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Abstract The paper deals with two minimum compliance
problems of variable thickness plates subject to an in-plane
loading or to a transverse loading. The first of this prob-
lem (called also the variable thickness sheet problem) is
reduced to the locking material problem in its stress-based
setting, thus interrelating the stress-based formulation by
Allaire (2002) with the kinematic formulation of Golay and
Seppecher (Eur J Mech A Solids 20:631–644, 2001). The
second problem concerning the Kirchhoff plates of vary-
ing thickness is reduced to a non-convex problem in which
the integrand of the minimized functional is the square root
of the norm of the density energy expressed in terms of
the bending moments. This proves that the problem can-
not be interpreted as a problem of equilibrium of a locking
material. Both formulations discussed need the numerical
treatment in which stresses (bending moments) are the main
unknowns.

Keywords Minimum compliance · Optimum design
of plates · Plates of varying thickness

1 Introduction

The problem of optimum design of the thickness h of a lin-
early elastic anisotropic plate loaded in-plane to minimize
its compliance is well posed, provided that the thickness
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variation is subjected to the conditions: h ≥ hmin > 0, as
proved in Cea and Malanowski (1970), see also Litvinov
and Panteleev (1980), Bendsøe (1995, Sec. 1.5.1) and
Petersson (1999). This optimization problem is equivalent
to the problem of the optimal transversely homogeneous
distribution of one material within a plate loaded in-plane
in its convexified version, see Sec. 5.2.5 in Allaire (2002).
By virtue of this analogy one can note that the question of
correctness of the formulation of the minimum compliance
problem of plates (loaded in plane) of varying thickness
with the condition hmin > 0 can be concluded from the
Th. 5.2.8 in Allaire (2002). The main aim of the present
paper is the discussion of the problem of optimal distribu-
tion of the plate thickness under the condition hmin = 0. To
be specific let us set the problem:

Find optimal distribution of the thickness h of a plate
made of an elastic material of the in-plane (reduced) mod-
uli Cijkl subject to the in-plane loading and fixed on a part
�2 of the contour of �, to minimize the compliance of the
plate under the condition of the plate volume being given.
The in-plane stiffnesses Aijkl = h(x)Cijkl are involved
in the formulation; they are referred to a Cartesian frame
(x1, x2), x = (x1, x2) ∈ �.

The problem thus formulated can be reduced to the
following minimization problem

Z = inf

⎧
⎨

⎩

∫

�

‖τ‖c dx |τ ∈ � (�)

⎫
⎬

⎭
(1.1)

where �(�) is the set of statically admissible stress fields
τ = (τij) referred to the plane domain � and ‖ · ‖c is a norm
given by the formula

‖τ‖c = √
τ · (c τ ) (1.2)
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where c = C−1 and the dot means the scalar product. The
formulation (1.1) can be read off from the result (5.51, 5.52)
in Allaire (2002). The result (1.1) is not identical to the
result referred to, since in the present paper the merit func-
tion is the compliance while in the book by Allaire (2002)
the merit function is the weighted sum of the compliance
and the volume, see (5.49), see also the discussion of the
formulations (4.6), (4.7) ibidem. In the present paper it is
proved that the solution τ = τ* (provided it exists) to the
problem (1.1) determines directly the thickness h∗ of the
optimal plate.

The assumption hmin = 0 is essential, since it makes it
possible to determine the sub-domains of the design domain
where h∗ = 0, or the appearance of openings as well as the
unnecessary segments close to the edges. The solution τ*
to the problem (1.1) can vanish on a sub-domain �0 of �.
There the thickness h∗ of the optimal plate vanishes. Thus
the solution of the problem (1.1) cuts off the part of the
plate which is unnecessary. In this manner specific mathe-
matical difficulties are circumvented, linked with admitting
very small values for hmin in the original setting of the
optimization problem discussed.

The problem (1.1) has a mathematical structure similar to
the stress-based formulation of the Michell truss problem, as
set in Strang and Kohn (1983) inspired by Rozvany (1976):

ZM = inf

⎧
⎨

⎩

∫

�

‖τ (x)‖M dx | τ ∈ � (�)

⎫
⎬

⎭
(1.3)

where

‖τ‖M = |τI | + |τII | (1.4)

τ I ≥ τ II being the principal values of τ . The problem (1.3)
is more difficult than (1.1) due to the integrand (1.4) being
non-smooth, yet the common feature of both the problems
(1.1) and (1.3) is the linear growth of the integrands. Simi-
larity between (1.1) and (1.3) suggests similar mathematical
forms of the dual settings. In the paper by Strang and Kohn
(1983) the problem dual to (1.3) has been derived; it reads

ZM = sup {f (v) | v ∈ V, ε (v (x)) ∈ BM a.e. in � }
(1.5)

where v = (v1, v2) is the displacement vector in the plane �,
the strain ε(v) = (εij (v)) is defined by components 2εij =
∂vi / ∂xj + ∂ vj / ∂xi and

BM =
{
ε ∈ E2

s | |εI | ≤ 1 , |εII | ≤ 1
}

(1.6)

is a ball in E2
S , E2

S being the set of 2nd order tensors in
the 2D case considered. Moreover, f (v) represents the vir-
tual work of the loading, while V is the set of kinematically
admissible displacements referred to the plane domain �.

The set BM is called a locking locus, as in the theory of the
materials with locking, see Demengel and Suquet (1986).
Note that 0 lies in this set and this set is both convex, closed
and bounded.

