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Abstract In time-dependent reliability analysis, an upcros-
sing is defined as the event when a limit-state function
reaches its failure region from its safe region. Upcrossings
are commonly assumed to be independent. The assump-
tion may not be valid for some applications and may result
in large errors. In this work, we develop a more accurate
method that relaxes the assumption by using joint upcross-
ing rates. The method extends the existing joint upcrossing
rate method to general limit-state functions with both ran-
dom variables and stochastic processes. The First Order
Reliability Method (FORM) is employed to derive the single
upcrossing rate and joint upcrossing rate. With both rates,
the probability density of the first time to failure can be
solved numerically. Then the probability density leads to an
easy evaluation of the time-dependent probability of failure.
The proposed method is applied to the reliability analysis
of a beam and a mechanism, and the results demonstrate a
significant improvement in accuracy.

Keywords Time-dependent reliability · Stochastic
processes · First passage · Autocorrelation

1 Introduction

Reliability is the probability that a product performs its
intended function over a specified period of time and
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under specified service conditions (Choi et al. 2007).
Depending on whether the performance of the product is
time-dependent or not, reliability can be classified into
two types: time-variant (time-dependent) reliability and
time-invariant reliability.

For a time-invariant performance, its reliability and prob-
ability of failure remain constant over time. The time-
invariant probability of failure is defined by

pf = Pr{D = g(X) > e} (1)

where X = (X1, X2,· · ·Xn) is a random vector, g(·) is a
time-invariant performance function or limit-state function,
D is a performance variable, e is a limit state, and Pr{·}
stands for a probability. Many reliability methods are avail-
able for calculating the time-invariant reliability, including
the First Order Second Moment Method (FOSM), FORM,
and Second Order Reliability Method (SORM) (Du et al.
2005; Huang and Du 2008; Zhang and Du 2010; Madsen
et al. 1986; Banerjee and Smith 2011; Kim et al. 2011;
Millwater and Feng 2011).

On the other hand, limit-state functions may vary over
time. For instance, over the service life of the Thermal
Barrier Coating (TBC) of aircraft engines, the stresses and
strains of the TBC are time dependent (Miller 1997). Many
mechanisms also experience time varying random motion
errors due to random dimensions (tolerances), clearances,
and deformations of structural components (Dubowsky
et al. 1984; Dupac and Beale 2010; Tsai and Lai 2008; Meng
and Li 2005; Szkodny 2001). In the systems of wind tur-
bines, hydrokinetic turbines, and aircraft turbine engines,
the turbine blade loading always varies over time. Likewise,
the wave loading acting on offshore structures fluctuates
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randomly with time (Nielsen 2010; Kuschel and Rackwitz
2000; Ditlevsen 2002). Almost all dynamic systems involve
time-dependent parameters (Rice and Beer 1965; Richard
and Mircea 2006; Song and Der 2006). For all the above
problems, reliability is a function of time and typically
deteriorates with time.

Therefore, a general limit-state function is a function of
time t . In addition to random variables X (X1, X2, · · ·Xn),
stochastic processes Y(t) = (Y1(t), Y2(t), · · ·Ym(t)) may
also appear in the limit-state function. A stochastic process
can be considered as a random variable that varies over
time. Hence a general time-dependent limit-state function is
given by

D(t) = g (X, Y(t), t) (2)

If we want to know the likelihood of failure at a particular
instant of time t , we can still use the time-invariant proba-
bility of failure because t is fixed at the instant. Using (1),
we obtain the instantaneous probability of failure

pf (t) = Pr {g (X, Y(t), t) > e(t)} (3)

The aforementioned methods, such as FOSM, FORM, or
SORM, are ready to calculate pf (t).

For time-dependent problems, we are more concerned
with the time-dependent probability of failure because it
provides us with the likelihood of a product performing its
intended function over its service time, or a system fulfill-
ing its task during its mission time. The time-dependent
probability of failure over a time interval [t0, ts ] is defined
by

pf (t0, ts) = Pr {g (X, Y(τ ), τ ) > e(τ), ∃τ ∈ [t0, ts]} (4)

where t0 is the initial time when the product is put into oper-
ation, and ts is the endpoint of the time interval, such as the
service time of the product.

Let the first time to failure (FTTF) be T1, which is the
time that g(·) reaches its limit state for the first time. T1

is also the working time before failure and is obviously a
random variable. pf (t0, ts) can also be given by

pf (t0, ts) = FT1(ts) = Pr {T1 < ts} (5)

where FT1(·) is the cumulative distribution function (CDF)
of the FTTF.

Time-dependent reliability methodologies are classified
into two categories. The first includes the extreme-value
methods, which use the time-invariant reliability analysis
methods (FOSM, FORM, SORM, etc.) if one can obtain

the distribution of the extreme value of g(X, Y(τ )) − e(τ)

over [t0, ts ] (Chen and Li 2007, 2008; Li et al 2007;
Wang and Wang 2012). The reason is that the failure event
{g (X, Y(τ ), τ ) > e(τ), ∃τ ∈ [t0, ts]} is equivalent to the

event
{

max
τ

[g (X, Y(τ )) − e(τ)] > 0, ∃τ ∈ [t0, ts]
}

. How-

ever, it is difficult to obtain the distribution of the extreme
value. The extreme distribution may be available for limit-
state functions in the form of D(t) = g(X, t) (Wang
and Wang 2012) or D(t) = g(X, Y (t)) (Hu and Du
2013). The associated methods, however, are not applica-
ble for the general problems as indicated in (2). Therefore,
in most cases, the methods in the second category are
used.

The second category includes the first-passage meth-
ods because they directly use the first-passage time or the
first time to failure (FTTF) T1 in (5). The failure event
{g (X, Y (τ ) , τ ) > e(τ), ∃τ ∈ [t0, ts]} is equivalent to the
event that at least a failure occurs over [t0, ts ] or equivalent
to the event of t0 ≤ T1 ≤ ts . The most commonly used
method is the Rice’s formula (Rice 1944), which is based on
the concept of upcrossing.

Define N(t0, ts) as the number of upcrossings
that g(·) reaches the limit state e from the safe region
g(·) < 0 over the time period [t0, ts ]. The basic proba-
bility theory shows that N(t0, ts) follows a binomial distri-
bution. When the probability of upcrossing is very small, it
is equal to the mean number of upcrossings per unit time
(the upcrossing rate). Because the binomial distribution con-
verges to the Poisson distribution when the time period is
sufficiently long or the dependence between crossings is
negligible, the upcrossings are assumed to be statistically
independent (Rui 1985). With this assumption, the upcross-
ing rate becomes the first-time crossing rate or the failure
rate. Then the probability of failure can be estimated from
the upcrossing rate.

