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Abstract This paper develops and evaluates a method for
handling stress constraints in topology optimization. The
stress constraints are used together with an objective func-
tion that minimizes mass or maximizes stiffness, and in
addition, the traditional stiffness based formulation is dis-
cussed for comparison. We use a clustering technique,
where stresses for several stress evaluation points are clus-
tered into groups using a modified P-norm to decrease the
number of stress constraints and thus the computational
cost. We give a detailed description of the formulations and
the sensitivity analysis. This is done in a general manner,
so that different element types and 2D as well as 3D struc-
tures can be treated. However, we restrict the numerical
examples to 2D structures with bilinear quadrilateral ele-
ments. The three formulations and different approaches to
stress constraints are compared using two well known test
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581 83 Linköping, Sweden
e-mail: bo.torstenfelt@liu.se

Present Address:
E. Holmberg (�)
Saab AB, 581 88 Linköping, Sweden
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examples in topology optimization: the L-shaped beam and
the MBB-beam. In contrast to some other papers on stress
constrained topology optimization, we find that our formu-
lation gives topologies that are significantly different from
traditionally optimized designs, in that it actually manage
to avoid stress concentrations. It can therefore be used to
generate conceptual designs for industrial applications.

Keywords Topology optimization · Stress constraints ·
Clusters · SIMP · MMA

1 Introduction

Lighter designs are desirable in many industrial applications
and structural optimization is an effective way to gener-
ate light weight structures. Topology optimization (Bendsøe
and Sigmund 2003) is the first structural optimization stage,
it is used for conceptual design, and thus the stage where
the greatest mass reduction can be achieved. In topology
optimization no initial design is required; instead the design
variables, which are scale factors of elemental properties,
determine whether an element should be part of a structural
member or a hole.

In the traditional topology optimization formulation,
stiffness is maximized for a prescribed amount of material.
Traditionally optimized designs often contain high stress
concentrations and as will be shown, sometimes even geo-
metrical shapes causing stress singularities. Major manual
adjustments or shape optimization is therefore needed in
order to fulfill engineering requirements such as stress con-
straints. The changes required to the topology are often
severe, and topology optimization is thus used more as
a help to find optimal load paths rather than to achieve
a conceptual design. In this paper, stress constraints are
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introduced already in the topology optimization stage, this
allows for more sophisticated designs that appear more like
final designs than those obtained from the traditional formu-
lation. Stress constraints in topology optimization therefore
allow for a greater weight saving and simplify the subse-
quent design work.

We consider linear elastic isotropic materials and are only
interested in so-called black-and-white designs, i.e. only
solid material and holes are allowed in the final design.
This simplifies the interpretation and allows 3D structures
to be evaluated in future work. Even though the final design
strives for the integer values 1 (black) and 0 (white), we
use continuous design variables and Solid Isotropic Material
with Penalization (SIMP) to achieve a black-and-white
design by penalizing intermediate design variable values.
SIMP was initially introduced by Bendsøe (1989) and the
name was later suggested by Rozvany et al. (1992). A
similar formulation is also used to penalize stresses, as
described in Le et al. (2010) and shown in Section 4 in this
paper.

A design variable filter (Bruns and Tortorelli 2001) is
used to remove mesh dependency and the checkerboard phe-
nomenon. The filter also forces a minimum width of the
structural members, thus avoiding artificial stiffness that
occurs for members that are only one or two elements
wide.

Our aim in using stress constraints in topology opti-
mization is not to perfectly control the stress level but
to avoid high stress concentrations, and thus generate a
design that does not have to undergo severe modifications
in order to be developed into a final design that fulfills the
stress requirements. Topology optimization is a conceptual
design tool that requires post-processing and further analy-
sis, but the goal is that the subsequent design work should
be more straightforward, as it is done from a better starting
point.

Criteria based on stress are among the most impor-
tant ones for engineering purposes and have thus been
discussed since the very beginning of topology optimiza-
tion. The paper by Bendsøe and Kikuchi (1988), which is
considered to be the origin of topology optimization, men-
tions stress constraints even though these are not used in
the formulation. In addition, stress constraints were earlier
used in optimization of trusses by Dorn et al. (1964). In
recent years, stress constraints have received attention from
Svanberg and Werme (2007), Le et al. (2010) and Parı́s
et al. (2009) among others. It is noted that, compared to
the traditional stiffness maximization problem, additional
difficulties occur: Sved and Ginos (1968) found that stress
constraints are violated as the bar area goes to zero in a
truss optimization problem and the bar can thus not be
removed (known as singularity). The singularity problem is
also present in 2D and 3D problems where non-disappearing

stresses remain as the design variables go towards zero. A
region with low design variable values can still have a strain
which give rise to a stress with a nonzero and sometimes
remarkably high value, when it actually should be zero as
it represents a hole. The singularity problem is discussed
in many papers, such as Guo et al. (2001), Kirsch (1990),
Rozvany and Birker (1994) among others, and one way to
avoid it is to use an ε-relaxation approach as suggested by
Cheng and Guo (1997) and as is used in stress constrained
problems by Duysinx and Bendsøe (1998) and Duysinx and
Sigmund (1998). We use a stress penalization introduced
by Bruggi (2008), that besides giving further penalization
of intermediate design variables also avoids the singularity
problem. A simple example showing the singularity prob-
lem is considered in Duysinx and Bendsøe (1998). Figure 1
shows this example treated using our method, no singular-
ity problem is encountered and a hole is created between
the two bars, a result which was not possible without ε-
relaxation in the stress formulation used in Duysinx and
Bendsøe (1998).