Proceeding similarly as in Strang and Kohn (1983) one
can work the passage from the formulation (1.1) to the dual
formulation. It reads

Z = max {f (v) |v ∈ V, ε (v (x)) ∈ BC, a.e. x ∈ � }
(1.7)

where

BC =
{
ε ∈ E2

S

∣
∣ ‖ε‖C ≤ 1

}
(1.8)

and

‖ε‖C = √
ε · (C ε) (1.9)

The norms ||·||c and ||·||C are mutually dual.
The formulation (1.7) is known, it was for the first time

derived in Golay and Seppecher (2001), directly from the
displacement-based setting. The primal formulation (1.1)
has not been reported there.

In the present paper it is shown that the problem (1.1)
can be the point of departure for the numerical approach
developed in Czarnecki and Lewiński (2012) to solve the
free material design problem of planar elasticity. Due to
some mathematical similarities, this numerical approach,
with slight adjustment, applies here. The stress fields τ are
interpolated by polynomials over the polygons forming the
mesh—see Czarnecki and Lewiński (2012).

The very idea of using a stress-based numerical scheme
to solve the minimum compliance problem is not new, see
the paper by Allaire and Kohn (1992), where the Airy stress
function method had been used to set the numerical method
based on the FE approach. The novelty of the present paper
is that the subject of the numerical analysis is the problem
(1.1) in which the thickness h is absent, hence it does not
need to be bounded from below, while in the shape opti-
mization algorithm proposed by Allaire and Kohn (1992)
the volume fraction had to be bounded by a small value to
assure the numerical stability. A price to pay is to deal with
a non typical problem (1.1) in which the functional involves
an integrand of linear growth. Thus this problem should
be numerically solved in its original setting, by appropri-
ate interpolating the statically admissible stress fields and
by performing the minimization over the stress represen-
tations. The numerical approach does not lead to a set of
linear equations with a non-singular square matrix, which is
typical while using the finite element method. In particular,
no stiffness matrices occur. The method proposed exceeds
the FEM framework: we have to develop a new numerical
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method in which only the meshing of the domain is a step
common with any FE approaches. The algorithm put for-
ward has been by no means supported by the experience we
have from solving problems of solid body mechanics.

If the plate is transversely loaded, its bending stiffnesses
equal (h3(x)/12)Cijkl , while the isoperimetric condition has
the same form as in the in-plane loaded case. The problem
of the compliance minimization of the plate in bending of
thickness h ≥ hmin > 0 is badly posed, which had been the
subject of discussions in the numerous papers starting from
Kozłowski and Mróz (1970), Cheng and Olhoff (1981),
Rozvany (1989), Lur’e and Cherkaev (1986), (cf. the papers
published in the volume: Cherkaev and Kohn (1997)), Krog
and Olhoff (1997), Bendsøe (1995), Cherkaev (2000) and
Lewiński and Telega (2000, Sec. 27). In the paper by Muñoz
and Pedregal (2007) a review of the relaxation methods of
this problem can be found; the aim of the relaxation is to
make the problem well posed, without losing its original
setting.

In the present paper an emphasis is put on the stress based
formulation (the bending moments play the role of stresses)
in which hmin = 0. It occurs that the integrand of the
minimized functional is non-convex: it is expressed by the
square root of the norm of the bending moment tensor. This
form of the functional explains clearly why both analytical
and numerical attempts to solve the minimum compliance
problem of the plate in bending in its original (unrelaxed)
formulation have to fail to succeed. The numerical results,
as mesh dependent, have to behave at random.

Thus the stress-based formulations of the minimum com-
pliance problems of thin plates (both: loaded in—plane or
loaded out of plane), admitting hmin = 0, disclose explicitly
whether the problems are well posed.

The thin plate problems discussed have much in common
with the formulations used in the penalized density meth-
ods, like SIMP, concerning the generalized shape design in
elasticity. The last section of this paper provides a stress-
based formulation of SIMP thus paving the way for the new
numerical algorithms of shape optimization. The discussion
shows a close link between SIMP for the case of p = 3 and
of the Kirchhoff plate optimization.

The usual summation convention for the indices: i, j , k,
l = 1, 2 is adopted. The scalar product of σ , τ ∈ E2

S is

defined by σ · τ =
2∑

i,j=1
σij τij . It determines the Euclidean

norm ‖σ‖ = √
σ · σ for σ ∈ E2

S . If C = (Cijkl) is a Hooke

tensor, then (C σ )ij =
2∑

k,l=1
Cijkl σkl . For the plane stress

case and isotropy the norm (1.9) is expressed by

‖ε‖C =
√

E

1−ν2

[
(ε11)

2 + 2νε11ε22 + (ε22)
2 + 2(1 − ν) (ε12)

2
]

(1.10)

or

‖ε‖C =
√

E

1 − v2

(
(εI )2 + 2vεI εII + (εII )2

)
(1.11)

εI , εII being the principal strains; E, ν are the Young modu-
lus and Poisson’s ratio. Lastly, let us define the mean value
of a function f defined on � by

〈f 〉 = 1

|�|
∫

�

f (x) dx. (1.12)

2 The stress based formulation of the minimum
compliance problem of plates of varying thickness.
The in-plane problem

2.1 Arbitrary variation of the plate thickness

We refer here to the optimum design problem of plates sub-
jected the an in-plane loading, sketched in the Introduction.
Let L

(
�, E2

S

)
be the space of tensor fields τ = (τ ij ) of

appropriate regularity to satisfy the local equilibrium equa-
tions. We demand that τ ∈ L2

(
�, E2

S

)
and div τ ∈

L2
(
�, R2

)
, see Duvaut and Lions (1976). Let �(�) be a

subset of L
(
�, E2

S

)
of trial tensor fields τ satisfying the

variational equilibrium condition:

∀v ∈ V

∫

�

τ · ε (v) dx = f (v) . (2.1)

A field τ ∈ �(�) is said to be statically admissible. Note
that 0, the zero element in L