Since the development of the Rice’s formula, many
improvements have been made (Schall et al. 1991; Engelund
et al. 1995; Rackwitz 1998; Lutes and Sarkani 2004, 2009;
Sudret 2008; Zhang and Du 2011; Lin 1967; Cramer
1966; Hagen 1992; Li and Melchers 1994; Parkinson 1999;
Streicher and Rackwitz 2004). For example, an analytical
outcrossing rate (Lutes and Sarkani 2004) has been derived
for Gaussian stationary processes. An analytical outcrossing
rate has also been given for general Gaussian stochastic pro-
cesses (Lutes and Sarkani 2009; Sudret 2008) and has been
applied to mechanism analysis (Zhang and Du 2011). An
important sampling method has been proposed to approxi-
mate the outcrossing rate (Singh et al. 2011), and a lifecycle
cost optimization method was developed using the outcross-
ing rate as the failure rate (Singh et al. 2010). If upcrossing
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events are rare over the considered time period (Zhang and
Du 2011), the Poisson assumption-based approaches (Schall
et al. 1991; Engelund et al. 1995; Rackwitz 1998; Lutes and
Sarkani 2004, 2009; Sudret 2008; Zhang and Du 2011; Lin
1967; Cramer 1966; Hagen 1992; Li and Melchers 1994;
Parkinson 1999; Streicher and Rackwitz 2004) have shown
good accuracy.

When upcrossings are strongly dependent, however, the
above approaches may leads to large errors. In this case,
the memory of failure should be considered to guarantee
that the obtained first passage failure is indeed the first.
Even though the Markov process methods have a property
of memory, such memory is weak and is only valid for
Markov or similar processes (Yang and Shinozuka 1971,
1972). Vanmarcke (1975) and Preumont (1985) have made
some empirical modifications to the Poisson assumption-
based formulas. These modifications are good for Gaussian
processes.

A promising way to improve accuracy is to relax the inde-
pendent assumption for upcrossing events. In other words,
we may consider the dependence between two or more
instants of time (Bernard and Shipley 1972; Madsen and
Krenk 1984), instead of considering a single upcrossing
at one instant. The accuracy improvement has been shown
in Madsen and Krenk (1984) for a Gaussian process in
vibration problems.

Inspired by the work in Madsen and Krenk (1984), we
develop a time-dependent reliability analysis method with
joint upcrossing rates, which extends the method in Madsen
and Krenk (1984) to more general limit-state functions that
involve time, random variables, and stochastic processes.
Because the method combines the joint upcrossing rates
(JUR) and First Oder Reliability Method (FORM), we call
it JUR/FORM.

In Section 2, we review the commonly used time-
dependent reliability analysis methods upon which JUR/
FORM is built. We then discuss JUR/FORM in Section 3
followed by two case studies in Section 4. Conclusions are
made in Section 5.

2 Review of time-dependent reliability analysis methods

In this section, we review the integration of the Poisson
assumption based method with the First Order Reliability
Method (FORM). By this method, pf (t0, ts ) is calculated
by (Zhang and Du 2011; Madsen and Krenk 1984; Hu and
Du 2012)

pf (t0, ts) = 1 − [
1 − pf (t0)

]
exp

{
−
∫ ts

t0

v+(t)dt

}
(6)

where pf (t0) is the instantaneous probability of failure at
the initial time point t0, and v+(t) is the upcrossing rate
at t .

pf (t0) can be calculated by any time-invariant reliability
methods, such as FOSM, FORM, and SORM. If we know
v+(t), then we can calculate pf (t0, ts ) by integrating v+(t)

over [t0, ts ] as indicated in (6).
For a general limit-state function D(t) = g (X, Y(t), t),

at a given instant t , the stochastic proceses Y(t) become
random variables. If we use FORM, we first transform
random variables (X, Y(t)) into standard normal variables
U(t) = (UX, UY (t)) (Du et al. 2005; Huang and Du 2008;
Zhang and Du 2010; Madsen et al. 1986; Banerjee and
Smith 2011; Zhang and Du 2011). Then we search for
the Most Probable Point (MPP) Ũ(t) = (

ŨX, ŨY(t)
)
. The

MPP is a point at the limit sate, and at this point the
limit-state function has its highest probability density. After
the limit-state function is linearized at the MPP, the failure
event g(X, Y(t), t) > e(t) is equivalent to the event given
by Choi et al. (2007).

W(U(t), t) = α(t)U(t)T > β(t) (7)

where

α(t) = ∂g(T [U(t)],t)
∂U(t)

∣∣∣
Ũ(t)

/∥∥∥∥ ∂g(T [U(t)],t)
∂U(t)

∣∣∣
Ũ(t)

∥∥∥∥
= ∇g(T

[
Ũ(t)

]
, t)

/∥∥∇g
(
T [Ũ(t)], t

)∥∥
(8)

β(t) is the reliability index, which is the length of Ũ(t). T (·)
is the operator of transforming non-Gaussian random vari-
ables (X, Y(t)) into Gaussian random variables U(t). ‖ · ‖
stands for the magnitude of a vector.

Then the upcrossing rate v+(t) is (Andrieu-Renaud et al.
2004)

v+(t) = ‖α̇(t)‖ φ(β(t))�
(
β̇(t)/ ‖α̇(t)‖) (9)

where α̇(t) and β̇(t) are the derivatives of α(t) and β(t),
respectively, with respect to time t , and �(·) is a function
defined by

�(x) = φ(x) − x�(−x) (10)

in which φ(x) and �(−x) stand for the probability density
function (PDF) and cumulative density function (CDF) of
the standard normal random variable, respectively.

As mentioned previously, the above method may produce
large errors if upcrossings are strongly dependent. Next we
use the joint upcrossing rate to improve the accuracy of
time-dependent reliability analysis.
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3 Time-dependent reliability analysis with joint
upcrossing rates and FORM

In this section, we first provide the equations given in
Madsen and Krenk (1984) for a Gaussian stochastic pro-
cess. Based on these equations and FORM, we then derive
complete equations in the subsequent subsections.

3.1 Time-dependent reliability analysis with joint
upcrossing rates

We now summarize the methodology in Madsen and Krenk
(1984) where the joint upcrossing rates are used. Based on
the methodologies, necessary equations are developed in
Sections 3.2 and 3.3.