Duysinx and Bendsøe (1998) also discuss a problem
caused by the high number of local stress constraints that
are needed due to the fact that stress is a local measure: the
problem becomes computationally expensive and requires
efficient methods to handle the computational effort.
Duysinx and Sigmund (1998) introduced a global stress
measure using a similar formulation, but where all stresses
are grouped into one stress constraint. The global stress
measure reduces the computational time considerably. How-
ever, the local stress control is low and in some cases not
acceptable. Due to these drawbacks, we are not particulary
interested in either the local or the global approach to stress
constraints. Instead, we use a clustered approach where a
moderate number of stress constraints are used and several
stress evaluation points are clustered into each constraint, in
a way somewhat similar to the block aggregation in Parı́s
et al. (2010) or the regional stress measure in Le et al.
(2010).

We also note that stress constrained topology problems
have been solved using the level set approach by e.g. Allaire
and Jouve (2008), Amstutz and Novotny (2010) and Guo
et al. (2011). In the level set approach two phases, typi-
cally representing solid material or voids, are used and as

Fig. 1 Simple example used in Duysinx and Bendsøe (1998)



Stress constrained topology optimization 35

the stress constraints only are applied to the solid phase, no
singularity problems occur. The final designs are also free
from the transition layer of intermediate design variable val-
ues between solid and voids that remain for filtered SIMP-
based formulations. However, the large number of design
variables remain and a global stress measure that approxi-
mates local stresses (Allaire and Jouve 2008; Amstutz and
Novotny 2010), or an active set strategy (Guo et al. 2011) is
used in order to reduce the computational cost.

We use bilinear quadrilateral elements which, despite
their drawbacks, see e.g. Cook et al. (2002), are very com-
mon in topology optimization problems. The element is not
particulary well suited for stress analysis, but we use it in
this paper due to its simplicity, low computational cost and
as it has been used earlier in stress based problems in e.g.
Le et al. (2010), with promising results. The stress is eval-
uated in the centroid of the element, which corresponds to
the superconvergent stress point. The problem and the sen-
sitivity analysis are formulated generally, so that different
element types can be considered in future work.

We also mention that the final optimization problem
is solved by the Method of Moving Asymptotes (MMA)
(Svanberg 1987).

The paper is organized as follows: Section 2 describes
the problem formulations. The design variable filter and
penalization techniques are discussed in Sections 3 and 4
respectively. Section 5 presents the stress measure used for
the clustered approach and different clustering techniques
are discussed in Section 6. Calculation of the gradients
involved is done in Section 7 and a review of modeling
aspects is found in Section 8. In Section 9 we show the
numerical results and conclusions are drawn in Section 10.

2 Problem formulations

We optimize structures that are discretized by the Finite
Element Method (FEM) (Hughes 1987). The design vari-
ables are collected in a vector x and are scale factors of
the elemental properties, i.e. there is one design variable
connected to each finite element that is included in the opti-
mization. Different interpretations of the design variables:
such as thickness, porosity or as describing a composite
material, are common in the literature, but we prefer to see
them as mathematical scale factors without physical inter-
pretation. The optimization strives for a final design where
the scale factor is zero or one, so there is no need for
a physical interpretation of the intermediate design vari-
able values. Section 4 describes how such final designs are
achieved. The design variables x are filtered, see Section 3,
which relates x to the variables ρ, i.e. ρ = ρ(x). The lat-
ter variables will be called the filtered variables and they
are considered to be physical variables, as they define the

stiffness and enter the mass calculation. The equilibrium
equation for a design ρ(x) becomes

K(ρ (x)) u = F , (1)

where K(ρ (x)) is the global stiffness matrix of the struc-
ture, u is the vector of global nodal displacements and F is
a vector of known external loads.

We use a nested formulation, i.e. the equilibrium equa-
tion (1) is not used as a constraint as in the simultaneous
formulation described by e.g. Bendsøe et al. (1994). Instead,
the displacement vector is seen as a given function of the
design variables and it is solved for in the finite element
analysis. For a given design ρ(x) and for an invertible stiff-
ness matrix, the displacement vector as a function of x

reads,

u = u(x) = K−1(ρ (x)) F .

Three different formulations are discussed and compared
in this paper. The first formulation, in which the mass
is minimized subjected to stress constraints, is our main
concern. It reads,

(P1)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

min
x

ne∑

e=1

meρe(x)

s.t.

{
σPN

i (x) ≤ σ , i = 1, .., nc

xe ≤ xe ≤ xe, e = 1, .., ne,

where ne is the number of design variables and me is the
solid element mass for the element related to design vari-
able e. The e:th filtered variable is denoted ρe(x) and xe is
the e:th design variable, limited by the box constraint limits
xe = 1 and xe = ε, where ε is a small positive num-
ber used to avoid the stiffness matrix becoming singular.
The stress measure used in this paper is a modified P-norm
based on von Mises stresses, which for cluster number i is
denoted σPN

i (x) and which is discussed in Section 5. The
number of clusters, or equally, the number of stress con-
straints, is denoted nc and σ is the stress limit. We note
that stress measures other than von Mises could be used
and that formulations similar to (P1) have been used in
Duysinx and Bendsøe (1998), Le et al. (2010) and Parı́s
et al. (2009) among others, where, however, the stress
measure is formulated differently.

In the second formulation we replace the mass objective
function with a compliance objective, i.e. the optimization
strives for the stiffest design. This objective requires a limit
on the available volume or mass that can be distributed
inside the design domain. We here choose to constrain the
available mass so that the comparison with formulation (P1)
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is straightforward. To the authors’ knowledge, this formula-
tion has previously only been used by Werme (2008), who
used it with a discrete approach developed by Svanberg and
Werme (2007). This second formulation reads

(P2)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
x

1

2
F T u(x)

s.t.

