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Abstract The conceptual design of an aircraft is a chal-
lenging problem in which optimization can be of great
importance to the quality of design generated. Mass opti-
mization of the structural design of an aircraft aims to
produce an airframe of minimal mass whilst maintaining
satisfactory strength under various loading conditions due to
flight and ground manoeuvres. Hyper-heuristic optimization
is an evolving field of research wherein the optimization
process is continuously adapted in order to provide greater
improvements in the quality of the solution generated. The
relative infancy of hyper-heuristic optimization has resulted
in limited application within the field of aerospace design.
This paper describes a framework for the mass optimiza-
tion of the structural layout of an aircraft at the conceptual
level of design employing a novel hyper-heuristic approach.
This hyper-heuristic approach encourages solution space
exploration, thus reducing the likelihood of premature con-
vergence, and improves the feasibility of and convergence
upon the best solution found. A case study is presented to
illustrate the effects of hyper-heuristics on the problem for
a large commercial aircraft. Resulting solutions were gener-
ated of considerably lighter mass than the baseline aircraft.
A further improvement in solution quality was found with
the use of the hyper-heuristics compared to that obtained
without, albeit with a penalty on computation time.
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1 Introduction

At the conceptual stage of aircraft design, structural opti-
mization can be employed with great effect to establish
good quality solutions. Structural optimization aims to min-
imize airframe mass whilst maintaining structural integrity
under loading conditions laid out in airworthiness require-
ments, e.g. European Aviation Safety Agency (2012), which
is important in reducing manufacturing and operation costs.
This requires an efficient process to find a good quality solu-
tion from a typically large number of possible variants in a
reasonable amount of time (Raymer 2006).

Multidisciplinary optimization (MDO) within the field of
aerospace design was reviewed by Sobieszczanski-Sobieski
and Haftka (1997), and Allen et al. (2010); describing a
common interest on the aerodynamic and structural opti-
mization of the aircraft for minimum drag and mass respec-
tively. Increased computational demand is a typical chal-
lenge of MDO, commonly resulting in the decomposition
or approximation of the problem, or the consideration of
only a single discipline of optimization (Sobieszczanski-
Sobieski and Haftka 1997). Decomposition has often led to
the sole consideration of single aircraft section, e.g. wing,
resulting in a failure to obtain a complete aircraft configu-
ration (Allen et al. 2010). An alternative approach for the
reduction of computational demand uses a multi-tier opti-
mization framework. Such an approach typically employs a
population-based optimization technique initially to obtain
an approximation to a solution prior to the application of
a gradient-based technique for local improvement of the
solution (Raymer 2002; Hansen and Horst 2008). Surrogate
modelling, commonly using a Latin hypercube, provides
another method of reducing computational demand, leading
to an approximate solution to the problem (Hu and Yu 2009;
Neufeld et al. 2010).
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A common optimization process is followed for most
studies within the field of aircraft design. A period of ini-
tialization is followed by mission definition to determine
requirements of the aircraft. Mass estimation obtains an ini-
tial estimate of aircraft mass for use during the design pro-
cess through empirical methods. Optimization of the aircraft
design is then conducted within the selected engineering
disciplines through the generation and subsequent analysis
of many variations of aircraft designs (Kesseler and Vankan
2006; Raymer 2006). Optimization is often performed over
a single discipline, such as for the aerodynamic or structural
design of the aircraft. When MDO is employed, optimiza-
tion is performed within the disciplines either in series, such
as through initial optimization of the aerodynamic profile
prior to structural optimization, or simultaneously. A pareto
frontier is typically used for evaluation of a multi-objective
function (Bartholomew 1998; Amadori et al. 2007). An
additional design objective of minimum cost is considered
in some cases (Gantois and Morris 2004; Kaufmann et al.
2010). The often unpredictable, multi-modal solution space
leads to common use of genetic algorithms (GAs) to solve
the problem (Raymer 2002).

The optimization of a solution to a problem is highly
dependent on the process followed. In unpredictable
domains with no known solution, the development and
tuning of high quality, problem-specific optimization tech-
niques can be difficult, requiring extensive investigation
and validation. Hyper-heuristic optimization evaluates the
performances of such techniques such that they may be
applied more effectively to the problem (Burke et al. 2010).
Hyper-heuristic optimization is performed across two inde-
pendent domains: the problem and hyper-heuristic domains,
as shown in Fig. 1. Within the problem domain, heuris-
tics (wherein the term also considers meta-heuristics) search
for a near-optimal solution to a given problem, and are
labelled low-level heuristics. Conversely, hyper-heuristics
are applied in the higher-level domain to improve the per-
formance of the optimization process within the problem
domain and promote further solution improvement. As such,
a hyper-heuristic was introduced as “an approach that
operates at a higher level of abstraction than current meta-
heuristic approaches” (Cowling et al. 2000). A barrier
restricts data flow between domains to allow the passage
of solely problem-independent information to inform the
actions of hyper-heuristic optimization (Chakhlevitch and

Cowling 2008). Such hyper-heuristic actions are dependent
on the hyper-heuristic approach employed, itself defined by
specific aspects in which the process within the problem
domain is controlled. Four common aspects are: heuristic
selection, population distribution, parameter control, and
perturbation analysis.

