30 elements, and constant weights are used.

5 Two filters based on the harmonic mean

Another possible filter can be defined by the weighted
harmonic mean:

1

ρ̃i

=
∑

j

wij

ρj

. (16)

This filter also has the property that one design parameter
equal to zero in the neighbourhood of an element gives that

element zero density, which leads us to name this filter the
“Harmonic Erode”.

To avoid division by zero, again, we introduce the param-
eter α:

1

ρ̃i + α
=
∑

j

wij

ρj + α
. (17)

As above, we also define the reverse filter, “Harmonic
Dilate”, filtering a black pixel to a black circle, according
to:

1

1− ρ̃i + α
=
∑

j

wij

1− ρj + α
. (18)

The behaviour of the harmonic filters is shown in Fig. 2,
where the setting is the same as in Fig. 1.

It holds generally that the harmonic mean is smaller than
the geometric mean, which in turn is smaller than the arith-
metic mean, which would imply that this filter will give
even more discrete solutions than the geometric filters. This
is illustrated in Fig. 3, where the same one-dimensional
example as in Figs. 1 and 2 is studied for different val-
ues of α. The Measure of Discreteness (Mnd ), defined as in

(Sigmund 2007): Mnd =
∑n

j=1 4ρ̃j (1−ρ̃j )

n
× 100 %, is shown

for different values of α. For large values of α, the two filters
converge to the linear density filter, with a quite substantial
amount of gray in the filtered density. For α approaching
zero, the filters both should be completely discrete, how-
ever, the harmonic filter approaches this limit more rapidly
than the geometric filter. It should also be pointed out that
for both filters, as α approaches zero, the usage of con-
stant weights wij reduces the amount of gray in the solution,
opposite to the effect observed with the linear density fil-
ter, where constant weights lead to a less discrete solution.

Fig. 2 An illustration of the behaviour of the harmonic filter in one
dimension
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Fig. 3 The discreteness of the new filters in a one-dimensional
example, as a function of the parameter α

For comparison, the same measure is shown in Fig. 4 for
the Exponential and Heaviside erode filters. The same con-
clusions apply: for low β values, the filters converge to the
linear density filter, and conic weights give the more dis-
crete solution, while for high β values, constant weights
give more discrete results. To complete the investigation
of the properties of the new filters, a study of the mesh
independence obtained using the new filters is reported in
Appendix A.4.

5.1 Derivatives

Since we ultimately aim to solve the topology optimiza-
tion problem using numerical methods, it of interest that

Fig. 4 The discreteness of the Exponential and Heaviside Erode filters
in a one-dimensional example, as a function of the parameter β

the problem formulation is chosen in such a way that
the numerical solver works in an efficient manner. For
example, if the derivatives of the objective function or
constraints take on very large values, this could cause
numerical problems. Also, very large derivatives indicate
the problem is very sensitive, and step length constraints
or other measures may have to be taken in order to ensure
convergence. It may therefore be assumed, that it is ben-
eficial for the filter operator chosen to have bounded
derivatives.

When using the sensitivity filtering proposed by Sig-
mund, the calculation of the filtered sensitivities involves
dividing by the density, which creates problems when
considering elements with density equal to zero. When
using the modified SIMP method, the density variable is
allowed to take on the value zero, making it necessary
to replace the density in the denominator by the expres-
sion max(ρj , ε), which causes a non-smoothness of the
derivative. For the geometric and harmonic filters, when the
derivatives are calculated, division is made with (α + ρj ),
which for small α could be a problem. One would sus-
pect that derivatives tending towards infinity would be a
problem for the optimizer, and therefore, the value of the
largest filter derivative, maxi,j

δρ̃i

δρj
has been studied in the

one-dimensional setting used above, see Fig. 5. As can be
seen, for small α the derivatives of the geometric erode
filter become very large, while the derivatives of the har-
monic erode filter stay bounded as α tends to zero. This
fact can also be shown algebraically: the harmonic filter is
described by:

1

ρ̃i + α
=
∑

j

wij

ρj + α
. (19)

Fig. 5 The value of the largest filter derivative as a function of α
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Multiplication on both sides with ρk + α gives:

ρk + α

ρ̃i + α
= wik +

∑

j �=k

wij

ρk + α

ρj + α
> wik. (20)

But the derivative of the filter, ∂ρ̃i

∂ρk
, is wik(

ρ̃i+α
ρk+α

)2. Using
(20), we get that

∂ρ̃i

∂ρk

= wik

(
ρ̃i + α

ρk + α

)2

< wik

(
1

wik

)2

= 1

wik

. (21)

Hence, the largest derivative of the filter is bounded by the
inverse of the smallest (non-zero) weight factor, and the
bound is independent of α. A consequence of this is that for
the same filter radius, constant weights should provide for
smaller derivatives, as opposed to conic weights.