For a general stochastic process Q(t), suppose its failure
event is defined by {Q(t) > e(t)}. pf (t0, t) = Pr {Q (τ)

> e(τ), ∃τ ∈ [t0, ts]} is then given by

pf (t0, ts) = Pr {Q(t0) > e(t0)}
+ Pr {Q(t0) < e(t0)} Pr {Q(τ) > e(τ),

∃τ ∈ [t0, ts]} (11)

or

pf (t0, ts) = Pr {Q(t0) > e (t0)}
+ Pr {Q(t0) < e (t0)}

∫ ts

t0

fT1(t)dt (12)

where fT1(t) is the probability density function (PDF) of
the first time to failure (FTTF). The first term in the above
equation is the probability of failure at the initial time, and
the second term is the probability of failure over [t0, ts] and
no failure occurs at t0.

The upcrossing rate v+(t) is the probability that an
upcrossing occurs at time t per unit of time. It is equal to
the summation of two probabilities. The first probability is
the PDF fT1(t), which is the upcrossing rate occurring for
the first time at t . The second probability is the probabil-
ity rate that the upcrossing occurred at time t given that the

first-time upcrossing occurs at time τ prior to t . Thus
(Madsen and Krenk 1984)

v+(t) = fT1(t) +
∫ t

t0

v+ ( t| τ) fT1(τ )dτ (13)

According to the characteristics of conditional prob-
ability for two events A and B, we have P(A|B) =
P(A, B)/P (B). Thus, the conditional probability v+(t|τ)

is equal to v++(t, τ )/v+(τ ), and (13) is rewritten as

v+(t) = fT1(t) +
∫ t

t0

v++ (t, τ ) fT1 (τ )
/
v+ (τ ) dτ (14)

where v++(t, τ ) is the second order upcrossing rate or
the joint outcrossing rate at t and τ . It indicates the joint
probability that there are outcrossings at both t and τ .

Equation (14) is a Volterra integral equation, for which
a closed-form solution may not exist. Numerical meth-
ods are therefore necessary (Burchitz and Meinders 2008;
Dickmeis et al. 1984; Diethelm 1994; Navascués and
Sebastián 2012; Ujević 2008). In this work, we use the
compounded trapezoidal rule method (Diethelm 1994).
Other integration methods can also be used. How to solve
the Volterra integral equation is briefly presented below.

We first discretize the time interval into p time intervals
or p + 1 time instants with ti = t0 + (i–1)h, where h = ts−t0

p

and i = 1, 2, · · · , p + 1. With the compounded trapezoidal
rule (Diethelm 1994),

∫ ts
t0

v++(ts , τ)fT1(τ )
/
v+(τ )dτ is

approximated as follows:∫ ts

t0

v++(ts , τ )fT1 (τ )
/
v+(τ )dτ

≈ 1

2
h

v++(ts , t0)

v+ (t0)
fT1 (t0) + h

p∑
i=2

v++(ts , ti )

v+(ti )
fT1 (ti)

+ 1

2
h

v++ (ts , ts)

v+(ts)
fT1 (ts) (15)

Combining (15) with (14) yields

v+(ts) ≈
(

1 + h

2

)
fT1 (ts) + 1

2
h

v++ (ts , t0)

v+(t0)
fT1 (t0)

+ h

p∑
i=2

v++ (ts , ti )

v+(ti )
fT1 (ti) (16)

Applying (16) to every time instant tt , i = 1, 2, · · · , p + 1,
we obtain

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v+(t1) = fT1(t1)

v+(t2) ≈ (
1 + h

2

)
fT1(t2) + 1

2 h
v++(t2,t1)

v

+
(t1)fT1(t1)

v+(t3) ≈ (
1 + h

2

)
fT1(t3) + h

v++(t3,t2)

v+(t2)
fT1(t2) + 1

2 h
v++(t3,t1)

v+(t1)
fT1(t1)

v+(t4) ≈ (
1 + h

2

)
fT1(t4) + h

v++(t4,t3)

v+(t3)
fT1(t3) + h

v++(t4,t2)
v+(t2)

fT1(t2) + 1
2 h

v++(t4,t1)
v+(t1)

fT1 (t1)

.

.

.
.
.
.

v+(tp+1) ≈ (
1 + h

2

)
fT1(tp+1) + h

p∑
i=2

v++(tp+1,ti )

v+(ti )
fT1(ti ) + 1

2 h
v++(tp+1,t1)

v+(t1)
fT1(t1)

(17)
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Equation (17) forms a matrix given by

⎡
⎢⎢⎣

v+(t1)

v+(t2)
...

v+(tp+1)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

1 0 0 0
hv++(t2,t1)

2v+(t1)
1 + h

2 0 0
...

...
. . . 0

hv++(tp+1 ,t1)

2v+(t1)

hv++(tp+1 ,t2)

v+(t2)
· · · 1 + h

2

⎤
⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎣

fT1(t1)
fT1(t2)

...
fT1(tp+1)

⎤
⎥⎥⎦ (18)

The discretized fT1(t) is then be solved by the following
equation:

⎡
⎢⎢⎣

fT1(t1)
fT1(t2)

...
fT1(tp+1)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

1 0 0 0
hv++(t2,t1)

2v+(t1)
1 + h

2 0 0
...

...
. . . 0

hv++(tp+1,t1)

2v+(t1)

hv++(tp+1,t2)

v+(t2)
· · · 1 + h

2

⎤
⎥⎥⎥⎥⎦

−1

×

⎡
⎢⎢⎣

v+(t1)

v+(t2)
...

v+(tp+1)

⎤
⎥⎥⎦ (19)

After fT1(t) is solved numerically, we can obtain pf (t0,
ts ) with (12).

The above methodology is applicable for a single
stochastic process. We now extend it to a general limit-state
function D(t) = g(X, Y(t), t). As D(t) can be converted
into a Gaussian process at the MPP, the extension is possi-
ble. From (19), it can be found that the single upcrossing
rate v+(t) and joint upcrossing rate v++(t, τ ) are the bases
for solving fT1(τ ), we first derive equations for these two
rates by using FORM and Rice’s formula. We then discuss
how to obtain the time-dependent probability of failure
based on these rates.

3.2 Single upcrossing rate v+(t)

Recall that after the MPP is found, the general limit-state
function g(X, Y(t), t) becomes W (U(t), t), and the failure
event is W (U(t), t) = α(t)U(t)T > β(t). According to the
Rice’s formula (Rice 1944, 1945), the single upcrossing rate
v+(t) is given by

v+(t) = ω(t)φ (β(t)) �
(
β̇(t)/ω(t)

)
(20)

where ω(t) is the standard deviation of Ẇ (t), which is the
time derivative process of W(t). ω2(t) is given in terms of
the correlation function ρ(t1, t2) of W(t) as follows:

ω2(t) = ∂2ρ (t1, t2)
/

(∂t1∂t2)

∣∣∣
t1=t2=t

(21)

We use the finite difference method to estimate β̇(t).
This means that we need to perform the MPP search
twice. Andrieu-Renaud et al. (2004) also uses the finite
difference method but introduces additional random vari-
ables for the second MPP search. As will been seen, the
method presented here does not introduce any extra random
variables.