Heuristic selection chooses the most appropriate low-
level heuristic for application in the problem domain from a
set of candidate heuristics, leading to an alternative descrip-
tion of hyper-heuristics as “heuristics to choose heuristics”
(Burke et al. 2010). Such hyper-heuristics may be con-
structive or perturbative, where the former creates a new
solution incrementally whilst the latter evolves an existing
solution over a period of generations (Burke et al. 2010).
As the optimization of an aircraft design is typically per-
formed through the evolution of a baseline design (Raymer
2002; Maute and Allen 2004), constructive heuristics are
not described herein. Perturbative heuristics employ move
acceptance to define rules for the approval of selection,
where common methods include all moves (AM), improv-
ing or equal (IE), only improving (OI), and Monte Carlo
(MC) methods. AM permits selection regardless of perfor-
mance, OI only permits selection with an improvement in
solution quality, whilst IE permits selection with solutions
of better or equal quality. MC methods allow beneficial
moves and randomly permit negative moves with linearly
(LMC) or exponentially (EMC) decreasing probability, pro-
viding promising results when combined with a counter of
iterations since improvement (EMCQ) (Ayob and Kendall
2003; Özcan et al. 2008).

Population distribution divides a set of solutions between
multiple low-level heuristics for a generation. Distribution is
performance-based, random, or equal, such that each heuris-
tic optimizes solely individuals within its sub-population.
When a single-solution heuristic is selected, each individual
within the sub-population is optimized independently. Such
an approach aims to overcome limitations of individual
heuristics through the availability of alternatives (Rafique
et al. 2011). Sub-populations must be adequately sized to
allow sufficient opportunity for improvement. This can be
addressed by a dynamic population size, such as in Arabas
et al. (1994) where the fitness-driven lifetime of individuals
enabled variation in population size.

Parameter control adapts low-level heuristics during
application based on the history of the problem (Eiben et al.

Fig. 1 Domains of
hyper-heuristic optimization

Low-level heuristic setOptimization problem

Problem domain

Hyper-heuristic domain

Hyper-heuristic set Hyper-heuristic approach

Domain barrier
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2007). Such changes may be made either through perturba-
tion of existing values or selection of the better performing
settings; the latter is referred to as operator selection (Burke
et al. 2010; Maturana et al. 2010).

Local solution space learning is encouraged through per-
turbation analysis of individuals using a memetic algorithm
(Özcan et al. 2008). Analysis frequency and duration, and
the choice of solutions to perturb are key to the success
of this aspect. A set proportion of the population or only
improved solutions are typically perturbed, continuing until
no further improvement is made or for a specified duration
(Ong et al. 2006).

A learning mechanism drives a hyper-heuristic approach,
commonly using reinforcement learning to reward improve-
ments in a hyper-heuristic objective function formed by
measures of process performance within the problem
domain (Burke et al. 2010). One such function, a choice
function, measures performance against a set of criteria,
including improvements in solution quality and computa-
tional time taken (Cowling et al. 2000).

The focus of this paper is the design of a hyper-heuristic
approach including the above aspects for the hyper-heuristic
structural optimization of an aircraft conceptual design.
The remainder of the paper is organized as follows.
Section 2 describes the hyper-heuristic approach developed
to assist aircraft structural optimization, leading to the pre-
sentation of an optimization framework to address the prob-
lem in Section 3. The framework is demonstrated through
a case study in Section 4 prior to concluding remarks in
Section 5.

2 Hyper-heuristic approach

A hyper-heuristic approach for aircraft design optimization
has been developed to improve solution quality and feasibil-
ity compared to those achievable through traditional meth-
ods. Whilst most hyper-heuristic approaches only incor-
porate a single aspect of process control, this approach
includes the integration of the following four aspects of
hyper-heuristics:

1. Selection of appropriate low-level heuristics for use in
the problem domain based on earlier performance;

2. Biased distribution of the population towards the better
performing low-level heuristics selected;

3. Control of process parameters for promotion of more
efficient optimization and increased solution quality;

4. Perturbation analysis of the running best solution upon
discovery for local solution space learning.

Reinforcement learning promotes beneficial application
of the hyper-heuristic approach. Thus, exploration of the
solution space is encouraged during early generations prior

to later promotion of convergence upon the best solution
found. This reduces the likelihood of premature conver-
gence on local optima and permits analysis of the solution
space neighbouring good solutions.

2.1 Heuristic selection

Heuristic selection ensures the application of appropriate
low-level heuristics to the problem at a given process gen-
eration. This enables the encouragement of diversity or
convergence, achieved through the ranking of heuristics by
performance against the hyper-heuristic objective function
(to be described in Section 2.5). The heuristic set is pre-
sented in Table 1, comprised of those commonly applied
within the domain of aircraft design.

Single-solution and population-based heuristics may be
employed as low-level heuristics, the latter including ran-
dom, evolutionary algorithm (EA), swarm intelligence (SI),
and GA heuristics. Individuals assigned to single-solution
heuristics are optimized independently. A similar list of
heuristics applied within the hyper-heuristic domain is pre-
sented in Table 2, with ticks indicating which heuristics may
be applied for each aspect of the hyper-heuristic approach.
Note that some heuristics are available as both low-level and
hyper-heuristics.

Hyper-heuristics perform heuristic selection as follows:
(i) SR randomly selects a low-level heuristic from the
heuristic set; (ii) PE performs random selection from a
predefined number of well-performing heuristics; (iii) GR
selects the low-level heuristic that generated the best solu-
tion or a random heuristic if the current heuristic is the
best; (iv) HC, SA, and TS select heuristics by ranking the
heuristic set by solution quality and randomly selecting the
closest best or worst candidate; (v) RW and TS similarly
rank the heuristic set and probabilistically select and mutate
a heuristic by rank.