It should be noted that the exponential filters also possess
the property of having bounded derivatives as β grows large,
but the geometric filters do not in general have this property
when α goes to zero, and the Heaviside filters do not have
this property as β grows large.

6 Convexity and concavity properties of the filters

The filter (1) above is called linear since each density ρ̃i

is a linear function of the variable vector ρ. The eight
dilate/erode filters described above are clearly nonlinear in
this respect, but a closer examination reveals that the three
dilate filters (6), (15), (18) and the Heaviside erode filter
(10) are in fact convex density filters (each ρ̃i is a convex
function of ρ), while the three erode filters (8), (13), (17)
and the Heaviside dilate filter (9) are concave density filters
(each ρ̃i is a concave function of ρ).

These properties can be proven by showing (analyti-
cally) that the Hessian matrix ∇2ρ̃i(ρ) is always positive
semidefinite for the four convex filters, and always negative
semidefinite for the four concave filters.

More precisely, if ρ̃i (ρ) is given by (6), (10), (15) or (18),
then

yT∇2ρ̃i(ρ)y =
∑

j

∑

k

∂2ρ̃i

∂ρj ∂ρk

yjyk ≥ 0,

for all y ∈ �n and ρ ∈ [0, 1]n, (22)

while if ρ̃i (ρ) is given by (8), (9), (13) or (17), then

yT∇2ρ̃i(ρ)y =
∑

j

∑

k

∂2ρ̃i

∂ρj ∂ρk

yjyk ≤ 0,

for all y ∈ �n and ρ ∈ [0, 1]n. (23)

The proofs of (22) and (23) are left to an appendix.

Three implications of these properties are the following:

1. For each of the convex filters, the volume
∑

i ρ̃i (ρ) is a
convex function of ρ, so that the feasible region induced
by a volume constraint is a convex set.

2. For each of the concave filters, the compliance without
penalization (p = 1 in SIMP) is a convex function of
ρ. This follows since the stiffness of each element is
concave in ρ, see proposition 1 in (Stolpe and Svanberg
2001a).

3. For each of the four concave filters, the volume∑
i ρ̃i (ρ) is a concave function of ρ. This implies that

the MMA approximation of the volume will always be
“conservative”, so that the optimal solution of the MMA
subproblem will always satisfy the original volume
constraint.

Although the authors have not been able to explic-
itly utilize these convexity/concavity properties further
in this study, they are still presented since they might
cast some light on the nature of the considered filters.

7 Test examples

The new filters have been tested on three different test
examples, and their performance has been compared to the
original sensitivity filter, the linear density filter, the two
morphological filters “Exponential Dilate” and “Exponen-
tial Erode” and the two Heaviside filters. The chosen test
examples are a compliance minimization problem, a mech-
anism synthesis problem chosen similar to that in (Sigmund
2007), and a stress minimization problem chosen similar to
that solved in (Le et al. 2010).

As indicated in Section 2, there is no way of proving that
one filter compared to another will always give better solu-
tions. The intent of the examples is rather to show that for
some problems, the new filters obtain solutions which are
in some way better than the ones obtained with other filters.
Also, in several of the test problems, the different filters end
up in rather different local optima, although they do not dif-
fer much in objective function value. This may in fact be
beneficial: If the solution obtained using one filter is not
satisfying, one may simply switch to a different filter and
possibly obtain a more useful solution.

The standard density based approach for topology opti-
mization has been used, with element-wise constant densi-
ties. The modulus of elasticity for each element is interpo-
lated using the modified simplified isotropic material with
penalization (SIMP) scheme:

Ei = E(ρ̃i) = Emin + ρ̃
p

i (E0 − Emin), (24)

with Emin = 10−9 and E0 = 1. The discretization is made
using four node finite elements, and the implementation is
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done in MATLAB, using the “88-line code” of Andreassen
et al. (2011). The optimizer used is the MATLAB version of
the method of moving asymptotes, MMA (Svanberg 1987),
with default values on all parameters, except for the addi-
tion of a move limit 0.2 on each variable in each iteration,
implemented through the parameters alfa and beta in the
subroutine mmasub.m. (The same move limit as used in
the OC method of the “88-line code” of Andreassen et al.
(2011)).