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

σPN
i (x) ≤ σ, i = 1, .., nc

ne∑

e=1

meρe(x) ≤ M

xe ≤ xe ≤ xe, e = 1, .., ne,

where M is the allowable total mass.
The third problem is the traditional stiffness based for-

mulation that in this paper is used only for comparison. In
this formulation, the compliance is minimized subjected to
a mass constraint, see Bendsøe and Sigmund (2003) and the
references therein for an overview of important papers based
on this formulation, that reads

(P3)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

min
x

1

2
F T u(x)

s.t.

⎧
⎪⎨

⎪⎩

ne∑

e=1

meρe(x) ≤ M

xe ≤ xe ≤ xe, e = 1, .., ne.

3 Filtering of design variables

A design variable filter (Bruns and Tortorelli 2001) is used,
i.e. filtered variables ρ are created by taking a weighted
average of neighboring design variables xj . The filtered
variables ρ are considered as physical variables in the sense
that they enter the calculation of the stiffness matrix and the
mass, whereas x have no physical interpretation. The design
variable filter reads

ρe(x) =

∑

j∈�e

wjxj

∑

j∈�e

wj

,

where �e is the set of design variable indices related to ele-
mental centroids within the filter radius r0, measured from
the centroid of the element related to design variable e, as
visualized in Fig. 2. The weight factor wj is here defined by
a cone, i.e. the weight is decreased linearly with rj , which
is the distance between the centroids of the elements related
to design variable j and e, i.e.

wj = r0 − rj

r0
.

Fig. 2 Visualization of the design variable filter

Note that the weight is zero for all design variables that are
excluded from the set �e. From an implementation point
of view, a matrix W that includes the weights is created
such that

ρe(x) =
ne∑

j=1

Wejxj . (2)

4 Penalization

In order to create black-and-white structures, a penaliza-
tion function is introduced that makes intermediate design
variable values disproportionately expensive. In this paper,
we strive for black-and-white designs and SIMP is used to
penalize the stiffness for intermediate design variable values
and a similar penalization is used to penalize stresses.

4.1 Stiffness penalization

The SIMP penalization function, ηK(ρe(x)) is inserted
when the global stiffness matrix K(ρ (x)) is assembled
from the solid material element stiffness matrices K̂e as

K(ρ (x)) =
ne∑

e=1

ηK(ρe(x))K̂e.

The SIMP penalization function is given by

ηK(ρe(x)) = (ρe(x))q ,

where q > 1 is a penalization factor that, in this paper, is set
to q = 3, which several authors have proven to work well.

4.2 Stress penalization

The solid material stress vector at stress evaluation point a

is written in Voigt notation as

σ̂ a(x) = (
σ̂ax σ̂ay σ̂az τ̂axy τ̂ayz τ̂azx

)T
.

It is calculated in the finite element analysis as

σ̂ a(x) = EBau(x),
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where E is the constitutive matrix and Ba is the strain-
displacement matrix corresponding to stress evaluation
point a. The solid material stresses are also penalized for
intermediate design variable values, giving the penalized
stress measure σ a(x), as

σ a(x) = ηS(ρe(x))σ̂ a(x), (3)

where ρe(x) is the filtered variable corresponding to the ele-
ment to which stress evaluation point a belongs. The stress
penalization ηS(ρe(x)) is constructed such that σ a(x) is
increased for intermediate design variable values, thus mak-
ing the intermediate values unproportionately expensive.
Our experience points towards that the stress penalization

ηS(ρe(x)) = (ρe(x))
1
2 , (4)

works well. This penalization (4) represents the penalization
in Bruggi (2008), but with a specific choice of the exponent,
as suggested in Le et al. (2010).

Compared to the stress calculation by e.g. Duysinx and
Bendsøe (1998), this stress penalization (4) gives a stress
that is non-physical for intermediate design variable val-
ues. However, we strive for black-and-white designs and
the stress penalization is such that σ a and σ̂ a coincide for
ρe = 1 and

lim
ρe→0

σ a(x) = 0,

where the latter is the reason why we do not experience sin-
gularity problems. The same observation was recently made
by Kočvara and Stingl (2012), who use a stress formulation
with the same properties.

5 Stress measure

The von Mises stress measure is often used for dimen-
sioning statically loaded structures such as those that are
considered in this paper. It is therefore used as stress mea-
sure in the optimization. The penalized von Mises stress
in stress evaluation point a, σvM

a (x), is a function of the
corresponding penalized stress vector (3), given by

σvM
a (x) =

(
σ 2

ax + σ 2
ay + σ 2

az − σaxσay − σayσaz

− σazσax + 3τ 2
axy + 3τ 2

ayz + 3τ 2
azx

) 1
2
. (5)

Three different approaches to stress constraints are
discussed: local, global and clustered. The local and
global approaches (Duysinx and Bendsøe 1998; Duysinx
and Sigmund 1998), mean that either one constraint is
applied to each stress evaluation point in the model (local) or
that only one stress constraint is applied to the entire model
(global). However, neither of these two approaches are

useful in practice; the local approach becomes too expen-
sive and the global approach is too rough. Therefore, we
use a clustered approach (Parı́s et al. 2010; Le et al. 2010),
where stress evaluation points are sorted into clusters, and
one stress constraint is applied to each cluster. This allows
for a trade-off between how well the stress is controlled
and the computational cost. Our experience is that, even
with a small number of stress constraints, it is possible to
avoid geometrical shapes that cause stress singularities and,
to some extent, also stress concentrations. How the stress
evaluation points are sorted into clusters and how these are
updated is discussed in Section 6, where it also is noted that
the local and the global approach can be seen as special
cases of the clustered approach.

