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Abstract The main role of a violin bridge is to hold the
strings and to transmit the vibration of the strings to the
violin body. Violin makers have been empirically aware
of the fact that a bridge is an important element which
influences violin timbre. Thus, a bridge can be regarded
as a mechanical filter in the transmission and be used to
compensate weak or too strong areas in the resonance of
the violin body. The filtering characteristics of a bridge
depend on the geometry and material distribution of the
bridge. In this paper, the sensitivity of band-averaged fre-
quency response with respect to geometric design variables
is derived. Then, topology optimization is applied to obtain
optimal violin bridges for desired filtering characteristics.
Numerical results show that the proposed optimization pro-
cess can be a viable tool to design a bridge according to
prescribed characteristics for musical performance.

Keywords Violin bridge · Topology optimization ·
Frequency response · Musical instruments

1 Introduction

A violin bridge, a small wooden structure placed on the top
plate of a violin (Fig. 1), has been considered an impor-
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tant part of a violin for centuries. At the first glance, the
shape of a bridge with its holes looks very decorative and
aesthetic, but is actually critical to the function of a bridge:
tuning the quality of violin sounds. Acting as a mechan-
ical filter for the various wavelengths of sound, a bridge
transforms the transverse force from the vibrating string
into normal forces applied to a violin body through the
bridge feet resting at the position near the notches of the f-
holes. Recent studies (Hutchins and Benade 1997; Jansson
and Niewczyk 1999; Woodhouse 2005) reveal that violin
bridges adjust the impedance characteristics for loudness
and tonal color. Especially, Cremer showed that a violin
bridge has internal resonances within the frequency range
of interest for the sound of the instrument, so that the fil-
tering effect of the bridge has significant variation with
frequency (1983).

Many researchers also have tried to find out the rela-
tionship between the frequency response (sound spec-
trum) and quality of violin sound (timbre or tonal color)
(Gabrielson and Jansson 1977; Moral and Jansson 1978;
Dunnwald 1991; Hutchins and Benade 1997; Buen 2003,
2007; Geissler et al. 2003; Scheleske 2010; Stepanek and
Otcenasek 1999, 2001, 2004, 2005). It has been reported
that many excellent violins show a broad peak of response
in the neighborhood of 3.0 kHz, which is called the “bridge
hill” for the reason that the lowest bridge resonance is also
found in the range of 3.0 kHz when the bridge feet are fixed
(Jansson and Niewczyk 1999; Woodhouse 2005). As one of
the most frequently cited research, Dunnwald suggested the
important frequency ranges for the judgment of the sound
quality by comparing frequency responses of various violins
from factory violins to old Italian violins (1991). According
to Dunnwald, the first range (190–650 Hz) is responsible for
the content of lower overtones. If the second range (650–
1300 Hz) is too strong, the instrument will sound boxy and
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Fig. 1 Structure of violin body
and violin bridge (Gough 2000)

nasal. The third range (1300–4200 Hz) gives the instrument
brilliance and good radiation. The upper range (4200–6400
Hz) should be relatively low to clear sound. He defined
the sound parameters such as loudness, clarity, and nasality
by combining the averaged strengths within six frequency
ranges as shown in Fig. 2 and Table 1.

The layout (or material distribution) of a bridge is
important since an increase in thickness enhances its sta-
bility but requires more vibration energy of strings for
transmitting. It also affects the resonance of a bridge,
which boosts the intensity of any partials (a combina-
tion of many simple periodic waves, each with its own
frequency of vibration, amplitude and phase) in this fre-
quency range and therefore changes sound quality. As
Müller stated that there is no ideal bridge but there is ide-
ally suitable bridge for given instruments and the taste
of players, a bridge can be individually tailored to the
taste of instrument’s owner by changing its geometric
shape (1979). The tuning of a violin bridge to date, how-
ever, has been fully based on violin maker’s experiences

and intuition instead of scientific bases. To the authors’
knowledge, little literature has been published about sys-
tematically designing the optimal layout of a bridge
(e.g., size, shape, and location of holes) for its musical
performance.

Question on the “optimal” layout of a bridge could
be answered by applying design optimization, especially
topology optimization. Unlike size and shape optimization,
topology optimization is available in determining the opti-
mal layout (or topology) of a given structure by creating or
deleting holes while improving the given objective function
during the process. In the so-called density-based topol-
ogy optimization (Bendsoe 1989; Yang and Chuang 1994;
Borvall and Petersson 2001; Jang and Kwak 2006, 2008),
the design domain is discretized by finite elements, and the
density of each element is used as a design variable. Young’s
Modulus of each element can be formulated with several
different interpolation models in terms of element density
(Bendsoe and Sigmund 2003; Stolpe and Svanberg 2001;
Pedersen 2000).