Table 1 Candidates within low-level heuristic set

Category Low-level heuristic

Single-solution Hill climbing (HC)

Simulated annealing (SA)

Tabu search (TS)

Population-based Random Monte Carlo (MC)

Random immigration (RI)

GA Roulette wheel (RW)

Tournament selection (TO)

Breeder pool (BP)

EA Killer queen (KQ)

Differential evolution (DE)

SI Particle swarm (PSO)
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Table 2 Candidates within hyper-heuristic set

Hyper-heuristic Heuristic Parameter Perturbation

selection control analysis

Simple random (SR) � �
Peckish (PE) � �
Greedy (GR) � �
Hill climbing � � �
Simulated annealing � � �
Tabu search � � �
Roulette wheel �
Tournament selection �

Move acceptance controls heuristic selection, with the
AM, IE, and EMCQ methods available, as well as a SA
approach. The latter two are preferred as they probabilisti-
cally permit negative moves, hence limiting the likelihood
of dominance by well-performing low-level heuristics. This
is necessary as convergence-encouraging heuristics may be
expected to converge prematurely within a multi-modal
solution space, but are desired towards the end of the
process for efficient convergence.

2.2 Population distribution

For generations with multiple low-level heuristics selected,
the population is distributed between the low-level heuris-
tics with greater probability of being assigned to those with
a better performance history. The initial population is either
randomly or equally distributed. The total population size
is increased by a factor of the number of selected low-level
heuristics to ensure an adequate sub-population size per
low-level heuristic to allow suitable opportunity for solution
improvement. The maximum number of heuristics per gen-
eration is therefore limited to reduce the required increase
in computation time for population analysis.

A dynamic population size limits sub-population size to
prevent excessively large sub-populations. Sub-populations
exceeding the imposed limit are reduced through the ran-
dom rejection of individuals, whilst additional solutions are
generated randomly within a sub-population to increase the
population in generations following such reductions, thus
preventing elitism.

Population-based low-level heuristics are applied to a
sub-population in the same manner as when traditionally
applied to a full population of individuals, albeit with
no knowledge of individuals outside the sub-population.
When a single-solution low-level heuristic is employed,
each individual within the sub-population is optimized inde-
pendently for one iteration per process generation. Thus
the sub-population effectively contains a set of independent
solutions optimized in parallel.

2.3 Parameter control

A set of control parameters listed in Table 3 drives the
operation of the optimization process. These parameters are
used by low-level heuristics when chosen during heuris-
tic selection. Parameter control is performed to assist the
optimization process in (i) preventing premature conver-
gence on local optima through encouraged solution space
exploration; (ii) improving convergence on the best solution
obtained; (iii) focusing on critical variables without requir-
ing excessive computation; (iv) avoiding convergence on an
infeasible solution.

The ranges given in Table 3 have been determined
through an earlier study of typical values found in the lit-
erature (Grefenstette 1986; Bean and Hadj-Alouane 1992;
Clerc and Kennedy 2002; Pedersen 2010) to ensure appro-
priate limits for the variation of parameters. The penalty
coefficient controls the severity of penalty applied to infea-
sible solutions to promote convergence on a feasible solu-
tion. The lengths of binary chromosomes of converging
design variables are extended to allow optimization at
increased resolution. The remaining parameters promote
exploration, diversity, or negative moves during early gener-
ations before discouraging such actions in later generations.

2.4 Perturbation analysis

Perturbation analysis is performed by a single-solution
heuristic chosen by heuristic selection and Lamarckian
evolution to further improve solution quality. This is per-
formed solely for newly-discovered optima to limit the
required computational effort through repeated perturba-

Table 3 Hyper-heuristically controlled parameters

Parameter Affected low- Range
level heuristic

Min. Max.

Penalty coefficient – 0.25 2.00

Strand length – 4-bits 16-bits

Crossover probability RW, TO, BP 0.50 1.00

Crossover points RW, TO, BP 1 Random

Mutation probability RW, TO, BP 0.00 0.01

Breeder pool intake BP 0.10 0.30

Indigenous population RI 0.10 0.40

Differential weight DE 0.00 2.00

Crossover probability DE 0.00 1.00

Cognitive parameter PSO 1.40 2.10

Social parameter PSO 0.90 1.80

Inertia weight PSO 0.55 0.75

Cooling rate SA 0.00 0.95

Length of tabu list TS 0 100
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tion of randomly-selected variables and re-analysis of the
solution until no further improvement is made.

2.5 Learning mechanism

Reinforcement learning drives the hyper-heuristic approach
through continuous evaluation of process performance mea-
sured using the following criteria:

1. Objective value of best solution;
2. Mean objective value;
3. Population variance;
4. Convergence rate.

Population variance is measured as the mean variance of
design variables (Morrison and De Jong 2002) and conver-
gence as the magnitude of change in objective value. These
criteria form a choice function based on that of Cowling
et al. (2000), differing in its design for the encouragement
of solution quality and variance or convergence rather than
low-level heuristic effectiveness and computation speed
whilst also being used for multiple aspects of the hyper-
heuristic approach rather than solely heuristic selection. As
such, this function defines a maximization hyper-heuristic
objective function, φn

φn = an
1φn

1 + an
2 φn

2 + an
3 φn

3 + an
4φn

4 (1)

where φn
1 = 1

min �(X�n)

φn
2 = 1

�(X�n)

φn
3 =

(
1 − n

N

)
σ 2(X�n)