(
�, E2

S

)
does not belong to the

set �(�).
The components Aijkl of tensor A represent the in-plane

stiffnesses of the plate.
We know that among all τ ∈ �(�) one can find one field

σ such that

∃u ∈ V σ = A ε (u) . (2.2)

The regularity assumptions in V are specified in Duvaut
and Lions (1976), see also Nečas and Hlavaček (1981). Ten-
sor A is positive definite, hence the functional over τ ∈
L2
(
�, E2

S

)
given by

‖τ‖L2
(
�,E2

S

) =
√
√
√
√

∫

�

τ · (A−1 τ
)
dx (2.3)

has properties of a norm.
The compliance ϒ can be either defined by ϒ = f (u)

or by

ϒ = min
τ∈�(�)

(
‖τ‖L2

(
�,E2

S

)
)2

(2.4)
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since the minimizer of the latter problem is just τ = σ . The
equality (2.4) is the Castigliano theorem, see Duvaut and
Lions (1976) and Nečas and Hlavaček (1981).

As indicated in the Introduction we assume that the plate
is made of a homogeneous material whose reduced moduli
(for the generalized plane stress case) form a tensor Cijkl ,
all the components being constant with respect to x ∈ �.
The in-plane stiffness tensor A depends linearly on h, or
A(x) = h(x)C, x ∈ �.

Let us re-write the expression for the compliance disclos-
ing its dependence on the design variable h(x)

ϒ = min

⎧
⎨

⎩

∫

�

1

h (x)
τ (x) · (c τ (x)) dx |τ ∈ � (�)

⎫
⎬

⎭
(2.5)

where c = C−1. Our aim is to choose h(x) such that ϒ

attains minimum over all plates of given volume
∫

�

h (x) dx = V0. (2.6)

The optimum design problem to be discussed reads

J = inf

⎧
⎨

⎩

∫

�

1

h (x)
τ (x) · (c τ (x)) dx

∣
∣
∣1/h ∈ L1 (�, R+) ,

τ ∈ � (�) ,

∫

�

h (x) dx = V0

⎫
⎬

⎭
. (2.7)

Let

F (x) = τ (x) · (c τ (x)) . (2.8)

Note that the problem

ϒ = inf

⎧
⎨

⎩

∫

�

F (x)

h (x)
dx

∣
∣
∣ 1/h ∈ L1 (�, R+) ,

∫

�

h (x) dx = V0

⎫
⎬

⎭
(2.9)

is explicitly solvable, cf. Appendix. According to (A.4) for
p = 1 the minimizer h∗ equals

h∗ (x) = V0

√
F (x)

∫

�

√
F (x) dx

(2.10)

while, by (A.5) for p = 1

ϒ = 1

V0

⎛

⎝

∫

�

√
F (x) dx

⎞

⎠

2

. (2.11)

The optimum design problem (2.7) is thus reduced to

J = inf

⎧
⎪⎨

⎪⎩

1

V0

⎛

⎝

∫

�

√
τ (x) · (c τ (x))dx

⎞

⎠

2

|τ ∈ � (�)

⎫
⎪⎬

⎪⎭
,

(2.12)

which can be re-written as below

J = Z2

V0
, (2.13)

where

Z = inf

⎧
⎨

⎩

∫

�

‖τ‖c dx |τ ∈ � (�)

⎫
⎬

⎭
(2.14)

and ‖·‖c is defined by (1.2). The result (2.13, 2.14) is
compatible with the result (5.51, 5.52) in Allaire (2002) con-
cerning the convexified formulation of the layout problem
of one material within �. The integrand in (2.14) is con-
vex, but of linear growth. However, we cannot expect that
the infimum in (2.14) will lie within �(�). Therefore, to
make this problem well posed it should be relaxed by admit-
ting the solutions to lie in the space of measures, cf. the
results by Demengel and Suquet (1986) on a related prob-
lems of the bodies with locking, and the recent book by
Plotnikov and Sokołowski (2012) concerning the compress-
ible Navier–Stokes fluids.

If τ = τ* is the argument of infimum of (2.14), then the
optimal thickness is given by (2.10) or

h∗ (x) = V0
‖τ ∗ (x)‖c∫

�

‖τ ∗ (x)‖c dx
. (2.15)

For the plane stress case and isotropy the norm (1.2) is
expressed by

‖τ‖c =
√

1
E

[
(τ11)

2 − 2ντ11τ22 + (τ22)
2 + 2(1 + ν) (τ12)

2]

(2.16)

or

‖τ‖c =
√

1

E

(
(τI )

2 − 2ντI τII + (τII)2
)

(2.17)

where τ I , τ II are principal stresses.
The regularity assumptions concerning the trial stress

fields in (2.14) do not hinder the solution of (2.14) from
vanishing on a subdomain of �. If this happens, h∗ would
vanish on this subdomain, which violates the initial assump-
tions on h, see (2.7). In fact, these assumptions were too
strong. It is sufficient to require in (2.7) that

j (x) = τ (x) · (cτ (x))

h (x)
(2.18)
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is integrable. If τ ∗, h∗ are chosen as above, j = j∗ and

j∗(x) = a
∥
∥τ ∗ (x)

∥
∥

c
, a = 1

V0

∫

�

∥
∥τ ∗ (x)

∥
∥

c
dx (2.19)

and we see that j∗ is integrable, even if (2.18) is an unde-
termined quantity 0/0. Thus the formulation (2.13)–(2.16)
is a natural extension of (2.7), as admitting vanishing of
h on some subdomains of �. By solving (2.13)–(2.16) we
circumvent all difficulties in detecting places where the
material is unnecessary. Instead of detecting these places
e.g. by the topological derivative method, see Sokołowski
and Żochowski (1999), Lewiński and Sokołowski (2003) we
search the subdomains, where τ∗ = 0.