Fig. 2 Levels of each
Dunnwald frequency band for
the average long-time-average
spectra (Buen 2007)
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Table 1 Dunnwald parameters for violin timbre (Buen 2007)

Timbre Definition Comment

parameter

Bass ave(A) – ave(B) High values for good

and bass-rich violins

Nasality ave(A, C, D)a – ave(B) High value for ‘non

nasal’ violins

Low values for

‘nasal’ violin

Clarity ave(D, E) – ave(F) High values for

‘clear’ violins

Low values for

‘harsh’ sound

aave(A, C, D) denotes the averaged response in the ranges of A, C,
and D

Since the 1990’s, topology optimization has been applied
successfully to various mechanical problems including
mechanical filters and resonators (Ma et al. 1993, 1995a,
b; Silva et al. 2000; Yoo and Kikuchi 2002). From the
engineering viewpoint, the design of a violin bridge is con-
ceptually similar to that of mechanical filters or resonator
because resonant properties and filtering characteristics are
critical in their design. However, the design of a violin
bridge is more complicated as follows:

• Concurrent designs: For meaningful design of a violin
bridge, many aspects should be considered concur-
rently: rigidity (i.e. compliances with various loading
conditions), dynamic properties (eigenfrequencies and
eigenmodes), mass, and frequency response.

• Frequency domain response for sound quality: The
bridge design is necessary to consider the frequency
response in the range of audible frequency, not for
any single frequency. The shape of frequency response
curve (also known as spectral envelope) has close rela-
tionship with sound quality. Thus, sound quality should
be quantified, and other filtering characteristics desired
should be determined prior to optimization.

While topology optimization for static response or sin-
gle eigenfrequency is relatively easy to perform, it is still
challenging to apply topology optimization to problems
concerning frequency response in the specified range. In
traditional density based approaches (Bendsoe 1989; Yang
and Chuang 1994; Borvall and Petersson 2001), the sys-
tem matrix should be updated for each frequency, and thus
it causes high computational cost. The modal approaches
(Ma et al. 1993, 1995a, b) typically lead to non-smooth
optimization problem that might pose difficulties in con-
vergence for optimization algorithm. In order to overcome
the difficulties of modal approaches, Jensen proposed the

method which uses a Pade function to approximate a fre-
quency response function (2007). Recently, Yoon proposed
a new modal method based on Ritz vectors, and compared
it with conventional modal approaches (2010).

In this paper, we proposed, for the first time to our knowl-
edge, the systematic design framework for a violin bridge.
We first set the quantitative measures to define the sound
quality, and proposed an efficient spline-based method to
obtain the frequency response with the aid of approximated
stiffness and mass matrices. After deriving sensitivities of
the measures selected in the paper, we applied them to topol-
ogy optimization to obtain an optimized violin bridge in
terms of sound quality. Numerical results showed the pos-
sibility of tailoring a violin bridge to one’s own taste by
virtue of optimization, not violin maker’s experiences and
intuition. More accurate FE analysis and experiments with
psychoacoustic test would be followed in further work.

2 Theoretical derivation

2.1 Basic finite element analysis

The equation for the structural response of a given system
may be expressed in the following form:

Mü + Cu̇ + Ku = f (1)

where u, M, C, K, and f are the generalized displacement
vector, mass matrix, damping matrix, stiffness matrix, and
force vector, respectively. For a frequency response prob-
lem, assuming f = f0e

jωt and u = u0e
jωt , we have

(
−ω2M + jωC + K

)
u0 = f0 (2)

S = −ω2M + jωC + K (3)

where S is called as a dynamic stiffness matrix. To solve a
topology optimization problem, sensitivities of the objective
and constraint functions with respect to design variable, ρe,
are required. Candidates for objective and constraint func-
tions in this paper are static and harmonic responses. Then,
the functions can be described in the simple form as

ψ = αT u0 (4)

where α is a design independent vector and u0 is static or
harmonic response. In the case of static analysis, the sensi-
tivities of static response, αT u0, is computed as (Choi and
Kim 2005)

dψ

db
= λ

T
(
∂f0

∂b
− ∂K
∂b

u
)