φn
4 = nδ(X�n)

an
k = 0.25

max
(
φn

k , φn−�n
k

) for k = 1, 2, 3, 4

at generation n of N . Herein the superscripts n and N indi-
cate the generation and �n a period of generations over
which a value is recorded. Therefore �(Xn), σ 2(Xn), and
δ(Xn) respectively denote the problem objective value, pop-
ulation variance, and magnitude of convergence rate during
the period for a population set X of μ solutions at generation
n. The function consists of four components, φn

1 , φn
2 , φn

3 ,
and φn

4 , to measure the aforementioned criteria over a period
of �n generations immediately preceding generation n. The

component values are compared against those for the previ-
ous period of �n generations in order to establish whether
an improvement has been made in these aspects of process
performance, i.e. if φn > φn−�n. Coefficient an

k normal-
izes the kth component of (1) to restrict its value to the
range 0 ≤ an

k φn
k ≤ 0.25 for both periods, thus bounding the

function such that 0 ≤ φn, φn−�n ≤ 1 and ensuring homo-
geneity. Components φn

1 and φn
2 promote improvement in

the quality of the best solution and population set through-
out the process. Conversely, the n-based scaling factors in
the expressions for φn

3 and φn
4 weight these components

for encouraged variance, and thus solution space explo-
ration, during early generations before promoting a high
convergence rate for later generations.

3 Framework for aircraft structural design
optimization with a hyper-heuristic approach

The hyper-heuristic approach described in Section 2 has
been embedded within a framework for aircraft conceptual
design optimization (Allen et al. 2010). This framework
provides the ability for adaption of the optimization process
based on its performance such that solutions of higher qual-
ity may be obtained than through traditional methods. The
key stages of the framework are presented in Fig. 2. The
framework initializes the process to define the requirements
of the aircraft (stages 0.1 and 0.2 in Fig. 2), optimiza-
tion process (0.3), and finite element analysis (FEA) (0.4).
A design is subsequently obtained through the following
modules.

3.1 Mission definition

Given the requirements input during initialization, a mis-
sion profile is generated (1.1) to permit definition of the
selected loading conditions using the airworthiness require-
ments (1.2). The aircraft payload is also defined based on
the requirements of the design (1.3).

3.2 Mass estimation

Empirical methods (Roskam 1986; Raymer 2006) are
employed (2.1) to determine payload mass (2.2), and an esti-
mate of aircraft mass at stages during the mission (2.3). The
necessary mission fuel is also estimated (2.4).

3.3 Design optimization

Empirical formulae (Torenbeek 1982; Raymer 2006) are
used to generate the external profile of the aircraft to
meet the requirements for flight (3.1). Structural optimiza-
tion is then performed within the profile for an objective
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4 DATA OUTPUT

0 INITIALIZATION
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Variables

3.20 Output
Solution
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Aircraft Mass
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1.2 Load
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0.2 Aircraft
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0.1 Design
Constraints

0.3 Optimization
Settings

0.4 Finite Element
Analysis (FEA)

Settings

µ

Fig. 2 Framework for optimization of aircraft structural design with embedded hyper-heuristic approach (HHA)

function of minimum structural mass of solutions within the
population set

min �(Xn) for n = 1, 2, . . . , N (2)

Structural design requirements to satisfy geometric con-
straints imposed by the external profile, such as limits on
member positions, are calculated (3.2). The ranges of design
variables are then evaluated to ensure they comply with
these constraints (3.3). An initial population of designs is
then either seeded or randomly generated (3.4). Optimiza-
tion is performed over a series of generations, where for
each generation the population is firstly analyzed to deter-
mine structural performance. For each individual the aircraft
design represented by the design variables is determined
(3.5), from which an airframe is generated (3.6), and finite
element (FE) model constructed (3.7). In order to reduce
the computational effort required to solve the FEA problem
for each individual, the FE model is constructed of one-
dimensional beam elements, with multiple similar structural
members grouped within elements to reduce the sizes of the
FEA matrices. Such member combinations include multi-
ple ribs, frames, floor beams, and fuselage stringers grouped
into a lower number of respective beam elements. Similarly,
lifting surface stringers are merged within spar elements,
with skin lumped within stringers. The number of mem-
bers grouped within elements is determined by the fidelity
of the model as defined during initialization, with element

properties subsequently determined through the smearing
of the properties of the members within. The feasibility of
the individual against design constraints for minimum fac-
tor of safety against yield using the von Mises criterion, ci,1,
and maximum wingtip deflection, ci,2, is then established
by solving the FEA problem (3.8). These constraints are
determined by the airworthiness requirements (European
Aviation Safety Agency 2012) and the maximum allow-
able deflection before ground strike (Grasmeyer et al. 1998)
respectively for individual i ∈ X at generation n

ci,1(X
n) ≥ 1.5

|ci,2(X
n)| ≤ 7.5 m

(3)

The objective value of each solution is initially calculated
as the structural mass of the design, where ρ, A, and l denote
the density, area, and length of member k of Kn

i for the ith
individual of the population

fi(X
n) =

Kn
i∑

k=1

(ρAl)ni,k (4)

for the unpenalized objective value, fi(X
n). An exterior

penalty function penalizes infeasible solutions (3.9)

�i(X
n) = fi(X

n)

⎧⎨
⎩1 + λn

m∑
j=1

g2
i,j (X

n)

⎫⎬
⎭ (5)
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where λn is the adaptive penalty coefficient, and gi,j (X
n)

the measure of violation of constraint j of m defined as

gi,j (X
n) = max(0, ci,j (X

n)) (6)