As mentioned above, W(t) = α(t)U(t)T , and from (8),
we have ‖α(t)‖ = 1. W(t) is therefore a standard normal
stochastic process, and its coefficient of correlation is given
by

ρ(t1, t2) = α(t1)C(t1, t2)α(t2)
T (22)

where C(t1, t2) is the covariance matrix of U(t1) and
U(t2).

Since U(t) = (Ux , UY (t)) is a vector of standard normal
random variables and stochastic processes, C(t1, t2) is given
by:

C(t1, t2) =
[

In×n 0
0 CY (t1, t2)

]
(23)

where In×n is an n × n identity matrix, which is the covari-
ance matrix of the normalized random variables UX from
X. The covariance matrix of the normalized stochastic pro-
cesses UY (t) from Y(t) is given in terms of its correlation
coefficients as

CY (t1, t2) =

⎡
⎢⎢⎢⎢⎣

CY1(t1, t2) 0 · · · 0

0
. . . · · · 0

...
...

. . .
...

0 0 · · · CYm(t1, t2)

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

ρY1 0 · · · 0

0
. . . · · · 0

...
...

. . .
...

0 0 · · · ρYm

⎤
⎥⎥⎥⎥⎦

(24)

where C(·, ·) standard for the covariance, CYi (t1, t2) is the
covariance of the normalized stochastic process UYi (t) at
time instants t1 and t2. ρYi is the corresponding correlation
function of the normalized stochastic process UYi (t) at these
two time instants and is given by

ρYi = ρYi (t1, t2) (25)

Substituting (22) into (21) yields

ω2(t) = ∂2ρ (t1, t2)
/

(∂t1∂t2)

∣∣∣
t1=t2=t

= α̇(t)Ċ2 (t, t) α(t)T + α̇(t)C(t, t)α̇(t)T

+ α(t)C̈12(t, t)α(t)T + α(t)Ċ1(t, t)α̇(t)T (26)
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Since we perform the MPP search at two instants and
(26) also needs two instants (t, t), we now derive equations
for two general instants t1 and t2. For time derivatives, such
as β̇(t), we let t1 = t1, t2 = t1 + �t , where �t is a small
step size.

Differentiating (23), we obtain

Ċ1(t1, t2) = ∂C(t1, t2)
/
∂t1 =

[
0 0

0 Ċ
Y

1 (t1, t2)

]
(27)

Ċ2(t1, t2) = ∂C(t1, t2)
/
∂t2 =

[
0 0

0 Ċ
Y

2 (t1, t2)

]
(28)

and

C̈12(t1, t2) =
(

0 0

0 C̈
Y

12(t1, t2)

)
(29)

Ċ
Y

1 (t1, t2), Ċ
Y

2 (t1, t2), and C̈
Y

12(t1, t2) are given by

Ċ
Yi

1 (t1, t2) = ∂ρYi (t1, t2)
/

∂t1, i = 1, 2, · · · , m (30)

Ċ
Yi

2 (t1, t2) = ∂ρYi (t1, t2)
/

∂t2, i = 1, 2, · · · , m (31)

and

C̈
Yi

12(t1, t2) = ∂2ρYi (t1, t2)
/

∂t1∂t2, i = 1, 2, · · · , m (32)

Specially, for a pair of the same time instant (t ,t), we have

ρYi (t, t) = 1 (33)

C(t, t) = In×m (34)

∂ρYi (t, t)
/

∂t1 = C
(
Ẇ (t), W(t)

) = 0 (35)

Ċ1(t, t) = On×m (36)

∂ρYi (t, t)/∂t2 = C(W(t), Ẇ (t)) = 0 (37)

and

Ċ2(t, t) = On×m (38)

Therefore, (26) is rewritten as

ω(t)2 = α̇(t)α̇(t)T + α(t)C̈12(t, t)α(t)T (39)

where C̈12(t, t) is computed by substituting (t1, t2) with
(t, t) in (29), and α̇(t) and β̇(t) are calculated by

α̇(t) = (α (t + �t) − α(t))
/
�t (40)

and

β̇(t) = (β(t + �t) − β(t))
/
�t (41)

We have obtained all the equations for the single upcrossing
rate v+(t) in (20).

3.3 Joint upcrossing rate v++(t1, t2)

Now we derive the joint upcrossing rate v++(t1, t2) between
two arbitrary time instants t1 and t2. The joint upcrossing
rate v++(t1, t2), which indicates the joint probability that
outcrossing events occur at both t1 and t2, is defined by the
Rice’s formula as follows (Rice 1944, 1945):

v++(t1, t2)=
∫ ∞

β̇1

∫ ∞

β̇2

fẆW(Z, β)
(
z1−β̇1

)
(z2−β̇2)dz1dz2

(42)

where fẆW

(
Ẇ, W

)
is the joint normal density function of

Ẇ = (Ẇ (t1), Ẇ (t2)), and W = (W(t1), W(t2)), β = (β1,
β2), β1 = β(t1), and β2 = β(t2). The covariance matrix of
Ẇ and W is given by Madsen and Krenk (1984)

c =
[

cẆẆ cẆW
cWẆ cWW

]
=

⎡
⎢⎢⎣

ω2(t1) ρ12 0 ρ1

ρ21 ω2(t2) ρ2 0
0 ρ2 1 ρ

ρ1 0 ρ 1

⎤
⎥⎥⎦ (43)

in which

ρ = ρ(t1, t2) (44)

ρ1 = ∂ρ(t1, t2)
/
∂t1 (45)

ρ2 = ∂ρ(t1, t2)
/
∂t2 (46)

ρ12 = ∂2ρ(t1, t2)
/

(∂t1∂t2) (47)

and

ρ21 = ∂2ρ(t1, t2)
/

(∂t2∂t1) (48)
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Substituting (22) into (45)–(48) yields

ρ1 = α̇(t1)C(t1, t2)α(t2)
T + α(t1)Ċ1(t1, t2)α(t2)

T (49)

ρ2 = α(t1)C(t1, t2)α̇(t2)
T + α(t1)Ċ2(t1, t2)α(t2)

T (50)

ρ12 = α̇(t1)Ċ2(t1, t2)α(t2)
T + α̇(t1)C(t1, t2)α̇(t2)

T

+α(t1)C̈12(t1, t2)α(t2)
T + α(t1)Ċ1(t1, t2)α̇(t2)

T (51)

and

ρ21 = α̇(t1)C(t1, t2)α̇(t2)
T + α(t1)Ċ1(t1, t2)α̇(t2)

T

+α(t1)C̈21(t1, t2)α(t2)
T + α̇(t1)Ċ2(t1, t2)α(t2)

T (52)

in which

C̈21(t1, t2) =
(

0 0

0 C̈
Y

21(t1, t2)

)
(53)

and

C̈
Yi

21(t1, t2) = ∂2ρYi (t1, t2)/(∂t1∂t2), i = 1, 2, · · · , m

(54)

C(t1, t2), Ċ1(t1, t2), Ċ2(t1, t2), and C̈12(t1, t2) in (49)–(52)
are computed using (23), and (27) through (29).