2.2 Bounded variation of the plate thickness

Assume now that the plate thickness assumes the values
between hmax and hmin > 0. Instead of discussing the
problem

inf

⎧
⎨

⎩
ϒ

∣
∣
∣ 1/h ∈ L1 (�, R+) , hmin < h (x) < hmax

a.e. in �,

∫

�

h (x) dx = V0

⎫
⎬

⎭
(2.20)

where ϒ is the compliance given by (2.5), we follow Allaire
(2002) and discuss the problem of minimizing a weighted
sum of the compliance and the plate volume

J1 = inf

⎧
⎨

⎩
ϒ + λ

∫

�

h (x) dx

∣
∣
∣ 1/h ∈ L1 (�, R+) ,

hmin < h (x) < hmax a.e. in �

⎫
⎬

⎭
(2.21)

with λ being a multiplier.
For a fixed value of λ for the solution to the problem

(2.21) one can recover the value of the plate volume V0.
Then, for this value V0 the solution to (2.21) coincides with
the solution to the initial problem (2.20), see comments
on p. 263 in Allaire (2002), which apply here, although
the problems (2.20), (2.21) and the problems (4.6), (4.7) in
Allaire (2002) are different.

Let us substitute (2.5) into (2.21) and perform minimiza-
tion over h analytically. The optimum design problem (2.21)
reduces to:

J1 = inf

⎧
⎨

⎩

∫

�

Wλ (τ ) dx | τ ∈ � (�)

⎫
⎬

⎭
(2.22)

with

Wλ (τ ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

hmin
‖τ‖2

c + λhmin if ‖τ‖c ≤ √
λ hmin

2
√

λ ‖τ‖c

if
√

λ hmin ≤ ‖τ‖c

≤ √
λ hmax

1

hmax
‖τ‖2

c + λhmax if ‖τ‖c ≥ √
λ hmax

(2.23)

where ‖τ‖c is defined by (1.2). The problem (2.22) can be
interpreted as an equilibrium problem of a non-linear elastic
body of complementary energy given by (2.23). The poten-
tial Wλ is smooth and convex. Assume that τ = τ ∗

λ is
the solution to problem (2.22). Having found τ ∗

λ one can
determine the optimal thickness by

h∗
λ (x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

hmin if
∥
∥τ ∗

λ (x)
∥
∥

c
≤ √

λ hmin

1√
λ

∥
∥τ∗

λ (x)
∥
∥

c

if
√

λ hmin ≤ ∥
∥τ ∗

λ (x)
∥
∥

c

≤ √
λ hmax

hmax if
∥
∥τ ∗

λ (x)
∥
∥

c
≥ √

λ hmax

(2.24)

Assume that the whole optimal solution is characterized by
√

λ hmin ≤ ∥
∥τ ∗

λ (x)
∥
∥

c
≤ √

λ hmax (2.25)

Then the isoperimetric condition (2.6) implies

1√
λ

∫

�

∥
∥τ∗

λ (x)
∥
∥

c
dx = V0 (2.26)

which leads to h∗ given by the formula (2.15) found
previously.

Let us note that Wλ given by (2.23) can be put in the form

Wλ (τ )

= 2
√

λ ‖τ‖c

+

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

( ‖τ‖c√
hmin

− √
λ
√

hmin

)2

if ‖τ‖c ≤ √
λ hmin

0
if

√
λ hmin ≤ ‖τ‖c

≤ √
λ hmax

( ‖τ‖c√
hmax

− √
λ
√

hmax

)2

if ‖τ‖c ≥ √
λ hmax

,

(2.27)

which shows that the plot of Wλ lies over the plot of
2
√

λ ‖τ‖c.
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3 The in-plane problem. Passage to the kinematic
formulation of the variable thickness problem

This section reveals essential differences between the kine-
matic formulations of the variable thickness problems for
two cases: (a) of arbitrary variation of the thickness (case of
h > 0) and (b) of bounded variation of the thickness (case
of 0 < hmin < h < hmax).

3.1 The case of h > 0

Let us reveal the condition (2.1) in (2.14)

Z = inf
τ∈L(�,E2

s )
sup
v∈V

⎧
⎨

⎩

∫

�

‖τ‖c dx+f (v)−
∫

�

τ · ε (v) dx

⎫
⎬

⎭
.

(3.1)

The components of the virtual field v play now the role of
Lagrangian multipliers. By using the arguments of Strang
and Kohn (1983) the operations inf and sup can be inter-
changed thus leading to

Z = sup
v∈V

[f (v) + R (ε (v))] (3.2)

with

R (ε) = inf
τ∈L(�,E2

s )

∫

�

(‖τ‖c − τ · ε) dx. (3.3)

Let us introduce the norm dual to (1.2)

‖ε‖∗ = sup
τ∈E2

s

|τ · ε|
‖τ‖c

. (3.4)

It is not difficult to prove that

‖ε‖∗ = ‖ε‖C , C = c−1 (3.5)

where ‖ε‖C is defined by (1.9). The solution of (3.3) can
now be written with using the norm (3.4)

R (ε) =
⎧
⎨

⎩

0 if ‖ε‖C ≤ 1

−∞ otherwise
(3.6)

which simplifies (3.2) to the form

Z = sup {f (v) |v ∈ V, ε (v (x)) ∈ BC a.e. in �} (3.7)

with BC defined by (1.8). Note that the above, both simple
and specific reformulation of the problem (3.1) is a conse-
quence of the integrand in (2.14) being of linear growth. The
subtle problem of attainability of the supremum in (3.7) lies
outside the scope of the present paper.

The results (2.13) and (3.7) are in full agreement with the
formulation (2.1) in Golay and Seppecher (2001).