7.1 Test problem 1: Compliance minimization

In the first test problem, the sum of the compliances corre-
sponding to four different load cases is minimized subject
to a volume constraint. Three different weightings of the
four load cases are studied, leading to test problems 1a, 1b
and 1c.

The design domain consists of 140×140 = 19600 square
finite elements and 141 × 141 = 19881 nodes with coor-
dinates (x, y), where x ∈ {−70,−69, . . . , 69, 70} and y ∈
{−70,−69, . . . , 69, 70}. There are 18 degrees of freedom
which are fixed to zero, namely the degrees of freedom cor-
responding to the nine nodes with coordinates (x, y), where
x ∈ {−1, 0, 1} and y ∈ {−1, 0, 1}. In each of the four load
cases, there are applied forces at each of the twelve nodes
with coordinates (xi, yi) according to Table 1. Note that
(30, 52) ≈ 60 · (1/2,

√
3/2), which means that the twelve

nodes are located approximately on the boundary of a cir-
cle with radius 60 (with one “hour” between each node).
The force (Fxi, Fyi) applied at (xi, yi) for the different load
cases is defined in Table 2 and shown in Fig. 6, and the load
coefficients in Table 2 are chosen according to Table 3.

The optimization problem can be formulated as:

min
ρ

4∑

	=1

fT	u	(ρ) (25)

s.t.

{∑n
i=1 ρ̃i (ρ) ≤ V ∗

ρ ∈ [0, 1]n (26)

where, for a given ρ ∈ [0, 1]n, u	(ρ) is obtained as the
solution to:
⎛

⎝
n∑

j=1

(E(ρ̃j (ρ))Kj

⎞

⎠u	 = f	, (27)

Table 1 Coordinates for applied forces

i 1 2 3 4 5 6 7 8 9 10 11 12

xi 30 52 60 52 30 0 −30 −52 −60 −52 −30 0

yi 52 30 0 −30 −52 −60 −52 −30 0 30 52 60

Table 2 Load definitions

Load case: 1 2 3 4

Fxi c1yi c2xi c3yi c4xi

Fyi −c1xi c2yi c3xi −c4yi

where u	 and f	 are the displacement and force vectors cor-
responding to load case i, and Kj is the stiffness matrix of
element j. The physical densities ρ̃j are obtained from one
of the (1), (6), (8), (9), (10), (13), (15), (17), (18) or, if using
the Sensitivity filter, ρ̃j = ρj .

In this test problem, the chosen value of the penalty
parameter in SIMP is p = 4. Moreover, all the ten consid-
ered filters use conic weights with filter radius 2.4 elements
(= 4 % of the radius of the “circle of loads”). Concerning
the convergence criterion, the iterations are stopped when
no variable has changed by more than 0.001 since the pre-
vious iteration, which is somewhat harder than the more
commonly used 0.01.

When minimizing compliance, the objective value of an
obtained solution is very sensitive to the amount of gray
structure, which in turn is sensitive to the values of the
parameters α (in the harmonic and geometry filters) and β

(in the exponential and Heaviside filters). Moreover, the lin-
ear density filter almost always comes out as a loser when
comparing objective value, even though the generated topol-
ogy and geometry may be very good, simply because the
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−50 0 50

−50
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−50 0 50

−50

0
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−50 0 50

−50

0
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Fig. 6 The four load cases
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Table 3 Load coefficients

c1 c2 c3 c4

Test problem 1a: 0.0001 0.01 0.01 0.01

Test problem 1b: 0.0001 0.02 0.01 0.01

Test problem 1c: 0.0001 0.02 0.02 0.01

amount of (heavily penalized) gray structure is larger than
for the other filters. Since it may be more interesting to
compare the quality of different topologies and geometries
rather than the amount of gray, the obtained final solutions
for the different filters have also been rounded to pure black
and white solutions as follows:

The right hand side of the volume constraint in the SIMP
problem is set to 0.333 times the total number of elements,
i.e., 0.333 · 19600 = 6526.8. When the convergence cri-
terion has been fulfilled and the iterations stopped, the
obtained (slightly gray) solution is rounded to a completely
black and white solution by letting the 6528 elements with
largest values on their physical design variable (“density”)
be black, and the other 13072 elements white. This means
that 6528/19600 ≈ 0.33306 of the total design domain
becomes black.