With the above equations derived, we can now use the
equations in Madsen and Krenk (1984) directly to calculate
v++(t1, t2). The equations are summarized blow.

v++(t1, t2) = λ1λ2fW(β)�((β̇1 − μ1)
/
λ1)�

(
(β̇2 − μ2)

/
λ2
)

+ λ1λ2fW(β)κ�
(
(μ1 − β̇1)

/
λ1
)
�
(
(μ2 − β̇2)

/
λ2
)

+ λ2
1λ

2
2fW (β)

∫ κ

0
(κ − K)f Ẇ

∣∣W
(
β̇
∣∣β; K

)
dK

(55)

in which

fW(β) =
(

exp
((

β2
1 − 2ρβ1β2 + β2

2

)/
(2 − 2ρ2)

))/(
2π

√
1 − ρ2

)
(56)

μ1 and μ2, λ1 and λ2, κ are the mean values, standard devia-
tions, and correlation coefficient of Ẇ (t1)

∣∣β and Ẇ (t2)
∣∣β,

respectively. They are calculated by substituting the covari-
ance matrix in (43) into the following equations

μ =
[

μ1

μ2

]
= cẆWc−1

WWβ =
[

(β2 − ρβ1)ρ1

(β1 − ρβ2)ρ2

]/
(1 − ρ2)

(57)

∑
= c Ẇ

∣∣W = cẆẆ − cẆWc−1
WWcWẆ =

[
λ2

1 κλ1λ2

κλ1λ2 λ2
2

]

(58)

After the derivation of v+(t) and v++(t1, t2), pf (t0, ts ) is
computed with (12), (19), (20), and (55).

3.4 Numerical implementation

There are many equations involved in JUR/FORM. In this
section, we summarize its numerical implementation. From
(11) and (12), we know that to obtain pf (t0, ts ), we need to
integrate the PDF fT1(t) over [t0, ts] numerically. At each of
the integration point between t0 and ts , the integral equation
in (14) should be solved. To maintain good efficiency, we
propose the following numerical procedure.

We start to evaluate the PDF at the last instant ts . To
do so, we discretize the time interval [t0, ts ] into p + 1
instants ti (i = 0, 1, 2, · · · , p), at each of which the inte-
gral equation in (14) for fT1(ts) will be solved. We will then

obtain the PDFs at all these instants. number of the MPP
will be 2(p + 1).This procedure is summarized below, and
the associated flowchart is given in Fig. 1.

Step 1: Initialize the random variables and stochastic
processes, including transforming non-Gaussian
variables into Gaussian ones, discretizing the
time interval [t0, ts ] into p + 1 time instants
t0, t1, · · · , ti, · · · , tp+1 = ts , and setting a
time step �t for the MPP search at ti +
�t (i = 1, 2, · · · , p + 1).

Step 2: Perform the MPP search at every discretized
point ti , as well as at ti + �t; calcu-
late α(ti), βti), α̇(ti ), β̇(ti ), covariance matrix
C(ti , tj ) (i, j = 1, 2, · · · , p + 1), and c by
using (23), (40), (41) and (43)–(54).

Step 3: Solve for the single upcrossing rate v+(ti ) using
(20), joint upcrossing rate v++(ti, tj ) (i, j =
1, 2, · · · , p + 1) using (55), and compute the
PDF fT1(ti ) at each time instant using (19).

Step 4: Calculate pf (t0, ts ).

4 Numerical examples

In this section, two examples are used to demonstrate the
developed methodology. The first one is the reliability anal-
ysis of a corroded beam under time-variant random loading,
and the second one is the reliability analysis of a two-slider
crank mechanism. The two examples are selected because
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Fig. 1 Flowchart of the
JUR/FORM Step 1: Initialize parameters 

Reliability analysis at it and it t+ Δ

Step 2: Perform the MPP search 

Solve for ( ), ( ), ( ), ( ),i i i it t t tβ β ( , )C i jt t and c

Solve for 
upcrossing 

rate ( )iv t+

Solve for joint upcrossing rate ( , )i jv t t++

Solve for PDF 
1
( )iTf t

Step4: Calculate 0( , )f sp t t

Solve for i jκλ λ , 2
iλ , 2

jλ , iμ and jμ

Step 3: Compute PDF 
1
( )T if t

Initial reliability 0( )R t
0( , )f sp t t

they represent two kinds of important applications. Specifi-
cally, the first example involves both of a stochastic process
and random variables in the input of the limit-state func-
tion. The stochastic process is the time-variant random load
acting on the beam. In the second example, there are no
stochastic processes in the input of the limit-state function.
But the limit-state function is still time-dependent because
it is an explicit function of time.

To show the accuracy improvement of JUR/FORM, we
compare its results with those of the traditional Poisson
assumption based single upcrossing rate method, which has
been reviewed in Sec II. Because the exact solutions are
not available, we use Monte Carlo Simulation (MCS) as a
benchmark.

In order to investigate the effects of parameter settings
on the accuracy of JUR/FORM, numerical studies were also
performed for Example 1. The effects studied include the
effects of number of discretization points for the time inter-
val [t0, ts], the time step size �t , the level of probability
of failure, and the dependency of the limit-state function
between two successive time instants.

Next we briefly review the MCS that we used.

4.1 Monte Carlo simulation

When there are stochastic processes involved in the limit-
state function, to generate the samples of the stochastic
process Yi , we treat the stochastic process as correlated ran-
dom variables Yi = (Yi(t1), Yi(t2), · · · , Yi(tN ))T after
discretizing the time interval [t0, ts ] into N instants. For
a Gaussian stochastic process, the correlated random vari-
ables Yi are generated after transforming the correlated
random variables into uncorrelated ones as follows (Gupta
et al. 2000)

Yi = μyi + Lξ (59)

where ξ = (ξ1, ξ2, · · · , ξN)T is the vector of N inde-
pendent standard normal random variables; μYi =(
μYi (t1), μYi (t2) , · · · , μYi (tN )

)T are the vector of mean
values of Yi = (Yi (t1) , Yi(t2), · · · , Yi(tN ))T ; and L is a
lower triangular matrix obtained from the covariance matrix
of Yi .
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Fig. 2 Corroded beam under time-variant random loading

Let matrix AN×N
be the covariance matrix of Yi . L can

be obtained by

AN×N = PDP−1 = LLT (60)

in which D is a diagonal eigenvalue matrix of the covariance
matrix A, and P is the N × N square matrix whose i-th
column is the i-th eigenvector of A.