The severity of penalty applied to infeasible solutions
is determined by the penalty coefficient, defined through
parameter control. For applications without the use of
parameter control, the coefficient is adapted through static
rules to increase or decrease the coefficient depending on
the feasible proportion of the population (Bean and Hadj-
Alouane 1992) as

λn+1 =
⎧⎨
⎩

(1/β1)λ
n if β(Xn) > 80 %

β2λ
n if β(Xn) < 20 %

λn otherwise
(7)

where β(Xn) represents the feasible proportion of the pop-
ulation during generation n, and β1,2 are constants, where
β1,2 > 1 and β1 �= β2 to avoid cycling. Individual fit-
ness, Fi(X

n), is then calculated by ranking the population
by objective value, τ(�i(X

n)) (3.10)

Fi(X
n) = 1 + μ − τ(�i(X

n))
μ∑

j=1
τ(�j (Xn))

(8)

Improved solutions within the population are identified
through comparison of fitness (3.11). If a better solution
is discovered, perturbation analysis is performed to the
individual until no improvement is made (3.12). Termina-
tion criteria are then checked, including a generation limit,
number of generations since improvement in objective func-
tion, and population variance (3.13). These criteria aim to
end the optimization process if no improvement is being
made to the current best solution or if the population has
converged.

The learning mechanism evaluates the performance of
the optimization process during the generation using the
hyper-heuristic objective function of (1) (3.14). The mea-
surement period over which the function is measured, �n,
is set during initialization and the value calculated by
(1) compared against that of the previous period. If the
value at the end of the current period is lower (3.15),
hyper-heuristics are applied to modify the process in an
attempt to improve its performance. In such cases modifica-
tions are applied through parameter control of the process
settings (3.16), heuristic selection (3.17), and population
distribution (3.18). Move acceptance is applied midway
through this period to permit rejection of newly-selected
heuristics and population distribution failing to satisfy the
rule of move acceptance chosen during initialization. The
population is then optimized using the selected low-level

heuristics within the defined sub-populations (3.19). This
optimization process is repeated until a termination crite-
rion is satisfied, at which point the best solution obtained is
output (3.20).

3.4 Data output

Upon the completion of the optimization process, a model
of the best design solution is output (4.1) along with the
performance of the aircraft during FEA (4.2). Finally, the
performance of the process if output (4.3), detailing the
selection of low-level heuristics, control of parameters,
distribution of the population, population feasibility, and
process convergence during execution.

4 Case study

The application of the framework is demonstrated using
a computational implementation called AStrO (Aircraft
Structural Optimizer). The baseline aircraft design for struc-
tural optimization is the Airbus A340-300, with Table 4
listing a selection of properties of the aircraft (Jackson 2009;
Airbus SAS 2012). Table 4 also includes characteristics
of the mission profile, a cruise between two aerodromes,
and the loading conditions to be simulated. Cabin pressur-
ization, engine thrust, and gravity are encompassed within
these load cases.

Table 4 Selected properties of aircraft and mission

Property Value

Wing span 60.30 m

Sweep 30.0◦

Tail span 19.40 m

Height 16.99 m

Fuselage length 63.69 m

Width 5.64 m

Undercarriage track 10.69 m

Wheelbase 25.37 m

Powerplant 4× CFM International 56-5C4

Mass operating empty 130,200 kg

Maximum takeoff 276,500 kg

Cruise altitude 35,000.00 ft

Range 5,000.00 nm

Speed 0.82 M

Number of flight crew 2

Passengers 335

Aircraft class Civil transport

Load case in flight +2.5 g pull-up manoeuvre

On ground 2-point landing



814 J.G. Allen et al.

The FE model is constructed at a level of fidelity of
10 %, i.e. 1 in 10 ribs, frames, floor beams, and fuse-
lage stringers are modelled as elements with remaining
members grouped within the closest respective element,
leading to smeared properties within the element. Criti-
cal members, e.g. spars and members with attachments,
are exceptions that are modelled in isolation, whilst floor
beams are modelled at the same position as frames within
the cabin. Further, each lifting surface is constrained to
having two spars. This level of fidelity is chosen having
established through previous experiments that a model of
such fidelity provides substantial gains in computational
speed without generating unacceptable errors in the results
of the FEA compared to a model of 100 % fidelity, i.e.
when all structural members are modelled individually.
More specifically, during these experiments the low fidelity
model required less than 2 % of the computation time
to model and solve the FEA problem for one load case,
whilst the difference in values of the design constraints
were never greater than 4 % and on no occasion resulted
in a different number of constraint violations within the
aircraft design. Due to a hardware constraint imposed by
the computational resources on the problem runtime, such
increased computation speed with reasonable accuracy of
results permits the consideration of a much greater number
of design solutions. Table 5 lists additional constraints on
the design, typical of those of a large commercial aircraft
(Niu 1999).

The design variables of the study for the structural layout
of the aircraft are listed in Table 6. Variables V1-8 define the
number of structural members within the airframe, whilst
V9-11 determine the proportion of fuselage frames within
the nose, tail, and wingbox. The height and width of the
spars at the root relative to the tip are defined by V12-13,
with linear spanwise variation, and V14 sets the front wing
spar position as a fraction of chord, c. The spanwise dis-
tributions of ribs within the lifting surfaces are defined by
V15-17 for a greater number of ribs at the root to react
expected stress concentrations under bending loads. Thus,

Table 5 Constraints on structural members

Structural member Material Profile Thickness

Lifting surface rib Al 7075-T6 I 10.0 mm

Spar Al 7178-T6 I 4.0 mm

Stringer Al 2014-T6 Z 2.0 mm

Fuselage frame Al 7075-T6 T 10.0 mm

Stringer Al 2014-T6 Z 5.0 mm

Floor beam Al 7075-T6 I 20.0 mm

Skin Al 2014-T6 – 3.0 mm

Floor Al 7075-T6 – 20.0 mm

Table 6 Constrained ranges of design variables

ID Design variable Range

Min. Max.