(5)

where λ is an adjoint variable which can be calculated
from the adjoint equation, Kλ = α. The sensitivity for a
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harmonic analysis problem is obtained similarly to that of
static analysis as follows:

dψ

db
= λ

T ∂f0

∂b
− λ

T
(
∂S
∂b

)
u0

= λ
T ∂f0

∂b
− λ

T
(
∂K
∂b

+ iω
∂C
∂b

− ω2 ∂M
∂b

)
u0 (6)

where λ is a complex conjugate of λ calculated from
Sλ = α. When the energy dissipation is characterized by
the Rayleigh damping, damping matrix C in (6) can be
expressed as

C = αM + βK (7)

2.2 Band averaged frequency response

As explained in Section 1, sound quality can be quanti-
fied by combining the averaged frequency responses of
some important frequency ranges. In order to calculate the
average strength in the given frequency ranges, we con-
sider the integrals of the harmonic response within a certain
frequency domain as follows:

R =
∫ ω2

ω1

∣∣∣αT u
∣∣∣dω =

∫ ω2

ω1

√(
αT ureal

)2 + (
αT uimg

)2dω

(8)

For numerical integration, a frequency response curve
is approximated by a cubic spline curve in this paper

(Fig. 3). In order to represent the peaks of the response curve
more accurately, eigenfrequencies placed within the given
ranges are inserted as additional control points. Given n fre-
quencies, ωi (ω1 < ω2 < . . . < ωn−1 < ωn), a cubic spline
function, ξ (ω), is defined as follows:

ξ(ω) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ξ1(ω) when ω ∈ [ω1, ω2]

ξ2(ω) when ω ∈ [ω2, ω3]

...

ξn−1(ω) when ω ∈ [ωn−1, ωn
]

(9)

In (9), the piecewise spline curve, ξi (ω), is defined as

ξi(ω) = ζi+1 (ω − ωi)
3 + ζ1 (ωi+1 − ω)3

6hi

+
(
f (ωi+1)

hi
− hi

6
ζi+1

)
(ω − ωi)

+
(
f (ωi)

hi
− hi

6
ζi

)
(ωi+1 − ω) (10)

where f (ωi) = |αT u(ωi)|, hi = ωi+1 − ωi , and ζ i is the
second order derivatives of spline curves with respect to the
frequency of a control point,ωi . In (10), ζ i can be calculated
by solving the following matrix:

Pζ = q (11)

where

P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

2(h1 + h2) h2

h2 2(h2 + h3) h3

h3 2(h3 + h4) h4

. . .
. . .

. . .

hn−3 2(hn−3 + hn−2) hn−2

hn−2 2(hn−2 + hn−1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

ζ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ζ1

ζ2

ζ3

...

ζn−2

ζn−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

and q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

6(b2 − b1)

6(b3 − b2)

6(b4 − b3)

...

6(bn−2 − bn−3)

6(bn−1 − bn−2)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(12)

where bi = f (ωi+1)−f (ωi )
hi

− f (ωi )−f (ωi−1)

hi−1
.

From (8), the average frequency response within the
frequency range [α, β] can be represented using the approx-
imated spline curve as

R = 1

β
= α

∫ β

α

ζ (ω) dω

= 1

β − α

n−1∑
i=1

∫ xi+1

xi

ζi(ω)dω

= 1

β − α

n−1∑
i=1

(
(ζi+1 − ζi ) (ωi+1 − ωi)

4

24hi

+
(
f (ωi+1)− f (ωi)

hi
− hi

6
(ζi+1 − ζi)

)

× (ωi+1 − ωi)
2

)
(13)
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Fig. 3 Spline approximation of frequency response curve

Then, the sensitivity of the average response R is

∂R

∂b
= 1

β − α

n−1∑
i=1

((
∂
∂b
ζi+1 − ∂

∂b
ζi
)
(ωi+1 − ωi)

4

24hi

+
(

∂
∂b
f (ωi+1)− ∂

∂b
f (ωi)

hi

−hi
6

(
∂

∂b
ζi+1 − ∂

∂b
ζi

))

× (ωi+1 − ωi)
2

)
(14)

where ∂ζ /∂b and ∂f (ωi)/∂b are obtained by solving (15)
and (16).

P
∂ζ

∂b
= ∂q
∂b

(15)

∂f (ωi)

∂b
= d

∣∣αT u(ωi)
∣∣

db

= d

db

√(
αT Re(u)

)2 + (αT Im(u))2

=
(αT Re(u))Re

(
d(αT u)

db

)
+ (αT Im(u))Im

(
d(αT u)

db

)

|αT u|
(16)

Particularly, when the sampling frequency is an eigenfre-
quency, (17, 18) instead of (10) should be used to calculate
the sensitivity of a dynamic stiffness matrix, S, since an
eigenfrequency varies with respect to design changes.