4.2 Example 1: Corroded beam under time-variant random
loading

4.2.1 Problem statement

The beam problem in Andrieu-Renaud et al. (2004) is mod-
ified as our first example. As shown in Fig. 2, the cross
section A-A of the beam is rectangular with its initial width
a0 and height b0. Due to corrosion, the width and height of
the beam decrease at a rate of r . A random load F acts at
the midpoint of the beam. The beam is also subjected to a
constant load due to the weight of the steel beam.

A failure occurs as the stress of the beam exceeds the
ultimate stress of the material, and the limit-state function is
given by

g(X, Y, t) =
(
F(t)L/4 + ρsta0b0L

2/8
)

− (a0 − 2rt)(b0 − 2rt)σu/4 (61)

where σu is the ultimate strength, ρst is the density, and L is
the length of the beam.

The variables and parameters in (61) are provided in
Table 1.

The covariance function of F(t) is given by

CF (t1, t2) = ρF (t1, t2)σ
F (t1)σ

F (t2) (62)
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Fig. 3 Probability of failure of the beam over different time intervals

where

ρF (t1, t2) = exp
(
− ((t2 − t1) /ζ )2

)
(63)

in which ζ = 1 year is the correlation length. The auto-
correlation becomes weaker with a longer time interval t2 −
t1, and σF (t1) = σF (t2) = 700 N is the standard deviation
of F(t) at time instants t1 and t2.

Since F(t) is a Gaussian stationary stochastic process,
we have

ρUF (t1, t2) = ρF (t1, t2) (64)

in which ρUF (t1, t2) is the auto-correlation function of the
underlying Gaussian standard stochastic process UF (t).

4.2.2 Results

Following the numerical procedure of JUR/FORM in Fig. 1,
we computed the time-dependent probabilities of failure
over different time intervals up to [0, 30] years. The
time intervals were discretized into 80 small intervals, and
the time size for the second MPP search was taken as
0.001 years. To eliminate the accuracy difference caused by
different numerical integration methods, for the traditional

Table 1 Variables and
parameters of example 1 Variable Mean Standard deviation Distribution Autocorrelation

a0 0.2 m 0.01 m Lognormal N/A

b0 0.04 m 4 × 10−3 m Lognormal N/A

σu 2.4 × 108 Pa 2.4 × 107 Pa Lognormal N/A

F(t) 3500 N 700 N Gaussian In (63)

L 5 m 0 Deterministic N/A

ρst 78.5 kN/m3 0 Deterministic N/A

r 5 × 10−5 m/year 0 Deterministic N/A
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Table 2 Time-dependent
probabilities of failure Time Traditional method JUR/FORM MCS

interval (yr)
pf ε(%) pf ε(%) pf 95% CI

[0, 5] 0.309 × 10−4 6.55 0.292 × 10−4 0.69 0.29 × 10−4 [0.215 × 10−4, 0.365 × 10−4]

[0, 10] 0.864 × 10−4 25.22 0.727 × 10−4 5.36 0.69 × 10−4 [0.575 × 10−4, 0.805 × 10−4]

[0, 15] 1.930 × 10−4 31.29 1.450 × 10−4 1.36 1.47 × 10−4 [1.302 × 10−4, 1.638 × 10−4]

[0, 20] 3.924 × 10−4 44.80 2.669 × 10−4 1.51 2.71 × 10−4 [2.482 × 10−4, 2.938 × 10−4]

[0, 25] 7.553 × 10−4 50.76 4.706 × 10−4 6.07 5.01 × 10−4 [4.700 × 10−4, 5.320 × 10−4]

[0, 30] 14.027 × 10−4 62.73 8.393 × 10−4 2.63 8.62 × 10−4 [8.213 × 10−4, 9.027 × 10−4]

Table 3 Number of function
calls and computational times Time Traditional method JUR/FORM MCS

interval (yr)
Time (s) Nf unc Time (s) Nf unc Time (s) Nf unc

[0, 5] 4.85 5495 6.19 5560 127.66 2 × 108

[0, 10] 4.59 5220 6.16 5280 1.29 × 103 4 × 108

[0, 15] 4.55 5115 6.27 5175 2.08 × 103 6 × 108

[0, 20] 4.55 5135 6.26 5195 2.70 × 103 8 × 108

[0, 25] 4.43 5070 6.23 5125 4.19 × 103 10 × 108

[0, 30] 4.36 4955 6.17 5005 4.51 × 103 12 × 108

Table 4 Number of function
calls and computational times
of traditional method using
direct integration method

Time interval (yr) [0, 5] [0, 10] [0, 15] [0, 20] [0, 25] [0, 30]

Time (s) 1.07 1.04 1.02 1.03 0.99 2.61

Nf unc 1250 1170 1155 1165 1135 2965

Table 5 Time-dependent
probability of failure with
different discretization points

MCS Traditional JUR/FORM with p small intervals
method

20 30 40 50 60 70 80

pf (10−4) 8.6 14.027 7.83 7.98 8.09 8.13 8.21 8.24 8.25

ε (%) N/A 62.73 9.16 7.42 6.15 5.68 4.76 4.41 4.33

Table 6 Time-dependent
probability of failure with
different �t

Method MCS Traditional JUR/FORM with different �t
method

5 × 10−4 0.001 0.005 0.01

pf (10−4) 8.62 14.03 8.41 8.25 8.0 7.98

ε (%) N/A 62.73 2.47 4.33 7.16 7.40
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Table 7 Time-dependent
probability of failure
JUR/FORM at different
probability levels

Traditional method JUR/FORM MCS

pf ε(%) pf ε(%) pf 95 % CI

14 × 10−4 71.15 8.25 × 10−4 0.86 8.18 × 10−4 [7.62 × 10−4, 8.74 × 10−4]

19 × 10−4 72.73 10 × 10−4 9.09 11 × 10−4 [10.4 × 10−4, 11.6 × 10−4]

95 × 10−4 93.88 46 × 10−4 6.12 49 × 10−4 [47.6 × 10−4, 50.4 × 10−4]

176 × 10−4 97.75 83 × 10−4 6.74 89 × 10−4 [87.2 × 10−4, 90.8 × 10−4]

1083 × 10−4 127.52 444 × 10−4 6.72 476 × 10−4 [472 × 10−4, 480 × 10−4]

3101 × 10−4 137.81 1246 × 10−4 4.44 1304 × 10−4 [1297 × 10−4, 1311 × 10−4]

method, we used the same integration method as the pro-
posed method; namely, we discretized the time interval into
80 small intervals and then used the rectangle integration
method to calculate the integral in (6). For MCS, the eval-
uated time intervals were discretized into 600 time instants
with a sample size of 2 × 106 at each time instant to generate
the stochastic loading F(t). The results of the three methods
are plotted in Fig. 3 and are given in Table 2. The relative
errors, ε, with respect to the MCS solutions, and the confi-
dence intervals (CI) of the MCS solutions, are also given in
Table 2.