With this rounding procedure, it is no longer important
to choose α very small and β very large. Instead, for test
problem 1, we have chosen values on these parameters such
that if all ρj are binary and

∑
j wijρj = 1

2 then ρ̃i becomes
roughly 0.1 for the erode filters and 0.9 for the dilate filters.
More precisely, the following values have been used:

α = 0.1 for the harmonic filters,
α = 0.01 for the geometric filters,
β = 6 for the exponential filters,
β = 4 for the Heaviside filters.

When using these values, reasonably black and white
structures are obtained without any continuation procedure
for gradually decreasing α or increasing β. The topology
and geometry turns out to be essentially unaltered by the
final rounding, but the boundaries become much sharper (of
course) and the compliances decrease.

Finally, it should noted that symmetry of the structure is
not enforced.

7.2 Test problem 2: The force inverter

The second test example is a mechanism synthesis prob-
lem, namely that of a force inverter. A very similar problem
has previously been used as a benchmark (Sigmund 1997).
The design domain is rectangular, with aspect ratio width:
height = 3:4, and displacements are fixed in two points, see
Fig. 7. Between these, a force is applied, and the output dis-
placement at the opposite side of the domain is minimized.

Fig. 7 The force inverter

Due to symmetry, only half of the domain is modelled,
using 180 by 120 finite elements. Springs are attached to
the input and output node, being of stiffness kin = 1 and
kout = 0.001. The filter radius used for this problem is
R = 2.5, and the volume constraint V ∗ is set to 33 % of the
design volume.

The optimization problem can be formulated as:

min
ρ

eT
l u(ρ) (28)

s.t.

{∑n
i=1 ρ̃i (ρ) ≤ V ∗

ρ ∈ [0, 1]n (29)

where el is a vector which is zero at every position except
that representing the out force, where it is equal to one,
and u(ρ) is obtained as in test problem 1. The penalization
parameter p = 3 was used in SIMP.

7.3 Test problem 3: The L-bracket

The third test example is that of minimizing the p-norm
of von Mises stress in a L-bracket. This example has been
studied earlier, for example by Le et al. (2010). A verti-
cal distributed load is applied to ten nodes at the tip of an
L-shaped domain, fixed at the upper end, see Fig. 8.

The objective function to be minimized is:

||σ ||p =
(

n∑

i=1

σj (ρ)p

)1/p

, (30)

where σj is the von Mises stress at the centroid of element
j. As in (Le et al. 2010), to penalize intermediate densities,
the stress is calculated using a modified elasticity tensor,
according to:

C(ρ̃i ) = C0

(
Emin + ρ̃

1/3
i (E0 −Emin)

)
, (31)

where C0 is the elasticity tensor for material with unit
modulus elasticity.
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Fig. 8 The L-bracket

The enforcement of the L-shaped domain was carried out
in a slightly different manner than usual. The “natural” way
of doing this would be to discretize only the L-domain, mak-
ing it impossible for the optimization to put material outside
the domain. However, a drawback of this approach is that
boundaries of the optimized structure, because of the use
of a density filter, will look different depending on if they
are inner or outer. In the interior of the domain, the struc-
tural edges are not sharp, instead there is a transition from
material to void, whereas at the boundary of the finite ele-
ment mesh, the transition is sharp. This difference could
potentially make the optimization favour one type of bound-
ary over another, which of course should not be the case.
To avoid this phenomenon, a larger domain, embedding the
L-domain, was modelled with finite elements, and a con-
straint in the optimization was added, restricting the total
volume of elements outside the L-domain to be smaller than
some small value. The extended domain is shown in Fig. 9.
This has the effect of making all edges inner. The authors
have experienced that this modelling technique yields bet-
ter designs, and reduces the tendency to get stuck in local
optima.

A constraint on the total volume of the structure was also
included, which makes the optimization problem to be as
follows:

min
ρ

(
n∑

i=1

σj (ρ)p

)1/p

(32)

s.t.