The formulation (2.14) is superior to (3.7) because of two
reasons

• the local conditions: ε(v(x)) ∈ Bc for a.e. x ∈ � are
difficult to implement into a numerical algorithm;

• there is no direct link between the maximizer of (3.7)
and the optimal h∗. On the other hand, having the
minimizer of (2.14) we obtain h∗ directly by (2.15).

3.2 The case of 0 < hmin ≤ h ≤ hmax

In this section we consider the optimum design problem
in which the thickness is bounded from both sides, the
lower bound hmin being strictly positive. We show that the
kinematic formulation of this problem, dual to (2.22), can
be constructed, yet it does not reduce to a locking prob-
lem, but to an equilibrium problem of an effective body of
non-smooth elastic potential.

To find the problem dual to (2.22) we substitute (2.1) into
(2.22) to obtain

J1 = inf
τ∈L

(
�,E2

S

) sup
v∈V

⎧
⎨

⎩

∫

�

Wλ (τ ) dx+f (v)−
∫

�

τ · ε (v) dx

⎫
⎬

⎭

(3.8)

Since inf and sup operations can be interchanged, one can
rearrange (3.8) to the form

J1 = sup
v∈V

⎧
⎨

⎩
f (v) −

∫

�

W ∗
λ (ε (v (x))) dx

⎫
⎬

⎭
(3.9)

where

W ∗
λ (ε) = sup

τ∈E2
S

(τ · ε − Wλ (τ )) (3.10)

is the potential dual to Wλ. By virtue of the formula (2.27)
the sup operation in (3.10) can be performed analytically.
The final result reads

W ∗
λ (ε) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1

4
hmin ‖ε‖2

C − λhmin if ‖ε‖C ≤ 2
√

λ

1

4
hmax ‖ε‖2

C − λhmax if ‖ε‖C ≥ 2
√

λ

(3.11)

The potential W ∗
λ (ε) is continuous but not smooth. Conse-

quently, the displacement-based formulation (3.9) involves
the effective constitutive equations having a jump for
‖ε‖C = 2

√
λ.

Let us note that the sliding regime in (2.23) reduces to
a point in the expression (3.11). One can conjecture that
this non-smoothness will cause difficulties in developing
efficient numerical schemes for solving (3.9), (3.11).
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4 Numerical algorithm for (2.14). Case studies

To solve the problem (2.14) numerically we use the program
developed recently, see Czarnecki and Lewiński (2012),
aimed at solving selected problems of the free material
design in case of a single load condition. Thus the descrip-
tion of the numerical method is omitted. We note only that
the statically admissible trial stress fields are interpolated
with using the singular value decomposition (SVD) method.
These representations involve free parameters which are
determined by minimization of the functional in (2.14),
using the available optimizers for the unconstrained prob-
lems. Having found the minimizer of (2.14) we compute the
optimal thickness by (2.15).

Example 1 The example concerns a rectangular plate of
length Lx = 4.0 and height Ly = 2.0. The finite element
mesh is defined by nx × ny = 40 × 20 = 800 quadri-
lateral modules (see Fig. 1). The total number of nodes
N = (nx + 1)(ny + 1) = 861, which gives the total num-
ber of the columns and rows in the static matrix B equal
to n = 3N = 2583 and M = 2N = 1722, respectively
(n and M are also equal to the total number of the unknown
nodal, stress parameters and total number of the degrees of
freedom, respectively).

The cantilever plate is fully clamped at left edge and sub-
ject to a vertical load at the right edge (tangent to the vertical
edge), see Fig. 1. The traction T is modeled by the weight
function (see Fig. 1)

∀y ∈ [0, Ly

]
T = T (y) = Tmax e

−
(

y−y0
w

)2

(4.1)

where Tmax = 0.376, y0 = 1.0, w = 0.15. The vertical
resultant of the traction loading equals P = 1 (emulation
of the unit force). The optimal distribution of the thickness
computed by (2.16) is shown in Fig. 2 for two various values
of the Poisson ratio ν = 0.0, ν = 0.3, using the scatter plot

and contours graphic output in Voxler Graphical System.
Number of iterations of the numerical optimization algo-
rithm was 50. Violet and red color in rainbow scale denotes
the minimal (numerically equal to 0) and maximal optimal
thickness of the plate, respectively.

Because the problems (2.14) and (3.7) are similar to
the Michell’s primal (1.3) and dual (1.5) formulations, the
optimal numerical layouts of the cantilever problem above
compare well with the well-known solutions to the Michell
truss problem, see Graczykowski and Lewiński (2010).
Note that neither an upper bound nor a lower bound on
the unknown thickness have been imposed, since the for-
mulation (1.1) does not involve the thickness. The optimal
thickness vanishes on the domains where the solution to
this problem is equal to zero, which can happen on some
parts of the plate domain, not only on some lines or at some
points.

Example 2 Consider now a simpler problem in which the
plate is subject to a self-equilibrated load, see Fig. 3. The
support conditions are formally added. The unknown is the
plate thickness h(x) which corresponds to the minimal value
of the plate compliance, under the condition concerning the
volume of the plate, (2.6). The statically admissible stress
fields τ = (τ ij ) in � satisfy the local equilibrium equation:
div τ = 0 within � and the static boundary conditions:

τijnj = 0 on the edges |x1| = c + b

2
, |x2| ≤ a

2

τijnj = 0 on the edges |x1| ≤ c + b

2
, |x2| = a

2

τ2jnj =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0 if x1 ∈
(

−c − b

2
, −b

2

)

, |x2| = a

2

±q if x1 ∈
(

−b

2
,
b

2

)

, x2 = ±a

2

0 if x1 ∈
(

b

2
, c + b

2

)

, |x2| = a

2

Lx

Ly

x1

x2 P

Fig. 1 The body �—rectangular plate Lx × Ly , boundary conditions, and loading P defined by weight function traction
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Fig. 2 Distribution of the optimal h∗(x) for various values of the Poisson ratio ν (denoted as nu) and for the maximal volume V0 = 1
(denoted as V)

where n = (n1, n2) is the unit vector outward normal to the
contour of �.