The results indicate that the proposed JUR/FORM
method is much more accurate than the traditional
method.The traditional method leads to unacceptable errors
while JUR/FORM shows excellent agreement with the MCS
solution.

In Table 3, we give the numbers of function calls, Nf unc,
as a measure of efficiency. The number of function calls is
defined as the times that the limit-state function is evaluated
with the inputs of x, y(ti) and ti . The actual computational
cost (times) is also given. The computational times were
based on a Dell computer with Intel (R) Core (TM) i5-2400
CPU and 8 GB system memory that we used.

With the same integration method, the results show
that the accuracy improvement from JUR/FORM indeed
comes from the consideration of the dependencies between
upcrossing events. Table 3 also indicates that the numbers

of function calls by both methods are almost the same. This
is because of the use of the same integration method.

The traditional method, however, may need less number
of function calls because other integration methods could be
used. We also applied the cursive adaptive Lobatto quadra-
ture method to the traditional method. The probabilities of
failure obtained are identical to those given in Table 2, but
with fewer numbers of function calls and less computational
time as shown in Table 4. This means that the traditional
method is more efficient than the proposed method for this
example.

The results given in Tables 1, 2, 3 and 4 demonstrated
that JUR/FORM produced much higher accuracy with a
cost of increased computational effort, but the increased
computational cost is moderate.

4.2.3 Numerical studies

(a) Effect of discretization and time step size

As shown in the numerical procedure, the time inter-
val [t0, ts ] is discretized into p + 1 time instants
ti (i = 0, 1, 2, · · · , p) or p small intervals. The number of
discretization points may affect the accuracy of the analy-
sis result. If the number is too small, the error will be large.
On the contrary, if the number is too large, the error will be
small but the efficiency will be low. To study the effect of

Table 8 Time-dependent
probability of failure with
different dependencies

ρ Traditional method JUR/FORM MCS

pf (10−4) ε(%) pf (10−4) ε(%) pf (10−4) 95 % CI (10−4)

0.961 4.756 24.5 5.83 7.46 6.30 [5.81, 6.79]

0.914 6.952 23.18 8.52 5.86 9.05 [8.46, 9.64]

0.698 13.54 20.07 16.60 2.01 16.94 [16.13, 17.75]

0.368 22.32 17.27 27.36 1.41 26.98 [25.96, 28.00]

0.108 33.29 12.12 38.65 2.03 37.88 [36.68, 39.08]
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Fig. 4 Two-slider crank
mechanism
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the number of discretization points, we discretized the time
interval [0, 30] years into 20, 30, 40, 50, 60, 70 and 80 small
intervals.

Table 5 shows the results from JUR/FORM with different
numbers of discretization points. When the time interval is
divided into 20 small intervals, as expected, the error is the
largest; however, the result is still more accurate than the
traditional method. With the higher number of discretization
points, the accuracy of JUR/FORM is higher.

In addition to the number of discretization, there is
another parameter that may affect the performance of
JUR/FORM. This parameter is the time-step size �t ,
which is used for numerically evaluating the derivatives
α̇(ti ) and β̇(ti ) in (40) and (41), respectively. We used
�t = 0.0005, 0.001, 0.005 and 0.01 to study its effect.
Table 6 provides the results, which show that the time-
step size does affect the accuracy, but the effect is not
significant. The general discussions regarding the effect of

Table 9 Variables and parameters in Example 2

Variable Mean Standard deviation Distribution

R1 108 mm 0.05 mm Normal

R2 211 mm 0.2 mm Normal

R3 100 mm 0.05 mm Normal

R4 213 mm 0.2 mm Normal

θ0 45◦ 0 Deterministic

θ1 60◦ 0 Deterministic

δ0 10◦ 0 Deterministic

ω πrad/s 0 Deterministic

a step size for numerical derivatives can be also found
in Madsen and Krenk (1984), Hu and Du (2012), and
Andrieu Renaud et al. (2004).

(b) Effect of larger probability of failure

To investigate the accuracy of JUR/FORM when the prob-
ability of failure becomes larger, we compared the results
of MCS, JUR/FORM and traditional method for six cases
at different probability levels. Table 7 show that the larger
is the probability of failure, the worse is the traditional
method, while JUR/FORM is always much more accurate
than the traditional method.
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Fig. 5 Time-dependent probabilities of failure
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Table 10 Time-dependent
probabilities of failure Time interval (s) Traditional JUR/FORM MCS

pf (10−3) ε(%) pf (10−3) ε(%) pf (10−3) 95 % CI (10−3)

[0, 0.4] 1.76 22.03 1.51 4.27 1.45 [1.37, 1.52]

[0, 0.8] 3.06 53.84 1.97 1.01 1.99 [1.90, 2.08]

[0, 1.2] 3.92 81.48 2.16 0.17 2.16 [2.073, 2.25]

[0, 1.6] 4.67 112.27 2.31 4.92 2.20 [2.10, 2.29]

[0, 2.0] 6.01 161.30 2.33 1.14 2.30 [2.20, 2.39]

(c) Effect of the auto-covariance of the limit-state function

JUR/FORM is developed to better account for depen-
dent failures over a time period. To demonstrate this,
we analyzed the accuracy of JUR/FORM for five cases
with different levels of dependency. In the five cases, the
coefficients of auto-correlation ρ, ranging from 0.108 to
0.961, between two successive time instants [ti , ti+1], i =
1, 2, · · · , 99 over [0, 30] years. Note that the co-
efficient of auto-correlation of the limit-state function is
almost constant given the auto-correlation function of the
stochastic process for the external force in (62).

Table 8 shows that the error of the traditional method
decreases when the dependency becomes weaker while the
accuracy of JUR/FORM method is always better than the
traditional effort.