⎧
⎪⎨

⎪⎩

∑n
i=1 ρ̃i(ρ) ≤ V ∗

∑
i∈�void

ρ̃i (ρ) ≤ V ∗void

ρ ∈ [0, 1]n
(33)

The elemental stresses σj are calculated from the displace-
ments u(ρ), which are obtained as in the first two test
problems. The penalization parameter p = 3 was used in

Fig. 9 The L-bracket, with extended domain

SIMP. The filter radius used for this problem is R = 3.5,
the volume constraint V ∗ is set to 50 % of the L-shaped
design volume, the allowed volume outside the L-domain
V ∗void is 0.5 elements, and p in the p-norm is set equal to 6.
The discretization of the design volume is made with 170
by 160 finite elements, and the width of the �void domain
was 10 elements, making the actual design space 150 by 150
elements in size.

7.4 Optimization

The optimization problems are solved using MMA, increas-
ing β and decreasing α according to a simple scheme.
Convergence is considered to occur when the maximum
change in any design variable between two consecutive iter-
ations is smaller than some tolerance. Although it might be
argued that some other convergence criterion, e.g. norm of
KKT residual, is a more appropriate indicator of optimal-
ity, our choice is common in literature and therefore used

Table 4 Results for test problem 1a

Filter Iter. Compl. Compl. Holes

(gray) (0/1)

Sensitivity 616 3.23 2.68 26

Linear Density 1112 3.49 2.68 25

Geometric erode 396 3.23 2.68 26

Geometric dilate 422 3.35 2.67 36

Harmonic erode 209 3.30 2.68 32

Harmonic dilate 842 3.55 2.73 38

Exponential erode 436 3.64 2.75 39

Exponential dilate 348 3.81 2.72 46

Heaviside erode 644 3.21 2.67 20

Heaviside dilate 442 3.44 2.68 36
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Table 5 Results for test problem 1b

Filter Iter. Compl. Compl. Holes

(gray) (0/1)

Sensitivity 176 5.70 > 104 1

Linear Density 379 3.31 2.61 17

Geometric erode 430 3.13 2.60 28

Geometric dilate 260 3.12 2.60 24

Harmonic erode 341 3.17 2.62 28

Harmonic dilate 1018 3.13 2.58 16

Exponential erode 467 3.22 2.62 21

Exponential dilate 453 3.42 2.59 18

Heaviside erode 329 3.06 2.58 18

Heaviside dilate 1613 3.13 2.60 19

also in this work. The scheme used for the optimization is
described by:

1: initialize α = α0, β = β0

2: while change > changetol and iter < Nmax do
3: if mod (iter, 50) = 0 or change < 0.01 then
4: α← max(0.1α, αmin)

5: β ← min(2β, βmax)

6: end if
7: compute filtered densities ρ̃

8: assemble stiffness matrix and solve system
9: calculate derivatives of the objective and

constraint functions
10: call MMA subroutine, get back new design

variables ρnew

11: calculate change = ||ρnew − ρ||∞
12: end while

For the first test problem, changetol=0.001, Nmax=2000,
α0 = αmin and β0 = βmax , i.e. no continuation of the fil-
ter parameters is carried out. For the other two problems,

Table 6 Results for test problem 1c

Filter Iter. Compl. Compl. Holes

(gray) (0/1)

Sensitivity 753 3.11 2.58 36

Linear Density 199 3.47 2.59 32

Geometric erode 202 3.18 2.60 36

Geometric dilate 335 3.13 2.63 16

Harmonic erode 173 3.21 2.62 36

Harmonic dilate 407 3.28 2.61 24

Exponential erode 228 3.47 2.66 44

Exponential dilate 591 3.69 2.64 40

Heaviside erode 244 3.22 2.59 36

Heaviside dilate 340 3.31 2.61 36

a) Sensitivity filter

c) Geometric erode

e) Harmonic erode

g) Exponential erode

i) Heaviside erode

b) Linear density

d) Geometric dilate

f) Harmonic dilate

h) Exponential dilate

k) Heaviside dilate

Fig. 10 Resulting density distributions for example 1a

changetol = 0.01, Nmax = 1000, α0 = 100, αmin =
0.0005, β0 = 0.2 and βmax = 200. In the first test problem,
conic weights have been used for all filters. In the second
and third examples, for the sensitivity filter and the linear
density filter, conic weights have been used, while constant
weights have been used for all other filters. For the linear
density filter, as can be seen in Fig. 3, conic weights give a
more discrete solution, which is the reason for this choice.
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a) Sensitivity filter