In order to create the clustered stress measure used in
formulation (P1) and (P2), stresses from several stress eval-
uation points are clustered and used to calculate a single
stress measure using a modified P-norm. This has been done
in a somewhat similar way before in Yang and Chen (1996),
Le et al. (2010) and Duysinx and Sigmund (1998), but our
modification is different as will be discussed below. The
P-norm stress measure for cluster i, σPN

i (x), reads

σPN
i (x) =

⎛

⎝
1

Ni

∑

a∈�i

(
σvM

a (x)
)p

⎞

⎠

1
p

, (6)

where p is the P-norm factor and �i is the set of stress eval-
uation points in cluster i. The sum is divided by Ni , which
is the number of stress evaluation points in �i . Thus, if all
stresses are the same, i.e. σvM

a (x) = σvM , then

σPN
i (x) =

⎛

⎝
1

Ni

∑

a∈�i

(
σvM

a (x)
)p

⎞

⎠

1
p

=
(

1

Ni

) 1
p (

Ni

(
σvM

)p) 1
p = σvM, (7)

i.e. the P-norm measure represents the local stresses exactly.
In all other cases σPN

i (x) in (6) will underestimate the max-
imum local stress, which is shown by Duysinx and Sigmund
(1998) where the expression that is used is similar to (6),
except for the clustered approach and the ε-relaxation. In
Duysinx and Sigmund (1998) it is also proved that the
choice Ni = 1 gives an expression that always has a
value above the maximum stress. These two results are
summarized as follows:
⎛

⎝
1

Ni

∑

a∈�i

(
σvM

a (x)
)p

⎞

⎠

1
p

≤ max
a∈�i

σ vM
a (x)

≤
⎛

⎝
∑

a∈�i

(
σvM

a (x)
)p

⎞

⎠

1
p

.
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Since the stress constraint in (P1) and (P2) can be written as

⎛

⎝
∑

a∈�i

(
σvM

a (x)
)p

⎞

⎠

1
p

≤ N
1
p

i σ ,

we conclude that the maximum local stress in the structure
is below N

1/p
i σ . However, if we create the clusters such that

the case shown in (7) is approached, then we also approach
σvM ≤ σ , as is desired. On the other hand, the 1/Ni-term
has the positive effect that it acts like a built-in scaling of the
limit value which proves to be beneficial for convergence
of the optimization problems. In particular, it avoids prob-
lems in the first iterations where some points can have very
high stresses due to initial geometrical shapes causing stress
singularities.

Stresses in the optimized structure will locally become
higher than the stress limit, but as mentioned before, in
this conceptual design phase we allow some stress peaks
as long as the geometrical shape is such that stress sin-
gularities are avoided and the stress peaks easily can be
removed.

We also note that Le et al. (2010) use an elemental scale
factor based on the volume of element a, instead of the
1/Ni-term in (6). From the discussion above, we see that the
discretization thus influences the local stresses as the stress
can then be higher in a smaller element than in a larger. In
order to get the P-norm value closer to the maximum local
stress, Le et al. scale the current values with respect to stress
values from the previous iteration. This approach could also
be used in our formulation, however, if the clusters are cre-
ated as described in Section 6, a good stress control can be
achieved in either case.

Increasing the value of the exponent p in (6) brings the
P-norm value closer to the maximum stress in each cluster.
Applying the limit value shown in Duysinx and Sigmund
(1998) one finds that

lim
p→∞

⎛

⎝
1

Ni

∑

a∈�i

(
σvM

a (x)
)p

⎞

⎠

1
p

= max
a∈�i

σ vM
a (x).

However, numerical problems are unfortunately experi-
enced for too high values of p. On the other extreme, p = 1
gives the mean stress for each cluster. Different p-values are
evaluated in Le et al. (2010) and a discussion is also found in
Duysinx and Sigmund (1998). On the basis of those papers
and our own tests we use p = 8 in the numerical examples.

Depending on the value of the stress constraint and
the p-value, problems with the numerical accuracy can
also occur because (σ vM

a (x))p in (6) becomes very large.
One solution is then to normalize σvM

a (x) with σ , which
gives a mathematically equivalent formulation. The stress

constraint σPN
i (x) ≤ σ in problem formulation (P1) and

(P2) is thus replaced by

⎛

⎝
1

Ni

∑

a∈�i

(
σvM

a (x)

σ

)p
⎞

⎠

1
p

≤ 1.

6 Distribution of points into clusters

The main reason for using clusters is to reduce the ne num-
ber of constraints in the local approach to nc � ne clustered
constraints and still maintain the possibility to control the
local stress. The number of clusters, nc, greatly effects to
which extent the local stresses are constrained. We may
think of the two extremes nc = 1 and nc = ne, which brings
us back to the global and local approaches, respectively.

The P-norm (6) that is used to cluster stresses from multi-
ple stress evaluation points to one constraint takes the stress
to the power of a factor p. Consequently, a local high stress
can raise the P-norm value, even though there might have
been low stresses in the other evaluation points. On the other
hand, due to the 1/Ni-term the P-norm value will be lower
than the maximum local stress. Obviously, the problem is
influenced by how the clusters are created, i.e. which eval-
uation points that belong to the set �i . Here we present
two techniques for how the evaluation points are sorted into
clusters: the Stress level approach and the Distributed stress
approach, as described later in this section.