V1 Number of wing ribs 10 100

V2 Wing stringers 20 120

V3 Horizontal tail ribs 10 40

V4 Horizontal tail stringers 10 80

V5 Vertical tail ribs 10 40

V6 Vertical tail stringers 10 80

V7 Fuselage frames 20 160

V8 Fuselage stringers 30 180

V9 Frames in nose 5.0 % 15.0 %

V10 Frames in tail 5.0 % 15.0 %

V11 Frames in wingbox 5.0 % 20.0 %

V12 Height of wing spars at root 1.0 4.0

V13 Width of wing spars at root 1.0 4.0

V14 Position of wing front spar 0.2 c 0.35 c

V15 Wing ribs 1.0 3.0

V16 Horizontal tail ribs 1.0 3.0

V17 Vertical tail ribs 1.0 3.0

for a surface of span b with the root rib of R ribs positioned
at y0, the spanwise position of the rth rib is given by

yr = rα−1 (Cb − y0)

Rα
+ y0

where C =
{

0.5 for wing, horizontal tail
1.0 for vertical tail

α = V15, V16, V17 as required (9)

The case study is performed through a series of optimiza-
tion runs, differing as described by Table 7 with ticks denot-
ing active aspects of the hyper-heuristic approach. Parame-
ter control is setup as in Table 3 with initial values generated
using the SR hyper-heuristic. Hyper-heuristics for runs with
multiple hyper-heuristic aspects are applied as: i) heuristic
selection, ii) parameter control, and iii) perturbation analy-
sis. No more than three low-level heuristics per generation
are selected to prevent the need for an excessively large
population to provide opportunities for improvement within
sub-populations. Run 8 is an exception where a dynamic
population size limits sub-populations to 100 individuals.
All runs are seeded within an identical initial population,
and uniform crossover and EMCQ move acceptance are
used. Termination criteria include a limit of 1,000 process
generations, minimum population variance of 2.0 %, and
250 successive generations without solution improvement.
This final criterion is raised to 350 generations when using
parameter control to permit opportunity for changes in
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Table 7 Setup of hyper-heuristic approach for runs performed for case study and required population size

Settings of variables for runs of case study

Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8

Population size 100 100 100 100 100 300 300 Dynamic

Heuristic selection � � � �
Population distribution � � �
Parameter control � � �
Perturbation analysis � � �
Low-level heuristics MC RW RW RW All All All All

Hyper-heuristics SA SA GR RW i) RW i) RW

ii) SA ii) SA

iii) TS iii) TS

parameters to take effect. These values are selected having
performed well during earlier preliminary investigations.

4.1 Results

Ten experiments were conducted for each run listed in
Table 7 to account for the variability in the results due to
the stochastic nature of the heuristics employed. Table 8
presents the results from the experiment generating the best
solution for each run. For the best solution during each run,
Table 8 includes the objective value, �min, percentage dif-
ference from the best solution overall, ��min, worst values
for constraints, c1,2, and feasible proportion of structural
members, η. Final population feasibility, β(XN), and vari-
ance, σ 2(XN), are also given, as are the generation number
at termination, N , and computation time taken as a propor-
tion of that required for the run that generated the overall
best solution, �T . Also included are the maximum, mean,
and standard deviation of the best objective values across all

experiments, �max, �, and s(�) respectively. Key findings
of the runs include:

Run 1 Random search, worst solution, poor convergence
and population feasibility;

Run 2 Traditional application of GA, convergence on
local optimum, largely feasible final population;

Run 3 Large improvements in solution quality, premature
termination limited quality of final solution;

Run 4 Promoted beneficial actions to correct initial poor
performance, promoted solution feasibility;

Run 5 Better solution than Runs 1–4, large variations in
population feasibility and variance;

Run 6 Poorer final solution than Run 5, but with
improved convergence and population feasibility;

Run 7 Solution quality further improved, general lack of
convergence due to sub-population independence;

Run 8 Best solution, lack of convergence or population
feasibility, large increase in computation time.

Table 8 Results obtained for experiments generating best design solutions and variability of solution quality

Values for best solution obtained during run and variability across all experiments

Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8

�min, kg 57,922 50,234 50,609 50,465 47,069 47,659 46,228 45,323

��min, % 24.41 10.28 11.02 10.74 3.78 5.02 1.98 0.00

c1 1.63 1.52 1.58 1.51 1.58 1.46 1.51 1.59

c2, m −0.46 −0.23 −0.54 −0.27 −0.28 −0.23 −0.23 −0.24

η, % 100.00 100.00 100.00 100.00 100.00 96.06 100.00 100.00

β(XN), % 9.00 85.00 72.00 97.00 11.00 98.78 29.27 12.50

σ 2(XN ), % 43.73 3.44 9.84 8.90 42.97 3.99 26.27 38.08

N 489 691 386 1,000 994 938 1,000 1,000

�T 0.08 0.04 0.04 0.04 0.06 0.19 0.22 1.00

�max, kg 63,021 64,150 60,418 60,344 50,940 50,829 48,266 46,644

�, kg 60,744 56,583 53,880 53,604 48,466 48,763 47,028 45,931

s(�), kg 1,661 5,673 3,053 4,068 1,151 1,042 669 480
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Run 1 provided an indication of a random search for
a solution using the MC low-level heuristic, whilst Run
2 exemplified a typical existing approach to the problem
through the application of a GA using a RW. These results
provided useful benchmarks for comparison against the
runs involving the application of hyper-heuristics in Runs
3 to 8. A significant improvement in the quality of the
best solution, measured by objective value, was obtained
against these benchmarks with heuristic selection enabled.
Parameter control in Run 4 led to an increase in final pop-
ulation feasibility, with a feasible solution obtained for all
runs except Run 6. The ability to vary chromosome strand
lengths for greater resolution of optimization permitted a
solution closer to the constraint boundaries to be found
for Runs 4 and 7, as did perturbation analysis during the
latter.

Perturbation analysis in Run 3 provided instances of sig-
nificant improvement in the solution. This is illustrated in
Fig. 3a, which shows the objective value of the running best
solution, alongside the variance and feasibility of the pop-
ulation for Runs 3 and 4. Improvements in the objective
function of at least 10 % are labelled PA for perturbation
analysis. A local minimum was discovered after 136 gen-
erations of Run 3 leading to termination due to an inability
to further improve the solution. Thus perturbation analy-
sis provided the opportunity for rapid evaluation of the
local design space, although was susceptible to premature
convergence.

The improvement in the objective value of the best solu-
tion during Run 4 initially followed a similar trend to that
of Run 3. However, periods of deteriorating population
feasibility led to the application of parameter control to pro-
mote feasibility by increasing the penalty coefficient. Four
instances of such control are labeled PC in Fig. 3a, showing
decreasing feasibility over generations preceding increases
in the penalty coefficient and subsequently population fea-
sibility. This adaption improved solution quality, population
feasibility, and reduced population variance. Ultimately, the
solution obtained during Run 4 was poorer than that for Run
2. However, final population feasibility was improved and a
solution closer to the constraint boundaries found.

Heuristic selection during Runs 5 to 8 provided a notice-
able improvement in the quality of the solution generated.
The elitist nature of the GR hyper-heuristic during Run
5 produced a better solution than the RW hyper-heuristic
in Run 6 due to the possibility of selecting poorer per-
forming low-level heuristics using RW. However, this elitist
behaviour led to the dominance of exploration-encouraging
low-level heuristics, a factor that EMCQ move accep-
tance did not overcome. This resulted in poor conver-
gence and population feasibility for Run 5 as indicated
in Table 8 and Fig. 3b. Such dominance was further
reduced during Run 6 by population distribution leading

to improved population feasibility and variance. Figure 3b
is annotated to indicate the selection of low-level heuris-
tic during Run 5. Influences of different heuristics on
population diversity can be seen by the patterns in vari-
ance and feasibility. A selection of short periods indicate
where move acceptance rejected heuristic selection, e.g.
between generations 675 to 725 where DE was rejected
in favour of PSO. Similar trends were seen during Run
6 with the corresponding objective value also plotted in
Fig. 3b.

Perturbation analysis within Run 7 enabled improve-
ment in the final objective value compared to Run 6.
However, parameter control did not provide the expected
benefits in population feasibility and convergence due to
sub-populations converging independently. This poor con-
vergence led to large variations in population feasibility, as
shown in Fig. 3c alongside the objective values of Runs 7
and 8. Figure 3c is annotated by HS to indicate generations
at which heuristic selection was accepted. Additional anno-
tations indicate perturbation analysis, PA, as in Fig. 3a, and
generations at which parameter control was applied with
notable effects, PC. Poor convergence was also apparent
during Run 8, with an increase in computation time due to
a population size of up to 1,100 individuals. The dynamic
population size reduced the population to 848 individuals,
however this was still much larger during all other runs. As
such, increased time for FEA was required and there existed
a greater possibility of finding a good solution. Run 8 did,
therefore, provide the best solution to the problem. Runs
using parameter control terminated upon reaching the limit-
ing number of optimization generations whilst all other runs
terminated due to successive generations without improve-
ment. Nevertheless, the number of solution evaluations,
defined by the population size and number of generations,
was comparable to those of similar studies (Raymer 2002;
Özcan et al. 2008; Rafique et al. 2011), ranging from
38,600 evaluations for Run 3 to 857,272 evaluations for
Run 8.

The behavior discussed above was consistent across all
experiments; however variability in the quality of the solu-
tions generated by each run was evident. The mean objective
values of the best solutions of Runs 5 to 8 were lower
than for Run 2, the best performing traditional method,
with analysis indicating the differences in objective values
were statistically significant under t-tests for means with
assumed unequal variance (P < 0.001). However, no sta-
tistically significant difference existed between Run 2 and
Runs 3 and 4 (P ≈ 0.1) due to the prevailing influence
of the same GA employed during these runs. Runs 7 and
8 generated the lowest means and standard deviations of
solution quality, indicating the greatest repeatability of high
quality solutions when using the complete hyper-heuristic
approach.
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Fig. 3 Running best solution
objective value, population
variance, and population
feasibility during runs.
a Comparison of effects of
pertubation analysis and
parameter control during Runs 3
and 4. b Effects of GR
hyper-heuristic when employed
for heuristic selection during
Run 5 compared to RW for Run
6. c Effects of complete hyper-
heuristic approach during Run 7
compared to with dynamic
population size for Run 8