c) Geometric erode

e) Harmonic erode

g) Exponential erode

i) Heaviside erode

b) Linear density

d) Geometric dilate

f) Harmonic dilate

h) Exponential dilate

k) Heaviside dilate

Fig. 11 Resulting density distributions for example 1b

a) Sensitivity filter

c) Geometric erode

e) Harmonic erode

g) Exponential erode

i) Heaviside erode

b) Linear density

d) Geometric dilate

f) Harmonic dilate

h) Exponential dilate

k) Heaviside dilate

Fig. 12 Resulting density distributions for example 1c
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The opposite holds for the geometric, harmonic, exponen-
tial and Heaviside filters at low values of α/high values
of β, motivating the choice of constant weights for these
filters. As suggested by (Guest et al. 2011), for the Heav-
iside filters, the MMA asymptotes were forced together at
each continuation step, by using the proposed value of the
variable asyinit. This has the effect, at high beta val-
ues, of making the steps taken by the optimization very
small directly after an increase of β, reducing divergence
tendencies. Otherwise, all parameters were kept standard.

8 Results

8.1 Obtained results for test problem 1

The obtained results on test problem 1 are presented in
Tables 4, 5 and 6 and Figs. 10, 11 and 12 where the physical
densities ρ̃i are plotted. Each table contains the following
information:

Column 1: Number of MMA iterations for obtaining the
gray solution.

Column 2: Penalized objective value for the obtained gray
structure divided by objective value for the
completely black structure (19600 black ele-
ments).

Column 3: Objective value for the rounded solution (6528
black elements) divided by objective value for
the completely black structure (19600 black
elements).

Column 4: Number of holes in the rounded solution.

A striking observation is that although the different fil-
ters produce quite different topologies, with quite different
objective values of the gray solutions, the objective values

Table 7 Results for the force inverter

Filter Iter. Displ. Displ. Mnd

(gray) (0/1)

Sensitivity 1000 −2.67 −2.75 10.12

Linear density 763 −2.48 −2.60 11.21

Geometric erode 985 −2.60 −2.62 6.91

Geometric dilate 348 −2.52 −2.65 7.08

Harmonic erode 273 −2.63 −2.63 2.56

Harmonic dilate 258 −2.62 −2.62 0.58

Exponential erode 693 −2.63 −2.64 3.19

Exponential dilate 501 −2.67 −2.68 0.95

Heaviside erode 551 −2.69 −2.69 0.07

Heaviside dilate 572 −2.70 −2.69 0.43

a) Sensitivity filter

c) Geometric erode

e) Harmonic erode

g) Exponential erode

i) Heaviside erode

b) Linear density

d) Geometric dilate

f) Harmonic dilate

h) Exponential dilate

j) Heaviside dilate

Fig. 13 Resulting density distributions for the force inverter

of the corresponding rounded solutions are often very close.
This makes it possible for the user to consider also other
aspects than objective value when deciding which solution
to recommend. A comment is in order regarding the result of
the sensitivity filter on example 1b. While providing excel-
lent solutions for the examples 1a and 1c, the sensitivity
filter converges to a very gray solution with significantly
larger compliance than all other filters for this weighting of
the loads. Actually, this solution appears to be a KKT point
with respect to the filtered derivatives. It is not, however, a
local optimum to the optimization problem. In fact, looking
at the iteration history for the sensitivity filter on example
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1b, there are feasible solutions with lower objective values
than the final objective value among the earlier iterates. It is
not known to the authors exactly what features of this par-
ticular problem which causes this behaviour, but it shows
that even established filters may sometimes encounter dif-
ficulties not encountered by other filters. Again, this is an
argument for a filter tool box.

8.2 Obtained results for test problem 2

The results of the optimization for the force inverter are
summarized in Table 7, and the density distributions are
shown in Fig. 13. The table contains number of iterations,
displacement of output node for gray structure, displace-
ment of output node for rounded black and white structure,
and measure of non discreteness for gray structure defined
as in Section 5. Three different topologies are obtained as
solutions, with the sensitivity filter and the Heaviside filters
converging to one, the linear density filter and the expo-
nential filters to another, and the geometric and harmonic
filters converging to a third. The correlation between objec-
tive function value and discreteness is much weaker than for
compliance optimization, with the sensitivity filter obtain-
ing a solution that has a very large output displacement,
despite having a quite large amount of gray elements. After
rounding to a completely black and white solution, the dif-
ference between the best and worst solution is less than 6 %.
As in the compliance example, this indicates that aspects
other than objective may be of interest when choosing final
design, and the existence of several filters giving different
topologies is therefore beneficial.