We divide the plate domain into three sub-domains

�1 = {(x1, x2) |−c − b/2 ≤ x1 ≤ −b/2, |x2| ≤ a/2}
�2 = {(x1, x2) |−b/2 ≤ x1 ≤ b/2, |x2| ≤ a/2}
�3 = {(x1, x2) |b/2 ≤ x1 ≤ b/2 + c, |x2| ≤ a/2}

Ω

Ω

Ω

Fig. 3 Self-equilibrated plate

The optimal problem considered is formulated in two man-
ners: as a static (primal) problem (2.14) and as the kinematic
problem, dual to (2.14). We shall solve both the problems
analytically.

We shall start from the kinematic method, or from the
problem (3.7). We take the trial field v of components

v1 = − k√
E

x1, v2 = 1√
E

x2 (4.2)

in the whole domain �. This field can be complemented by
a rigid body motion to fulfil the kinematic boundary con-
ditions of Fig. 3. The constant k is chosen such that the
trial strain lies on the boundary of the locking locus (1.8).
According to (1.10) we compute

‖ε‖C =
√

k2 − 2νk + 1

1 − ν2
(4.3)

The assumption k = ν gives ‖ε‖C = 1. Now we compute
the virtual work of the load q on the displacements

v2 (x1, −a/2) = −a

2
√

E
, v2 (x1, a/2) = a

2
√

E
(4.4)
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and find Z = f (v) by (3.7)

f (v) = [−qv2 (x1, −a/2) + qv2 (x1, a/2)]b = qab√
E

(4.5)

Consider now the static problem (2.14). We assume the trial
stress field in the form

τ11 = τ12 = 0 in �

τ22 =
⎧
⎨

⎩

0 in �1

q in �2

0 in �3

(4.6)

The trial field assumed this way is of class �(�). We
compute the norm of the trial stress field by (2.16)

‖τ‖=
c

⎧
⎪⎪⎨

⎪⎪⎩

0 in �1

q /
√

E in �2

0 in �3

(4.7)

Thus, by (2.14) we compute

Z = qab√
E

(4.8)

which coincides with (4.5). Since the upper bound given
by the static method and the lower bound provided by
the kinematic method coincide, both the problems have
been correctly solved and by (2.15) determine the same
distribution of the optimal thickness:

h∗ =

⎧
⎪⎪⎨

⎪⎪⎩

0 in �1

V0 /ab in �2

0 in �3

(4.9)

This shows that the optimal plate occupies only the mid-
dle sub-domain of the design domain, since the optimal
thickness is zero in the left and right sub-domains.

The numerical test was performed for the following
rectangular plate (see Figs. 3, 4 and 5):

Lx × Ly = 3.0 × 1.0, V0 = 3.0, a = 1.0, b = 1.0,

E = 1.0, ν = 0.0, q = −1.0

The mesh is defined by 60 × 20 = 1200 4-node, quadri-
lateral, isoparametric sub-domains with bilinear shape func-
tions interpolating stress fields.

Exact solution: h∗ = 3.0, Z∗ = 1.0, J ∗ = (Z∗)2

V0
≈

0.333, of the thickness constant in �2.
Numerical solution: maximal thickness h∗ ≈ 2.75, Z∗ ≈

1.148, J ∗ = (Z∗)2

V0
≈ 0.439.

The example above has been exactly solved analytically,
hence can be treated as a benchmark. The abrupt change
of the optimal thickness could not be exactly approximated,
since the trial stress fields in problem (2.14) have been
interpolated continuously in the whole domain.

Example 3 Consider now a plate subject to a self-
equilibrated system of three forces, see Fig. 6. The structure
under consideration is not supported at any node, because
the system of the three forces is self-equilibrated. The
unknown is the plate thickness h(x) which corresponds
to the minimal value of the plate compliance, under the
condition concerning the volume of the plate, (2.6). The
three concentrated forces are emulated by the four tractions
Ti(i = 1, 2, 3, 4) modeled by the four weight functions (4.1),

Fig. 4 Numerical solution of the example 3: optimal thickness h∗
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Fig. 5 Numerical solution of the example 3: minimizer τ*, where the components τ∗
11, τ∗

12, τ∗
22 are denoted as τ∗11, τ∗12, τ∗22 , respectively

see Fig. 7 (see also example shown in Fig. 13, page 845 in
Sokół and Lewiński (2010))

∀x2 ∈ [0, Ly

]
T1 (x2) = T max

1 e
−
(

x2−h

w

)2

,

T2 (x2) = −T max
2 e

−
(

x2−Ly
w

)2

,

T3 (x2) = −T max
3 e

−
(

x2−h

w

)2

∀x1 ∈ [0, Lx] T4 (x1) = T max
4 e

−
(

x1
w

)2

.

The values of the T max
i (i = 1, 2, 3, 4) are such that the

absolute values of the four integrals ∫ Ti(s)ds(i = 1, 2, 3,
4) are equal exactly P . The loading assumed in Fig. 7 is
self-equilibrated.

L
y
=3 / 2  L

x

L
x

h = 1 / 2  L
x

P

P

1.414 P

/ 4 x
2

x
1

π

×

×

Fig. 6 Self-equilibrated plate—three force member

The numerical test was performed for the following data:

Lx × Ly = 1.0 × 1.5, V0 = 0.15, h = 0.5,

E = 1.0, P = 1.0, w = 0.15

T max
1 = T max

3
∼= 3.76 , T max

2 = T max
4

∼= 7.52

Three different values of the Poisson ratio are tested: ν =
0.5, 0.0, −0.5. These choices are admissible in the 2D elas-
ticity where the condition of the energy density being pos-
itive is satisfied if the effective Poisson ratio runs between
−1 and 1.