The distribution of the stress evaluation points in the
clusters might have to be updated during the iterations
in order for σPN

i (x) to be a good approximation to the
local stresses. However, changing the distribution of evalu-
ation points within the clusters implies that the problem is
changed. Thus, different (but similar) problems are solved
in successive iterations and we are thus solving a series of
related problems. We note that MMA uses the design vari-
ables from the two previous iterations in order to determine
the move limits, see Svanberg (1987) for details. In the case
when clusters are updated, the design variables in the cur-
rent iteration are found by solving a problem that is slightly
different than the problem for which the previous variables
were found, and this could cause the move limits to be either
too conservative or too aggressive. However, we still obtain
convergence to a feasible design and have not noticed any
problems as a result of this issue.

6.1 Stress level technique

In the stress level clustering technique, stress evaluation
points that have a similar stress level are clustered together.
This method gives a large variation of the different σPN

i (x)-
values but the stresses in the evaluation points within each
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cluster are as close to each other as possible. The P-norm
measure becomes a good approximation of the cluster mem-
ber stresses, because we are approaching the case shown
in (7). Another positive effect is that in many problems
the stress constraint for the low-level clusters eventually
becomes inactive.

The clusters are organized according to the scheme
shown in (8). The stress evaluation points are sorted in
descending order based on their stress level, and the ne/nc

first points create cluster 1, the next ne/nc points create
cluster 2 etc. That is, we have the same number of points
within all clusters with the exception of the last cluster
which may contain fewer points. The clustering scheme
reads

σ1 ≥ σ2 ≥ σ3 ≥ ..... ≥ σne
nc︸ ︷︷ ︸

cluster 1

≥ ..... ≥ σ 2ne
nc︸ ︷︷ ︸

cluster 2

≥ .....

≥ σ (nc−1)ne
nc

≥ ..... ≥ σne︸ ︷︷ ︸

clusternc

. (8)

6.2 Distributed stress technique

In the distributed stress technique, each cluster contains
stress evaluation points with stresses that span the whole
stress range. Thus, each cluster obtains approximately the
same stress value. The motivation for this technique is that
it is expected to allow for easier convergence, as high local
stresses are damped by a presumably large number of low
local stresses. The clustered stress measure in (6) will thus
be lower than if the stress level technique is used.

Again, the stress evaluation points are sorted in descend-
ing order based on their stress. The first point is then
inserted into cluster 1, the second into cluster 2 etc., until
the ne

nc
:th point is reached. The cluster counter is then reset

and restarted from 1. This method is the same as in Le et al.
(2010) when the clusters are updated every iteration. The
formulation looks like

σ1︸︷︷︸

cluster 1

≥ σ2︸︷︷︸

cluster 2

≥ ..... ≥ σne
nc

−1
︸ ︷︷ ︸

cluster (nc−1)

≥ σne
nc︸︷︷︸

cluster nc

≥ σne
nc

+1
︸ ︷︷ ︸

cluster 1

≥ ..... ≥ σne︸ ︷︷ ︸

clusternc

.

7 Sensitivity analysis

The Method of Moving Asymptotes (Svanberg 1987) that is
used to solve the optimization problem requires first order

sensitivity information of the constraints and the objective
function. The gradient of the mass objective, f0, in (P1) is

∂f0

∂xb

=
ne∑

e=1

me
∂ρe(x)

∂xb

=
ne∑

e=1

meWeb, (9)

where Web are the filter weights defined in (2). We note
that the gradient of the mass is affected by neighboring
design variables through the filter. However, for the numer-
ical examples in this paper, where every element has the
same size and material, all solid element masses are equal,
i.e., me = m, and we find that (9) can be written

∂f0

∂xb

=
ne∑

e=1

meWeb = m

ne∑

e=1

Web = m,

which holds true as
ne∑

e=1

Web = 1.

The compliance objective, C = 1
2F T u(x), in (P2) and

(P3) has a well known self adjoint gradient:

∂C(x)

∂xb

= −1

2
uT (x)

∂K(ρ (x))

∂xb

u(x),

see e.g. Christensen and Klarbring (2008) for details.
The stress constraints are the P-norm stresses in (6), and

the gradients follow from the chain rule:

∂σPN
i (x)

∂xb

=
∑

a∈�i

∂σPN
i (x)

∂σvM
a

∂σvM
a (x)

∂xb

=
∑

a∈�i

∂σPN
i (x)

∂σvM
a

(
∂σvM

a (x)

∂σ a

)T
∂σ a(x)

∂xb

. (10)

The derivatives in (10) are calculated in the following
subsections.

7.1 Derivative of the P-norm w.r.t. the von Mises stress

The ∂σPN
i (x)/∂σvM

a term in (10) is determined by taking
the derivative of (6) as

∂σPN
i (x)

∂σvM
a

= 1

p

⎛

⎝
1

Ni

∑

a∈�i

(
σvM

a (x)
)p

⎞

⎠

(
1
p
−1
)

× 1

Ni

p
(
σvM

a (x)
)p−1

=
⎛

⎝
1

Ni

∑

a∈�i

(
σvM

a (x)
)p

⎞

⎠

(
1
p
−1
)

× 1

Ni

(
σvM

a (x)
)p−1

.
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7.2 Derivative of the von Mises stress
w.r.t. the stress components

The derivatives of the von Mises stress (5) with respect to
its stress components are

∂σvM
a (x)

∂σax

= 1

2σvM
a (x)

(
2σax(x) − σay(x) − σaz(x)

)

∂σvM
a (x)

∂σay

= 1

2σvM
a (x)

(
2σay(x) − σax(x) − σaz(x)

)

∂σvM
a (x)

∂σaz

= 1

2σvM
a (x)

(
2σaz(x) − σax(x) − σay(x)

)

∂σvM
a (x)

∂τaxy

= 3

σvM
a (x)

τaxy(x)

∂σvM
a (x)

∂τayz

= 3

σvM
a (x)

τayz(x)

∂σvM
a (x)

∂τazx

= 3

σvM
a (x)

τazx(x).