8.3 Obtained results for test problem 3

The results of the optimization for the L bracket is sum-
marized in Table 8, and the density distributions are shown
in Fig. 14. For the Heaviside erode filter, the optimization

Table 8 Results for the L bracket

Filter Iter. ||σ ||p ||σ ||p Mnd

(gray) (0/1)

Sensitivity 441 2.397 2.284 7.71

Linear density 704 3.067 2.586 13.03

Geometric erode 470 2.926 2.687 7.90

Geometric dilate 744 2.625 2.376 7.78

Harmonic erode 306 3.148 3.102 2.68

Harmonic dilate 457 2.331 2.317 1.54

Exponential erode 620 3.438 3.405 2.83

Exponential dilate 558 2.322 2.282 2.20

Heaviside erode 1000 2.593 2.438 6.22

Heaviside dilate 1000 2.781 2.453 3.74

a) Sensitivity filter

c) Geometric erode

e) Harmonic erode

g) Exponential erode

i) Heaviside erode, =15,

b) Linear density

d) Geometric dilate

f) Harmonic dilate

h) Exponential dilate

j) Heaviside dilate

Fig. 14 Resulting density distributions for the L bracket

diverged for high beta values. Because of this, results using
a lower final beta value of βmax = 15 is reported. One
may note that for this objective function, a discrete solution
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is not always beneficial for the objective function value.
For example, one of the best solutions, achieved by the
sensitivity filter, is also one of the most non-discrete
ones.

9 Conclusions

In this paper, four new density filters for topology optimiza-
tion have been presented, and tested on three different types
of optimization problems.

From the compliance minimization example, two per-
haps surprising conclusions can be drawn. First, different
local optima are reached for almost every filter, highlight-
ing the nonconvexity of the problem solved. The solutions
differ in objective function value, mostly due to different
amounts of gray elements in the solution. However, the next
surprising find is that when rounded to pure 0/1 structures,
the structures perform almost identically to each other. As a
user, there may be clear benefits of obtaining many of these
similarly performing optimization results, before making
the final design decision. Consider for example the results
of example 1c displayed in Fig. 12. The results of the geo-
metric dilate filter and the Heaviside erode filter are very
similar in terms of stiffness, however, from a manufactur-
ing point of view, the second structure is probably vastly
more expensive than the first. This is not an attempt to claim
that the geometric filter is always better than the Heavi-
side filter in this aspect, but rather that for this specific
load case, it happens to be, and there is no obvious way of
obtaining this structure but to try several filters for the same
problem.

In the mechanism example, the conclusions from the
compliance example hold: since the variations in objec-
tive function value are so small, it should be of interest
to obtain several design suggestions before making a final
decision.

The stress minimization example is clearly the most chal-
lenging optimization problem solved in this article, and the
scatter in result is by far the greatest. Still, the conclusions
from above hold, as a designer, one would likely prefer some
of the obtained structures compared to the others. For exam-
ple, the experienced engineer would know that even though
the sensitivity filter result obtains a remarkably low objec-
tive function value, the re-entrant corner will lead to high
stresses in the structure, and rather choose for example the
result from the linear density filter, which rounds the corner
in a smooth way.

So far, the arguments have been that having many fil-
ters in the tool box is advantageous. However, as mentioned
above, one should not use this argument in favour of any
filter, only filters which are “good” in some general sense,
and produce results not obtained using other methods should

be considered. Sigmund (2007) lists a number of properties
that a “good” filter should possess:

1. Mesh-independent and checkerboard-free solutions
2. Black and white (0/1) solutions
3. Manufacturability
4. No extra constraints
5. Not too many tuning parameters
6. Stable and fast convergence
7. General applicability
8. Simple implementation
9. Low CPU-time

Regarding the first five items, the proposed new filters
are equal to existing filters in the literature. Solutions exhibit
no checkerboards or similar disturbances, very sharp black
and white structures may be obtained, the manufacturability
interpretations are the same as other erode and dilate filters,
no extra constraints are introduced, and the amount of tun-
ing parameters is equal to that of other filters. As for the
point “Stable and fast convergence”, it may be noted that in
all but one of the presented five optimization problems, one
of the new filters meets the convergence criterion the fastest.
While this is certainly not a proof for their superior conver-
gence, it shows that the new filters are certainly competitive
in this aspect. With regards to the remaining points, again,
the proposed filters are similar to existing filters.