S(ωp) = −ω2
pM + jωpC + K (17)

dS(ωp)
db

=
(
∂K(ωp)
∂b

+ iωp
∂C(ωp)
∂b

− ω2
p

∂M(ωp)
∂b

)

+dωp
db

(−2ωpM(ωp)+ jC(ωp)
)

(18)

where the sensitivity of ωp is calculated by Choi and Kim
(2005).

∂ωp

∂b
= ∂ωp

∂λj

∂λj

∂b

= 1

8π2ωp

(
�T
j

∂K
∂b

�j − (2πωp)
2�T

j

∂M
∂b

�j

)
(19)

If an objective or constraint function is defined based on
a fixed modal order, the corresponding sensitivities may
be discontinuous when mode switching happens, and an
incorrect eigenmode may be optimized. In order to keep
tracking the target modes, a mode assurance criterion (Kim
and Kim 2000) is utilized in this paper. Also, for each ele-
ment, the stiffness and mass matrices depend on only a
small number of design variables that are associated with
the given element (element density in this paper). Therefore,
the derivative of a response function is simply calculated
element-wise. The problem is, however, that the exact shape
functions of the shell elements in commercial software are
not open to the general public. This prohibits the devel-
opment of any kind of analytic methods for obtaining
sensitivity values. In our previous works (Yu et al. 2010;
Yu and Kwak 2011), we proposed a regression model of
stiffness and mass matrices of each element for deriving
sensitivities. Same regression model for M, C, and K in (18)
is also used in this paper. Check the detailed procedure in
the reference.

3 Topology optimization of a violin bridge

3.1 Design domain and boundary condition

Figure 2 shows the design domain and boudnary condi-
tion for a violin bridge. The shape of upper and lower
edges (lines 2–3 and lines 0–1 in Fig. 4, respectively) of a
bridge are obtained from the conventional bridges. Design
domain is represented as white in Fig. 4. The interaction
between a bridge and a body is simply modeled using
linear spring elements in this study. Generally, the stiff-
ness of treble side (left) is greater than that of bass side
(right) because of the existence of sound-post. According to
Mclennan (2008), k1 and k2 in Fig. 2 are set to 70 kN/m and
40 kN/m, respectively. Since the violin plate is much stiffer
in horizontal direction than in vertical direction, we assume
the displacement in horizontal direction is fixed for simplic-
ity. The vibration force from strings acts along the line of
bowing which is tangential to the upper curve. The side-to-
side rocking motion of a bridge is proportional to tension of
strings, bowing force, and bowing speed. In this study, we
assume that the magnitude of bowing force remains same.
Angles of bowing direction at G, A, D and G are given to
30, 11.5, −6.0 and −20.5◦, respectively. Note that bowing



632 Y. Yu et al.

1k 2k

bow,Ef
bow,Af

bow,Df

bow,Gf

z,Ef

z,Af z,Df

z,Gf

Fig. 4 Design domain and boundary condition for a violin bridge

direction along the upper edge (lines 2–3 in Fig. 4) is almost
fixed in all violins since it influences the playability of a
violin.

Figure 5 shows a finite element model for analysis. The
bottom, black part is a non-designable domain because two
foots should be exactly placed on the bass-bar and sound-
post of a violin top plate. A total of 1200 (30 × 40) shell
elements in ANSYS are used. The base thickness of a violin
bridge tapers from 4.4 mm at the bottom to 1.4 mm at the
top. Material properties of a typical maple for a bridge are
shown in Table 2.

X

Y

0 0.01 0.02 0.03 0.04
0

0.01

0.02

0.03

0.04

Fig. 5 Finite element model of initial violin bridges

Table 2 Material properties of maple

Ex 8.92 GPa νxy , νyz 0.14

Ey,Ez 2.62 GPa νzx 0.447

Gxy,Gzx 1.91 GPa ρ0 556 kg/m3

Gyz 1.149 GPa

3.2 Formulation and results

As widely used in SIMP method (Bendsoe 1989), the “rela-
tive” volume usage of each finite element, μe, is taken as a
design variable. Then, elastic modulus and density of the e-
th finite element, Ee and ρe respectively, can be expressed
as

Ee = E0μ
p
e , ρe = ρ0μe (20)

where 0 < μe ≤ 1, E0 and ρ0 are base elastic modulus and
density (see Table 2), and p is a penalization factor (3 in
this paper). To remove localized eigenmodes in low density
areas, the modified form of SIMP method (Pedersen 2000)
is used as