7.3 Derivative of the stress components
w.r.t. the design variable

The derivative of the penalized stress vector (3) with respect
to design variable xb reads:

∂σ a(x)

∂xb

=
na∑

r=1

∂σ a

∂ρr

∂ρr (x)

∂xb

=
na∑

r=1

∂ηS(ρe(x))

∂ρr

∂ρr(x)

∂xb

EBau(x)

+ ηS(ρe(x))EBa
∂u(x)

∂xb

, (11)

where na is the total number of stress evaluation points and
∂ηS(ρe(x))/∂ρr �= 0 only for r = e, when the penaliza-
tion in (4) is used. Thus, the sum can be removed and (11)
becomes

∂σ a(x)

∂xb

= ∂ηS(ρe(x))

∂ρe

∂ρe(x)

∂xb

EBau(x)

+ ηS(ρe(x))EBa

∂u(x)

∂xb

. (12)

7.4 Adjoint method

In this problem, the number of design variables x will be
large, but the number of constraints can be kept moder-
ate due to the clusters. Therefore, the adjoint method is
preferable for solving (10). The term ∂u(x)/∂xb in (12) is

calculated from the global state equation (1). By the chain
rule we get

ne∑

r=1

∂K(ρ (x))

∂ρr

∂ρr (x)

∂xb

u(x) + K(ρ (x))
∂u(x)

∂xb

= 0,

from which ∂u(x)/∂xb can be obtained:

∂u(x)

∂xb

= −K−1(ρ (x))

[
ne∑

r=1

∂K(ρ (x))

∂ρr

∂ρr(x)

∂xb

u(x)

]

.

(13)

Substituting (13) into (12) and then (12) into (10) gives

∂σPN
i (x)

∂xb

=
∑

a∈�i

∂σPN
i (x)

∂σvM
a

(
∂σvM

a (x)

∂σ a

)T

×
(

∂ηS(ρe(x))

∂ρe

∂ρe(x)

∂xb

EBau(x)

− ηS(ρe(x))EBaK
−1(ρ (x))

×
[

ne∑

r=1

∂K(ρ (x))

∂ρr

∂ρr (x)

∂xb

u(x)

])

. (14)

An adjoint variable λi is now defined by

λT
i =

∑

a∈�i

∂σPN
i (x)

∂σvM
a

(
∂σvM

a (x)

∂σ a

)T

EBaK
−1(ρ (x)) ,

which means that it can be calculated from the adjoint
equation:

K(ρ (x)) λi =
∑

a∈�i

∂σPN
i (x)

∂σvM
a

BT
a ET ∂σvM

a (x)

∂σ a

.

The adjoint variable is now inserted into (14) which finally
gives the gradient as

∂σPN
i (x)

∂xb

=
∑

a∈�i

∂σPN
i (x)

∂σvM
a

(
∂σvM

a (x)

∂σ a

)T

× ∂ηS(ρe(x))

∂ρe

∂ρe(x)

∂xb

EBau(x)

− ηS(ρe(x))λT
i

×
[

ne∑

r=1

∂K(ρ (x))

∂ρr

∂ρr(x)

∂xb

u(x)

]

,

where ∂σPN
i (x)/∂σvM

a and ∂σvM
a (x)/∂σ a were derived in

Sections 7.1 and 7.2, respectively.
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8 Modelling aspects

8.1 Applying loads

When stress constraints are used in the optimization prob-
lem, it is important that the loads are applied on the structure
in a way that is suitable for stress calculation. A point load
that can be sufficient in the traditional formulation (P3) will
generate a high local stress that might not be reducible, even
if the entire domain becomes solid. This high stress will
influence the clusters and thus also the final design. There-
fore, the load has to be distributed over several nodes so that
the area where the load is applied is large enough to keep the
stress below the stress limit. Another approach is to exclude
the elements in the vicinity of the applied load from the set
of design variables: they are kept as solid structural elements
that are not part of the optimization problem. Figure 3 shows
a subset of a finite element mesh with a load applied at the
upper right corner, the gray elements are excluded from the
optimization problem.

8.2 Meshing

Another consideration is the discretization, i.e. the element
size. The design variable filter assures that the structural
members are thicker than approximately 2 × r0. Thus,
in order to achieve a black-and-white design when stress
constraints are used, the element size must be chosen with
regard to the stress limit and the filter radius. If the ele-
ments are too large, it is possible to end up in a design where
the stress in a structural member with intermediate design
variable values is lower than the limit, but where the struc-
tural member cannot be made thinner due to the filter. The

Fig. 3 Excluded elements highlighted in gray color

solution might then contain structural members with inter-
mediate design variable values, whereas a finer mesh would
give thinner but solid structural members.

9 Examples

In this section we give some examples of the described
method for stress constraints, applied to two dimen-
sional structures in plane stress. The method has been
implemented in the finite element program TRINITAS
(Torstenfelt 2012). All designs, except for the compliance
based designs, use an initial design where all ρe(x) = 0.5.
The final designs that are shown in this paper have then
been found by iterating well beyond convergence. Plots are
appended for the final solutions shown in Tables 1 and 2.
Compared to the suggested values in Svanberg (2002), the
move limits in MMA have been narrowed, in order to make
the solver more conservative. We note that different final
solutions are obtained depending on the MMA-parameters,
which is the reason why a conservative setting of the solver
was preferred. As mentioned in Section 6, we do not reset
MMA when a reclustering is made. The move limits in
MMA are determined based on design variable values from
previous iterations; in the case of reclustering, these are
calculated for a somewhat different problem, but we still
converge to feasible designs. The figures show the filtered
variables ρ and the penalized von Mises stresses σvM

a . No
post-processing of the pictures has been done; black means
that the filtered variable is one and gray means that it is at its
lowest value, ε. The stress contour plots should be viewed in
color, the range blue-green represents stresses that are below
or at the stress limit and the range yellow-red represents
stresses that are above the stress limit.