0.00

25.00

50.00

75.00

100.00

0.00

20,000.00

40,000.00

60,000.00

80,000.00

0 200 400 600 800 1000

Po
pu

la
tio

n 
V

ar
ia

nc
e 

or
 F

ea
si

bi
lit

y,
 %

O
bj

ec
tiv

e 
V

al
ue

, k
g

Generation

PA1 PA2 PC1 PC3

Objective Value (Run 3)                Population Variance (Run 3)                Population Feasibility (Run 3)

Objective Value (Run 4)                Population Variance (Run 4)                Population Feasibility (Run 4)

PC2 PC4

0.00

25.00

50.00

75.00

100.00

0.00

20,000.00

40,000.00

60,000.00

80,000.00

0 200 400 600 800 1000

Po
pu

la
tio

n 
V

ar
ia

nc
e 

or
 F

ea
si

bi
lit

y,
 %

O
bj

ec
ti

ve
 V

al
ue

, k
g

Generation

KQ MC KQ DE PSO DE PSO KQ MC SA

Objective Value (Run 5)                Population Variance (Run 5)                Population Feasibility (Run 5) Objective Value (Run 6)

0.00

25.00

50.00

75.00

100.00

0.00

20,000.00

40,000.00

60,000.00

80,000.00

0 200 400 600 800 1000
Po

pu
la

tio
n 

V
ar

ia
nc

e 
or

 F
ea

si
bi

lit
y,

 %

O
bj

ec
tiv

e 
V

al
ue

, k
g

Generation

PA1 PC1 HS3HS1 HS2 PC3 HS6PC2 HS4 HS5

Objective Value (Run 7)                Population Variance (Run 7)                Population Feasibility (Run 7) Objective Value (Run 8)

(a)

(b)

(c)

The evolution of the solution during Run 8 is shown in
Fig. 4 for the (a) initial, (b) to (e) intermediate, and (f)
final aircraft designs. Ribs and frames are shown in blue,
spars and floor beams in red, and stringers in green. A
decrease in the number of ribs and frames and variation
in the distributions of both throughout the aircraft are vis-
ible. Although not shown, an increase in spar thickness at
the root was constant throughout, leading to a strengthening

of the wing at the root to react the bending loads imposed
by the load cases. As skin properties were lumped within
stringers, the number of fuselage stringers was driven by the
pressurization of the cabin and bending due to the landing
load.

There were noticeable differences in the design
generated during Run 8 compared to the existing
design of the Airbus A340-300. The front wing spar
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(a) Generation 1 (b) Generation 53 (c) Generation 241

(d) Generation 654 (e) Generation 727 (f) Generation 1000

Fig. 4 Evolution of solution for Airbus A340-300 airframe design during Run 8

was positioned at 0.34c, a value closer to that of
the Airbus A380 rather than approximately 0.22 c

for the A340-300 (Sensmeier and Samareh 2004).
This aftward position reduced the sweep of the
spars, leading to lower shear due to the angle between the
applied load and member. The wing root was strength-
ened through a greater concentration of ribs and increased
spar thickness, leading to the aircraft design containing
fewer than 30 % of the number of wing ribs within the
existing aircraft design (Sensmeier and Samareh 2004).
The operating empty mass (OEM) of the Airbus
A340-300 is stated as 130,200 kg (Jackson 2009).
However, this includes the masses of non-structural aspects
of the design, e.g. systems and powerplants. As such,
an estimate of the structural mass of the airframe,
determined using empirical formulae (Torenbeek 1982),
of 52,293 kg provides a better value for comparison with
the results of this study. Thus, the resulting designs were
between 86.67 % and 110.76 % of the estimated structural
mass of the existing design. However, it should be noted
that the data for the Airbus A340-300 is an estimate, based
on the final aircraft designed to a greater level of detail than
would be expected during conceptual design. Furthermore,
this study only considered two loading conditions, whereas
the application of a greater number of load cases may be
expected to require a further increase in structural mass
for satisfactory strength under load. Therefore, all runs
using the hyper-heuristic approach, except the prematurely
converged Run 3, indicated an improvement in the struc-
tural mass of the aircraft when engineered at a conceptual
level of design.

5 Conclusions

A hyper-heuristic approach for use within an optimiza-
tion framework has been presented to aid aircraft structural
design at a conceptual level. The aspects of the approach
have been described, including selection and control of
heuristics, distribution of a population, and perturbation
analysis. This hyper-heuristic approach encourages solution
space exploration before focussing on convergence on the
best solution obtained, leading to improved solution quality
and process efficiency.

The results of a case study have shown that an improve-
ment in solution quality can be obtained using the hyper-
heuristic approach with a cost to computation time. Heuris-
tic selection offered possible improvements in the solu-
tion generated, with parameter control providing additional
gains in solution quality and feasibility. Perturbation anal-
ysis allowed exploration of the design space closer to
the constraint boundaries, whilst population distribution
reduced the limitations inherent to heuristics when applied
in isolation.

Future research will improve the efficiency of the
framework, most notably the hyper-heuristic approach to
reduce the time penalty of applying hyper-heuristics to
the problem. Further investigation is required into the choice
function to better encourage convergence, as well as the
dynamic population size to provide greater reductions
in population size, thus focussing on fewer low-level heuris-
tics per generation. As such, the framework will better apply
hyper-heuristics to the problem, providing further benefits
over traditional approaches.
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