4.3 Example 2: Two-slider crank mechanism

A two-slider crank mechanism is shown in Fig. 4. This type
of mechanism is widely used in engines. The crank is rotat-
ing at an angular velocity of ω. The motion error is defined
as the difference between the desired displacement differ-
ence and the actual displacement difference between sliders
A and B . The error should not exceed 0.94 mm over one
motion cycle.

The limit-state function is given by

g(X, Y, t) = �sdesired − �sactual (65)

in which

�sactual = R1 cos(θ − θ0) +
√

R2
2 − R2

1 sin2(θ − θ0)

−R3 cos(θ1 + θ0 − θ − δ0)

−
√

R2
4 − R2

3 sin2(θ1 + θ0 − θ − δ0) (66)

�sdesired = 108 cos(θ − θ0) +
√

2112 − 1082 sin2(θ − θ0)

−100 cos(θ1 + θ0 − θ − δ0)

−
√

2132 − 1002 sin2(θ1 + θ0 − θ − δ0) (67)

The variables and parameters in the limit-state function are
given in Table 9.

This mechanism problem is different from the beam
problem in the follow two aspects. First, this problem does
not involve any input stochastic processes, but the limit-state
function is still a stochastic process because it is a function
of time. Second, the dependence of the limit-state function
at any two time instants is strong. The auto-dependence
does not decay with a longer time period. On the contrary,
in the first problem, the auto-dependency between the per-
formance values at t1 and t2 will be weaker when t2 − t1
becomes larger as indicated in (62).

The angular velocity of the crank is ω = π rad/s, and
the time period of one motion cycle is then [0, 2] sec-
onds. Following the numerical procedure of JUR/FORM,
we computed the probabilities of failure over different time
intervals. Each of the evaluated time intervals were dis-
cretized into 60 smaller intervals. The step size for the
second MPP search was 8 ×10−5 seconds. The traditional

Table 11 Number of function calls and MPP searches

Time interval (s) Traditional JUR/FORM MCS

MPP searches Function Calls MPP searches Function Calls MPP searches Function Calls

[0, 0.4] 122 2394 122 2452 N/A 6 ×107

[0, 0.8] 122 2398 122 2455 N/A 1.2 ×108

[0, 1.2] 122 2394 122 2437 N/A 1.8 ×108

[0, 1.6] 122 2400 122 2451 N/A 2.4 ×108

[0, 2.0] 122 2391 122 2437 N/A 3.0 ×108
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Table 12 Number of function calls of traditional method using direct
integration method

Time interval (s) [0, 0.4] [0, 0.8] [0, 1.2] [0, 1.6] [0, 2.0]

Nf unc 1927 720 4320 3140 16531

method and MCS with a sample size of 106 were also
applied. We also used the same integration method for both
the traditional method and the proposed method to elimi-
nate the accuracy difference caused by different numerical
integration methods. We discretized the time interval into
60 small intervals and then used the rectangle integration
method to calculate the integral in (6). The results from the
three methods are plotted in Fig. 5 and are given in Table 10.

The results indicate that JUR/FORM is significantly
more accurate than the traditional method. With the same
integration method, Table 10 indicates that the accuracy
improvement is indeed due to the consideration of depen-
dent upcrossings by JUR/FORM.

The number of function calls and MPP searches are given
in Table 11, which shows that the proposed method is almost
as efficient as the traditional method.

As what we did in Example 1, we also solved (6) using
the direct cursive adaptive Lobatto quadrature method. The
probabilities of failure obtained are almost identical to those
in Table 10. Contrary to Example 1, The efficiency of
the traditional method, however, varies for different time
periods as shown in Table 12.

The results show that the increased computational cost by
JUR/FORM is reasonable given its significantly improved
accuracy.

5 Conclusion

Time-dependent reliability analysis is needed in many engi-
neering applications. When multiple dependent upcrossings
occur over a time interval, the single upcrossing rate method
with Poisson assumption may produce large errors in esti-
mating the time-dependent probability of failure.

This work demonstrates that the joint upcrossing rates
proposed in Madsen and Krenk (1984) can be extended
to a general time-dependent limit-state function with much
higher accuracy. This work integrates the FORM with the
joint upcrossing rates so that high computational efficiency
can be maintained. Analytical expressions of the single and
joint upcrossing rates are also derived based on FORM.

The proposed method has shown good accuracy when
the probability of failure is small and the dependency
between failures is strong. When the probability of fail-
ure becomes larger or the dependency becomes weaker,
the proposed method remains more accurate than the tradi-
tional upcrossing rate method. Since the proposed method

requires a numerical method in solving the integral equa-
tion and derivatives, its accuracy may be affected by the
number of discretization points and the time size between
two consecutive MPP searches.

The proposed method can be used for general stochas-
tic processes, including non-Gaussian non-stationary pro-
cesses. To do this, we need at first to transform a general
stochastic process into a standard Gaussian process. The
transformation should make not only the CDF functions but
also the auto-covariance functions be equal to each other
before and after the transformation.

Possible future work includes improving the efficiency
and robustness of the method and applying it to time-
dependent reliability-based design optimization.
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Ujević N (2008) An application of the Montgomery identity to quadra-
ture rules. Rendiconti del Seminario Matematico 66(2):137–
143

Vanmarcke EH (1975) On the distribution of the first-passage time for
normal stationary random processes. J Appl Mech Trans ASME
42(1):215–220

Wang Z, Wang P (2012) A nested extreme response surface approach
for time-dependent reliability-based design optimization. J Mech
Des Trans ASME 134(12):12100701–12100714

Yang JN, Shinozuka M (1971) On the first excursion probability in sta-
tionary narrow-band random vibration. J Appl Mech Trans ASME
38(4):1017–1022

Yang JN, Shinozuka M (1972) On the first-excursion probability in sta-
tionary narrow-band random vibration. J Appl Mech Trans ASME
39 Ser E(3):733–738

Zhang J, Du X (2010) A second-order reliability method with first-
order efficiency. ASME J Mech Des Trans 132(10):101006-1–
101006-8

Zhang J, Du X (2011) Time-dependent reliability analysis for function
generator mechanisms. J Mech Des Trans ASME 133(3)

http://dx.doi.org/10.1115/1.4023925

	Time-dependent reliability analysis
	Abstract
	Introduction
	Review of time-dependent reliability analysis methods
	Time-dependent reliability analysis with joint upcrossing rates and FORM
	Time-dependent reliability analysis with joint upcrossing rates
	Single upcrossing rate v+(t)
	Joint upcrossing rate v++(t1, t2)
	Numerical implementation

	Numerical examples
	Monte Carlo simulation
	Example 1: Corroded beam under time-variant random loading
	Problem statement
	Results
	Numerical studies

	Example 2: Two-slider crank mechanism

	Conclusion
	Acknowledgments
	References