9.1 The L-shaped beam

The L-shaped beam is a popular test example for stress con-
strained topology optimization, see Duysinx and Bendsøe
(1998), Duysinx and Sigmund (1998), Le et al. (2010),
Parı́s et al. (2009) among others and also Allaire and Jouve
(2008), Amstutz and Novotny (2010) and Guo et al. (2011)
for the L-shaped beam optimized using the level set method.
The design domain of the L-shaped beam contains an inter-
nal corner with an initial geometric stress singularity, see
Fig. 4. This type of design domain is convenient to use in
industrial applications, where for example the L-beam can
be an attachment for some piece of equipment and the cor-
ner is due to clearance to other equipment or due to the
shape of the actual equipment itself. As topology optimiza-
tion is a conceptual design tool, the design domain should be
easy to create and simple to mesh. Thus, no radius is created
at the corner of the design domain.
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Table 1 The L-beam for problem (P1) using the “stress level” clustering technique and different updating frequencies

Reclustering frequency Every iteration 50 iterations No reclustering

Topology

Stress plot

Convergence plot

Mass [kg × 10−3] M = 24.76 M = 23.75 M = 20.11
Compliance [N mm] C = 10,330 C = 10,820 C = 15,105

The dimensions of the L-beam are seen in Fig. 4, where
L = 200 mm and the thickness of the structure is 1 mm.
The domain is meshed with 6400 equal sized four node ele-
ments and one stress evaluation point is used per element.
The superconvergent point is used for stress evaluation and
for this element type it is positioned in the centroid of
the element. The material is a typical aircraft aluminum
with material data; Young’s modulus 71,000 MPa, density
2.8 × 10−9 ton/mm3, Poisson’s ratio 0.33 and yield limit
350 MPa, which also is used as stress limit in the optimiza-
tion. Ten clusters, i.e. ten stress constraints, are used in the
numerical examples, but as shown in Fig. 5, even a much
lower number of constraints gives a design that avoids high
stress concentrations.

A 1,500 N point load is applied as shown in Fig. 4 and
3 × 2 number of elements under the load are not part of the
design space, see Fig. 3. The design variable filter is applied
with a filter radius, r0 = 1.5 times the element size.

Solutions for the L-beam of problem formulation (P1)

are shown in Tables 1 and 2, where the two different

clustering techniques and different reclustering frequencies
are compared. As mentioned in Section 6, the case shown
in (7) is approached when the stress level clustering tech-
nique is used and the clusters are updated every iteration.
This is also seen in Table 1, as this combination gives the
best local stress control, in an average sense, and a more
even stress distribution. When the clusters are updated every
50th iteration, the local stress control is slightly worse and
when the clusters are not updated at all, a large percentage
of the structure have too high stress. The stress constraints
are satisfied, but as the clusters were created in the first iter-
ation, the σPN

i is no longer a good approximation to the
local stresses. This is also the reason why the mass can be
lower and why the compliance becomes higher. However,
we achieve a design where the singular point is avoided
more efficiently; the right vertical component is moved
away from the boundary, and thus allowing for a larger
radius.

We also note that a convergence plot, see Table 1, tends to
have small oscillations when the clusters are updated every
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Table 2 The L-beam for problem (P1) using the “distributed stress” clustering technique and different updating frequencies

Reclustering frequency Every iteration 50 iterations No reclustering

Topology

Stress plot

Convergence plot

Mass [kg × 10−3] M = 20.63 M = 20.67 M = 20.66
Compliance [N mm] C = 13,277 C = 12,999 C = 12,828

iteration, it makes a jump when clusters are updated every
50th iteration and is relatively smooth when no reclustering
is done.

Fig. 4 Geometry of the L-beam problem

Table 2 shows the same reclustering frequencies but
for the distributed stress technique, where the clusters are
created from a mixture of the highest and lowest stresses.
As expected, the local stress control is not as good as for
the stress level technique, and the designs for different
reclustering frequencies are very similar.

Fig. 5 Example with only three stress constraints for the “stress level”
technique and reclustering every iteration
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Fig. 6 Geometry of the MBB problem

9.2 The MBB-beam

The MBB-beam is another popular example in topology
optimization. Here symmetry is used and the right half the
beam is modelled. The material, load magnitude and stress
limit are the same as for the L-beam. The point load is
applied at the center of the beam and the boundary condi-
tions and dimensions are seen in Fig. 6, where L = 100 mm
and the thickness is 1 mm. The domain is meshed with 4,800
elements, and ten clusters are used for the stress constraints.
The design variable filter radius was chosen slightly larger
than for the L-shaped beam, a filter radius that uses r0 = 2
times the element size proved to result in solutions without
too many thin structural parts. Again, the elements in the
vicinity of the applied load are not used as design variables
in order to avoid the stress concentration.

Like the L-beam, problem (P1) is solved with the two
different clustering techniques and with different recluster-
ing frequencies. The results are seen in Tables 3 and 4.
The differences between the clustering techniques and
the reclustering frequencies are similar to the differences
obtained for the L-beam. The best design from a stress
point of view is achieved with the stress level technique and
reclustering every iteration.