T
1
=T

1
(x

2
)

T
2
=T

2
(x

2
)

T
3
=T

3
(x

2
)

T
4
=T

4
(x

1
)

Fig. 7 The self-equilibrated plate subject to the tractions T1, T2, T3,
T4 emulating the three force system shown in Fig. 6
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Fig. 8 Distribution of the optimal h∗(x) for various values of the Poisson ratio ν (denoted as nu) in the Example 4

The mesh is defined by 30 × 45 = 1350 4-node, quadri-
lateral, isoparametric sub-domains with bilinear shape func-
tions interpolating stress fields.

The layouts of Fig. 8 are similar to the Michell’s solu-
tion shown in Fig. 9. Similar three forces problems were
the subject of numerical analysis in Golay and Seppecher

Fig. 9 The shape of the optimal Michell’s layout for the problem in
Fig. 6 found in Sokół and Lewiński (2010, Fig. 13)

(2001) based on the FEM approximation of problem (3.7).
The results in Fig. 3 of the above paper are similar in nature
to those of Fig. 8.

5 On optimal design of thin Kirchhoff plates of varying
thickness

Consider the problem of compliance minimization of a
transversely symmetric Kirchhoff plate of thickness h(x).
The tensor of bending stiffnesses depends on the thickness

by: D = h3

12 C, where C has the same meaning as before.
We assume that the loading is applied transversely to the
plate. Assume the plate is supported in a manner admissi-
ble within the theory of Kirchhoff. Let V be the space of
virtual appropriately regular deflections v which satisfy the
kinematic boundary conditions. The changes of curvature

are described by κ (v) = (
κij (v)

)
, κij (v) = − ∂2v

∂xi∂xj
. Let

f (v) represent now the virtual work of the transverse load-
ing. The bending moment tensors K = (Kij ) of L2

(
�, E2

s

)
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class are said to be statically admissible if they satisfy the
equilibrium equation:

∀v ∈ V

∫

�

K · κ (v) dx = f (v) . (5.1)

The set of such bending moments, satisfying additionally
the condition Kij,ij ∈ L2 (�), is denoted by �′(�). One
can show only one field M ∈ �′(�) such that

M = D κ (w) . (5.2)

with w being kinematically admissible or w ∈ V . Let
L′ (�, E2

s

)
be the space of fields K = (Kij ) in � such that

Kij,ij ∈ L2(�). Let us introduce a norm in L2
(
�, E2

s

)

‖K‖L2(�,E2
s )

=
√
√
√
√

∫

�

K (x) · (D−1 K (x)
)

dx. (5.3)

The compliance ϒ of the plate in bending is equal to f (w)

or, by Castigliano theorem,

ϒ = min
K∈�′(�)

(
‖K‖L2(�,E2

s )

)2
. (5.4)

The minimizer of this problem is equal to M, or is equal to
the bending moment tensor being the solution of the plate
equilibrium problem. Let us re-write (5.4) by disclosing the
dependence of D on h

ϒ = inf

⎧
⎨

⎩

∫

�

1

h3 (x)
K (x) · (c K (x)) dx

∣
∣K ∈ �′ (�)

⎫
⎬

⎭

(5.5)

or

ϒ = inf

⎧
⎨

⎩

∫

�

1

h3(x)
‖K(x)‖2

c dx
∣
∣ K ∈ �′ (�)

⎫
⎬

⎭
(5.6)

where the norm ‖·‖c is defined by (1.2). We consider plates
of fixed volume, see (2.6) and set only the condition h > 0
or hmin = 0, hmax = ∞. Assume additionally that h−3 ∈
L1
(
�, R+). The subject of the study is the optimum design

problem

J = inf

⎧
⎨

⎩

∫

�

(‖K (x)‖c

)2

h3 (x)
dx
∣
∣ K ∈ �′ (�) ,

∫

�

h (x) dx = V0, h−3 ∈ L1 (�, R+)
⎫
⎬

⎭
. (5.7)

Then we can apply the results of the Appendix for p = 3.
We obtain

J = (Z3)
4

V 3
0

, (5.8)

Z3 = inf

⎧
⎨

⎩

∫

�

√‖K (x)‖c dx
∣
∣ K ∈ �′ (�)

⎫
⎬

⎭
. (5.9)

Assume that K∗ solves the above problem. Then the optimal
h is given by

h∗ (x) = V0

√∥
∥K∗ (x)

∥
∥

c
∫

�

√‖K∗ (x)‖c dx
(5.10)

a.e. in �.
The integrand of (5.9) is not convex and is not of linear

growth. Consequently the problem dual to (5.9) does not
reduce to a locking material problem, like (3.7).

Problem (5.7) can be viewed as problem of mixing
infinite number of materials, as discussed in Lur’e and
Cherkaev (1986).

Remark 5.1 By analogy to Section 2.2 one can consider the
optimum design problem (5.7) with additional restrictions:
0 < hmin ≤ h(x) ≤ hmax, on the plate thickness distri-
bution. One can construct the counterpart of (2.22), (2.23),
which will not be put here. This problem is not well posed.
The hitherto known results on the relaxation of this problem
are discussed in the review paper by Muñoz and Pedregal
(2007).

6 On the penalized density methods in shape
optimization

The previous results concerning the plate optimization
clear up the behaviour of numerical schemes based on the
penalized density method, like SIMP, see Bendsøe (1989),
Zhou and Rozvany (1991), Bendsøe and Sigmund (1999),
Azegami et al. (2011).