Ee =
{

E0μ
p
e μc < μe ≤ 1

μ(μ
p−1
c E0) μlb < μe ≤ μc

(21)

where μc is 0.25 in this work.
We set objective functions as maximizing the band-

averaged frequency response in the range of a bridge hill
(or so-called brilliant range). Several types of constraints are
also considered for the design of a violin bridge. First, the
structure of a violin bridge should be stiff enough to hold
the strings and keep them at the right distance from the fin-
gerboard. In the optimization formulation, the compliance
is constrained to be bigger than that of a typical modern
violin bridge. Second, the lowest in-plane resonance (i.e.,
side-to-side rocking motion of the top portion) of a violin
bridge is subjected to around 3.0 kHz (i.e., the center fre-
quency of a bridge hill) for obtaining meaningful designs.
Finally, we consider a constraint of total mass of the struc-
ture because the bridge has to be light in order not to lose
vibration energy during force transmission and therefore not
to affect the string-body impedance.

The optimization formulation can be written as

Maximize SD + SE − SC − SF

subject to fTi ui ≤ Ci

0.95λ1 < λ1 < 1.05λ1∫



ρ0μed ≤ M0

0 < μe ≤ 1

(22)

where Si is the band-averaged response of harmonic anal-
ysis in the frequency domain i with the bridge feet resting,
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Fig. 6 Comparison of a typical
bridge (left side) and optimized
bridge (right side) for
maximizing a bridge hill

X

Y

0 0.01 0.02 0.03 0.04
0

0.01

0.02

0.03

0.04

X

Y

0 0.01 0.02 0.03 0.04
0

0.01

0.02

0.03

0.04

Table 3 Various performance measures for the topology optimization of violin bridges

Notations Descriptions Equations

Compliance Cy y directional compliance uT fy
Cz z directional compliance uT fz
Cbow Bowing direction compliance uT fbow

Dynamic properties nf 1 The first eigenfrequency λ1

Band-averaged strength SA Average response in base region (190–650 Hz)
∫ |αT u(ω)|dω

SB Average response in nasal region 1 (650–1350 Hz)

SC Average response in nasal region 2 (1360–1640 Hz)

SD Average response in brilliant region 1 (1650–2580 Hz)

SE Average response in brilliant region 2 (2590–4200 Hz)

SF Average response in harsh region (4300–7000 Hz)

Density properties M Mass
∫
 ρd

Fig. 7 Optimization history of
an objective function
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Fig. 8 Optimization history of
compliance

M0 is the maximum total mass, fi and ui denote the force
and displacement vectors at the position i, respectively, and
λ1 the 1st eigenfrequency (3000 Hz in this paper). The
limits of constraints are determined based on the corre-
sponding performance measures of a typical violin bridge as
shown in Fig. 6a. The detailed notations and formulations
of performance measures are listed in Table 3.

For optimization, we chose the method of moving
asymptotes (MMA) (Svanberg 1987) which has been known
to be robust and very well suited for large-scale optimization
with several constraints. To avoid checkerboard patterns and

prevent mesh-dependency, a filtering technique (Sigmund
and Petersson 1998) is also applied.

From (22) and aforementioned numerical techniques, we
can obtain optimal layout of a violin bridge as shown in Fig.
6. The design for maximizing a bridge hill looks morpholog-
ically similar to a typical bridge of X shape with one hole.
This result implies that the proposed design framework con-
sidering sound quality has a potential to be more realistic,
so that it could be applied to tailor a bridge to one’s taste.
Figures 7, 8, 9 and 10 show the optimization history of an
objective and constraints through iterations.

Fig. 9 Optimization history of
volume
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Fig. 10 Optimization history of
the 1st eigenfrequency

4 Conclusion

In this study, we applied topology optimization to design
a violin bridge. In order to obtain a realistic design, we
proposed a band-averaged frequency response as one of
acoustical parameters for sound quality based on previous
related researches. The sensitivities of the proposed mea-
sure are efficiently calculated by spline approximation and
regressed system matrices. The proposed method enables
us to obtain the optimized violin bridge which is similar to
a typical violin bridge. Numerical results show the appli-
cability of optimization to violin design. Depending on the
formulation with selected measures, we may have various
designs which can satisfy the desired characteristics.

Although the vertical stiffness of a violin body in this
study is fixed and obtained from the literature, the stiffness
varies depending on violin makers, material, environmen-
tal condition, etc. In our future applications, the stiffness
of a “given” violin body would be experimentally obtained
and then be applied to optimization for more effective
customization or tuning. This work would provide insight
into the development of systematical design framework
for tuning which has been fully based on violin maker’s
experiences and intuition.
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