9.3 Comparison between the three formulations

The three problem formulations (P1), (P2) and (P3) are
now compared in order to show the differences between the
results and the benefit of stress constraints. In the figures
in Table 5 the result for formulation (P1) is reused from
Table 2 and the mass that was found to be optimal is used
as limit value for the mass constraint in formulations (P2)

and (P3). There is an essential difference in the topology
obtained for the L-beam for (P3), in that material is placed
in the corner, causing a geometrical stress singularity that
would require major modifications in order to be removed.
As expected, the maximum stress is lower for formulation
(P1) and the stress is much more evenly distributed in the
structure, however this comes with the price of a lower stiff-
ness compared to formulation (P3). Therefore, formulation
(P2) can be used if the allowable mass is known and both
stresses and stiffness are of importance. We note that it
might be difficult to find a feasible design with formulation
(P2) when such a low allowable mass is used as in Table 5.

Table 3 The MBB-beam for (P1) with the “stress level” clustering technique and different updating frequencies

Reclustering frequency Every iteration 50 iterations No reclustering

Topology

Stress plot

Mass [kg × 10−3] M = 27.66 M = 25.85 M = 24.28
Compliance [N mm] C = 11,535 C = 11,728 C = 15,000
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Table 4 The MBB-beam for (P1) with the “distributed stress” clustering technique and different updating frequencies

Reclustering frequency Every iteration 50 iterations No reclustering

Topology

Stress plot

Mass [kg × 10−3] M = 23.03 M = 25.42 M = 24.76
Compliance [N mm] C = 16,035 C = 15,885 C = 15,105

This is the reason why the compliance becomes higher than
for formulation (P1). Therefore a slightly higher mass is
suggested, see Fig. 7, which shows a more fair usage of
formulation (P2).

For the MBB-beam we again see that when formulation
(P1) is used, a different topology is achieved compared to
the compliance design for formulation (P3). The height of
the beam is decreasing towards the support in the right cor-
ner. This is because a bending moment arises due to the load

F and it is taken as a force couple in the beam. The bend-
ing moment has its maximum value at the symmetry line
where the load is applied and it decreases linearly towards
zero at the support; therefore the height of the beam can be
reduced towards the support in order to reduce the mass.
If formulation (P2) is used, we achieve a design that is
closer to the design for formulation (P3), but with lower
stresses. With the low allowable mass used in this exam-
ple, we converge to a solution where the stress constraint is

Table 5 Comparison of the three formulations

Problem formulation (P1) (P2) (P3)

L-beam

Compliance C = 13,276 C = 14,347 C = 10,960

MBB-beam

Compliance C = 16,035 C = 16,530 C = 13,300
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Fig. 7 Formulation (P2) with about 5 % higher allowable mass than
in Table 5, the compliance is C = 12,336

not feasible. However, as for the L-beam, using a slightly
higher mass will result in a feasible solution with lower
compliance.

As a final remark, when solving problem (P1) we have
tested to start from the converged solution of the L-shaped
beam obtained for problem (P3), in order to see if further
optimization can resolve the problem of high stresses in the
internal corner. The optimization algorithm did not manage
to find a feasible solution using this starting point and the
final design was similar to the final design shown for (P3)

in Table 5.

9.4 Excluded elements

In Section 8 we discussed the possibility of excluding some
selected elements from the optimization problem in order
to avoid stress concentrations when point loads are applied.
The excluded elements still influence the design variable
filter, this helps the neighboring elements to become solid
and as the loads also are distributed in another way, it is
possible to drive the solution towards a desirable design. If
we instead of excluding elements distribute the load over
three nodes, we achieve a design that is more optimal with
respect to the formulated problem, but which from a phys-
ical point of view is quite useless, as a small perturbation
in load direction would cause the structure to collapse.
An example is shown in the left figure in Table 6, where
the figure to the right is from Table 1. Another alterna-
tive to avoid instable and weak structures is to add e.g.
stiffness, buckling or eigenfrequency constraints, or to use
formulation (P2).

10 Conclusions

We have developed and evaluated a method for stress con-
strained topology optimization. The method has been ver-
ified numerically and the results are appealing. We have
shown the theoretical background and the sensitivity anal-
ysis, where we have kept the theoretical part open for 3D

Table 6 Different designs when elements are excluded

Without excluded elements With excluded elements

structures and other element types. The numerical examples
show that at the cost of a more complicated and expen-
sive optimization problem, stress constraints in topology
optimization allow for designs that are closer to a final engi-
neering design. The subsequent design work to achieve a
product ready for manufacturing is thus simplified and can
be done faster. Compared to formulation (P2) and (P3),
there is in formulation (P1) no need to manually test several
values on the allowable mass: the minimum mass subjected
to the given constraints is achieved directly. As formula-
tion (P1) has no stiffness requirements, the resulting design
might have high compliance. Thus, additional stiffness,
buckling or eigenfrequency constraints could be added, or
alternatively, formulation (P2) provides a compliant and
stress constrained structure where the mass is prescribed.

From the discussion in Sections 5 and 6 and from
the results for both the L-beam and the MBB-beam in
Tables 1–4, we find that the stress level technique and
reclustering is the preferable method. This combination
generates simple designs that avoid stress concentrations
efficiently and it only leaves a small number of points with
stresses above the stress limit.

As is seen in Table 5, different topologies are achieved
when stress constraints are used compared to the traditional
stiffness based formulation, (P3). Therefore, we claim that
it is not sufficient to optimize the structure for maximum
stiffness and then continue with local shape optimization
to remove stress concentrations; we propose that stress
constraints should be considered from the very beginning.
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