Assume that a thin domain of a shape of plate of unit
thickness, of a middle plane � (i.e. of cylindrical shape)
is to be filled up with a homogeneous elastic material of
volume V0. Thus V0 ≤ |�|. The material is characterized
by the moduli Cijkl as before. To omit the subtle problem
of considering holes we introduce an effective material of
moduli Eijkl(x) expressed by a mass density ρ(x) such that

Eijkl (x) = ρp (x) Cijkl , 0 ≤ ρ (x) ≤ 1 (6.1)

where p > 0 and
∫

�

ρ (x) = V0. (6.2)
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Note that ρ = 1 corresponds to E = C. Consider the problem

Jλ = inf

⎧
⎨

⎩

∫

�

ρ−p (x) τ (x) · (c τ (x)) dx

+ λ

∫

�

ρ (x) dx

∣
∣
∣ρ−p ∈ L1 (�, R+) , τ ∈� (�) ,

0 ≤ ρ (x) ≤ 1 for a.e. x ∈�

⎫
⎬

⎭
(6.3)

The minimization over ρ can be performed analytically. The
problem (6.3) reduces to

Jλ = inf

⎧
⎨

⎩

∫

�

Wλ,p (τ ) dx | τ ∈ � (�)

⎫
⎬

⎭
(6.4)

where

Wλ,p (τ ) = wλ,p (‖τ‖c) (6.5)

while

wλ,p (x)=

⎧
⎪⎪⎨

⎪⎪⎩

λ
p

p+1

(
p

1
p+1 +p

−p
p+1

)
|x| 2

p+1 if |x| ≤
√

λ

p

x2+λ if |x| ≥
√

λ

p

(6.6)

Let us look at the family of functions: wλ,p(x) for p = 1, 3,
6, 16, 44 and for a fixed value λ = 1, see Fig. 10.

We note that the function wλ,1(x) is convex while all
other functions wλ,p(x), p > 1 are non-convex and non-
differentiable at x = 0. We conclude that the SIMP method
leads to badly posed problems for p > 1.

The formulation (6.4) for p = 1 is similar to the vari-
able thickness problem (2.22) for hmin = 0, hmax = 1. The
problem (6.3) for p = 3 is similar to the variable thickness
problem of the Kirchhoff plate, with no bounds on h(x), see
(5.7). The latter similarity suggests that the relaxation meth-
ods developed for (5.7) should be applicable to make (6.3)
well posed. Other way is to apply the numerical method
which directly approximates the relaxation by homoge-
nization formulation, developed recently by Dzierżanowski
(2012).

7 Final remarks

The optimum design problem (2.7) of a plate of varying
thickness subject to the in-plane loading has been reduced
to the problem (2.14) with the integrand of linear growth.
For some load cases one can expect that τ* = 0 in a sub-
domain. Consequently the thickness vanishes there, which
goes beyond the assumptions in (2.7), but is compatible with
the kinematic formulation (3.7).

The paper discloses that the problem of design of the
thickness of a Kirchhoff plate reduces to (5.9). The inte-
grand is there non-convex. Similarly, the problem (6.4) with
p = 3, corresponding to the SIMP problem, involves a non-
convex integrand. The present paper discloses once again,
from a new perspective, why both problems are badly posed

Fig. 10 Diagrams of wλ,p(x)

for selected values of p; λ = 1
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and special techniques should be applied to correct them and
to develop appropriate numerical schemes.
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Appendix

Let � be a plane domain. Let F ∈ L
1

p+1
(
�, R+). For p ≥

1 we define the functional

Tp (u) =
∫

�

u−p (x) F (x) dx (A.1)

such that u−p ∈ L1(�, R+) with respect to the Radon
measure of density F .

Consider the problem

Up =min

⎧
⎨

⎩
Tp (u)

∣
∣
∣
∣
∣
∣
u−p ∈ L1 (�, R+) ,

∫

�

u dx = V0

⎫
⎬

⎭

(A.2)

for given V0. Its solution reads

Up = Tp

(
u∗) (A.3)

u∗ (x) = V0
F

1
p+1 (x)

∫

�

F
1

p+1 (x) dx

(A.4)

and

Tp

(
u∗) = 1

V
p

0

⎡

⎣

∫

�

F
1

p+1 (x) dx

⎤

⎦

p+1

. (A.5)

Let us sketch the derivation of (A.3–A.5). Introduce the
Lagrangian

L =
∫

�

u−p (x) F (x) dx + λ

⎛

⎝

∫

�

u (x) dx − V0

⎞

⎠ . (A.6)

The condition δL = 0 with respect to δu gives

p · u−(p+1) (x) = λ

F (x)
(A.7)

hence

u (x) =
(p

λ

) 1
p+1

F
1

p+1 (x) . (A.8)

We fulfill the isoperimetric condition in (A.2) and
arrive at

(p

λ

) 1
p+1 = V0

⎛

⎝

∫

�

F
1

p+1 (x) dx

⎞

⎠

−1

. (A.9)

Substituting (A.9) into (A.8) we obtain (A.4). This is
the minimizer, since the integrand of (A.1) is convex with
respect to u for p ≥ 1. Substitution of (A.4) into (A.1)
gives (A.5).
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Kozłowski W, Mróz Z (1970) Optimal design of disks subject to
geometric constraints. Int J Mech Sci 12:1007–1021

Krog LA, Olhoff N (1997) Topology and reinforcement layout opti-
mization of disk, plate, and shell structures. In: Rozvany GIN (ed)
Topology optimization in structural mechanics. Springer, Wien,
pp 237–322
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Rozvany GIN (1976) Optimal design of flexural systems. Pergamon
Press, London

Rozvany GIN (1989) Structural design via optimality criteria. Kluwer
Academic Publishers Dordrecht, The Netherlands
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