To summarize, the authors believe that the presented geo-
metric and harmonic filters clearly qualify to be included in
any filter tool box for topology optimization.
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Appendix: Proof of the convexity/concavity properties

In this appendix we prove the statements in Section 6,
namely that for the exponential, harmonic and geometric
dilate filters, and the Heaviside erode filter, each ρ̃i is a con-
vex function of ρ, while for the exponential, harmonic and
geometric erode filters, and the Heaviside dilate filter, each
ρ̃i is a concave function of ρ.

First we note the it is sufficient to prove four of these
eight statements. If a dilate filter is written ρ̃i = fi(ρ)

then the corresponding erode filter becomes ρ̃i = gi(ρ) =
1 − fi(1 − ρ), where 1 = (1, . . . , 1)T. From this it imme-
diately follows that ∇2f (ρ) is positive semidefinite for all
ρ ∈ [0, 1]n if and only if ∇2g(ρ) is negative semidefinite
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for all ρ ∈ [0, 1]n. Thus the considered dilate filter is convex
if and only if the corresponding erode filter is concave.

We will show below that the Harmonic erode filter is
concave, the Geometric erode filter is concave, the Expo-
nential dilate filter is convex, and the Heaviside dilate filter
is concave.

It then also follows that the Harmonic dilate filter is con-
vex, the Geometric dilate filter is convex, the Exponential
erode filter is concave, and the Heaviside erode filter is
convex.

In the formulas below, δjk = 1 if j = k and δjk = 0 if
j �=k.

A.1 The Harmonic erode filter

For the Harmonic erode filter,
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A.2 The Geometric erode filter

For the Geometric erode filter,
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A.3 The Exponential dilate filter

For the Exponential dilate filter,

eβρ̃i =
∑

j

wij e
βρj ,

∂ρ̃i

∂ρj

= wij e
βρj

eβρ̃i
,

∂2ρ̃i

∂ρj ∂ρk

= − βwijwike
βρj eβρk

(eβρ̃i )2
+ δjk

βwij e
βρj eβρ̃i

(eβρ̃i )2
.

Then
(eβρ̃i )2

β

∑

j

∑

k

∂2ρ̃i

∂ρj ∂ρk

yjyk

=−
⎛

⎝
∑

j

wij e
βρj yj

⎞

⎠
2

+
⎛

⎝
∑

j

wij e
βρj

⎞

⎠

⎛

⎝
∑

j

wij e
βρj y2

j

⎞

⎠

=
⎛

⎝
∑

j

u2
j

⎞

⎠

⎛

⎝
∑

j

v2
j

⎞

⎠ −
⎛

⎝
∑

j

uj vj

⎞

⎠
2

= (uTu)(vTv)− (uTv)2 ≥ 0,

where uj = (wij e
βρj )1/2 and vj = yj (wij e

βρj )1/2.

A.4 The Heaviside dilate filter

For the Heaviside dilate filter,

ρ̃i = 1− e
−β

∑
j wij ρj + e−β

∑

j

wij ρj ,

∂ρ̃i

∂ρj

= βwij e
−β

∑
j wij ρj + wij e

−β,

∂2ρ̃i

∂ρj ∂ρk

= −β2wijwike
−β

∑
j wij ρj .
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Table 9 Results of the mesh convergence study

Geometric Erode Geometric dilate Harmonic erode Harmonic dilate

120 by 40 el., rmin = 3.5

240 by 80 el., rmin = 7.0

360 by 120 el., rmin = 10.5

Then
e
β
∑

j wij ρj

β2

∑

j

∑

k

∂2ρ̃i

∂ρj ∂ρk

yjyk

= −
∑

j

∑

k

wijwikyjyk = −
⎛

⎝
∑

j

wij yj

⎞

⎠
2

≤ 0.

Appendix: Mesh independence study for the new filters

In this appendix, the results of a small mesh independence
study of the new filters are reported. The classic MBB-
beam has been used as a test example (see for example
(Sigmund 2007)), and the mesh has been refined in three
steps. 300 iterations were made with a fixed value of α =
0.1. The results, displayed in Table 9, show that problems
such as checkerboards are removed from the solutions, and
that a length scale has been introduced, indicating that the
problem of existence of solutions is remedied.
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