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Abstract The optimum design of structures under static
loads is well-known in the design world; however, structural
optimization under dynamic loading faces many challenges
in real applications. Issues such as the time-dependent
behavior of constraints, changing the design space in the
time domain, and the cost of sensitivities could be men-
tioned. Therefore, optimum design under dynamic loadings
is a challenging task. In order to perform efficient structural
shape optimization under earthquake loadings, the finite
element-based approximation method for the transforma-
tion of earthquake loading into the equivalent static loads
(ESLs) is proposed. The loads calculated using this method
are more accurate and reliable than those obtained using the
building regulations. The shape optimization of the struc-
tures is then carried out using the obtained ESLs. The
proposed methodologies are transformed into user-friendly
computer code, and their capabilities are demonstrated
using numerical examples.
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1 Introduction

Most of the forces in the real world are dynamic in
nature; in addition, their magnitudes are variable in the
time domain. A dynamic analysis of structures requires the
large amounts of information processing and data inter-
pretation. Especially, when the optimization of structures
under earthquake loading is required, the data processing is
a cumbersome task. Accordingly, static loads could be uti-
lized as a substitute for earthquake loadings, if they produce
the same responses as the dynamic loads at the arbitrary
time. Because of the facilities of the static analyses, the
users of building codes have an interest to apply them in
their design purposes. Application of dynamic coefficients
or factors is a common way for transformation of dynamic
loadings into static ones. However, the dynamic factors
are not based on mathematical logic. They are mostly
determined by engineering judgments and experience. Usu-
ally, these coefficients produce over-estimate loads and
render the designs uneconomical (Humar and Maghoub
2003).

In competitive world, optimum design has great impor-
tance in economic design of structures. Therefore, optimum
design of structures under dynamic loading is active in the
fields of structural design. Because of the time-dependent
behavior of the constraints and sensitivity analysis difficul-
ties, optimization for earthquake loadings is a heavy duty.
Accordingly, researchers have worked for many years in
this field to determine the simple methods for optimum
design of structures under such loads (Kang et al. 2006).
Some researchers have focused on the methods that directly
deal with dynamic loadings (Cassis and Schmit 1976; Feng
et al. 1977; Yamakawa 1981; Mills-Curran and Schmit
1985; Greene and Haftka 1989, 1991; Chahande and Arora
1994).
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Mathematics-based optimization procedures involve sen-
sitivity calculations. Several methods have been proposed
for sensitivity analysis in the structural optimization field
under transient loadings (Yamakawa 1981; Mills-Curran
and Schmit 1985; Greene and Haftka 1989, 1991). Dynamic
response optimization is still difficult due to the large
amounts of computational time required for analyses and
gradient calculations. For that reason, the methods have
been limited to small-scale structures with few degrees
of freedom. For large-scale structures such as buildings
and dams, the optimum design under dynamic loadings
seems to be impossible, because difficulties arise in treat-
ing time-dependent behavior of constraints and objective
functions. When structural optimization problems under
dynamic loads are substituted with static response optimiza-
tions, two aspects should be considered. The first is the
reliable transformation of dynamic loadings into static loads
and the second is appropriate application of the resulting
static loads into the optimization procedure.

Cheng and Truman (1983) studied the optimization of
the structures by modal response spectrum method. Truman
and Petruska (1991) applied optimality criterion techniques
for optimization of two-dimensional structures using time
history analysis of seismic excitations. Although, the above
researches are limited to seismic loads, the transformation
is based on experimental codes, and it lacks generality. Choi
et al. (2005) and Choi and Park (1999a, b) proposed sev-
eral methods to find reliable equivalent static loads from
dynamic loading. Two kinds of ESLs are considered in the
literature: exact and approximate. Although, the location
of the approximated ESLs should be pre-assumed in these
methods, and the ESLs are calculated at some peaks of
important locations (Kang et al. 2001). The pre-assumptions
for load locations create different ESLs. It is difficult to
choose the locations and to calculate the sensitivities of the
ESLs with respect to the design variables.

In order to overcome these difficulties, two methods have
been proposed for dynamic response optimization (Choi
and Park 2002). First, exact ESLs are calculated at the
time intervals during the dynamic loading. Second, an ESL
set is defined as a static load set to generate the same
response field that occurs under the dynamic load at a cer-
tain time. As a result, ESLs are generated for all nodes, and
the pre-assumed locations are not required. In addition, the
ESLs are calculated for all time intervals (Choi and Park
2002; Park et al. 2005; Hong et al. 2010; Kim and Park
2010). However, the proposed methods are complicated
for optimization procedure. For engineering applications,
performing optimization for all time intervals is difficult
and requires a large amount of calculations. In addition,
the dynamic response optimization studies using the above
methods are limited to small cases with few degrees of free-
doms and for very simple loadings such as impacts. In this
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paper, the ESLs are calculated by an approximation method,
and the optimization procedure is very easy to apply.

Recently, structural optimization under earthquake load-
ings has been investigated in the civil engineering field.
To our knowledge, comprehensive studies for shape opti-
mization under direct earthquake excitation have not been
reported in the literature. Accordingly, the present paper,
implements a displacement-based finite element approach
for transformation of earthquake loading into equivalent
static loads. In order to calculate the equivalent static loads
from earthquake loading, a mathematics—based optimiza-
tion technique is used. In addition, shape optimization is
applied to the combination of gravity, hydrostatic and seis-
mic loadings due to its importance in the structural design
criteria. Here, two-dimensional continuous structures are
optimized directly under earthquake loading without any
assumptions or complicated formulations. Accordingly, the
optimum design of large-scale structures under earthquake
loadings can be obtained by the proposed method.

2 Transformation of earthquake loading into ESLs

In spite of static loads, the values and the directions of earth-
quake loadings are time variants. It means that the static load
has a different effect as the dynamic one. Since the static
loads are easy to utilize in the optimization procedure, earth-
quake loadings are transformed into equivalent static loads
(ESLs). The ESLs are static loads that produce the same
displacement field as the earthquake loadings.

The process of ESLs calculation is presented in this sec-
tion. The dynamic equation of motion for structures using
the finite element method is explained as (1)

MU + CU + KU = —MrU, 1)

Where M, C, K are the mass, damping and stiffness matri-
ces, respectively. Vectors of displacements, velocities and
accelerations of a structure at the arbitrary time t, are
defined by U, U, U, respectively. Ug is the ground accelera-
tion, and r is the influence vector that shows the direction of
the applied loading on the structure. In static analysis using
finite element methods, the equilibrium equation is defined
as follows:

KD =P @

Here, D, P show the vectors of static displacements and
static loads, respectively. Equation (3) shows the relation
between earthquake loading and exact equivalent static
loads. According to this equation, the ESLs generate the
same displacement field as that of the earthquake loading at
the arbitrary time t,.

KU (t;) =P (3)
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In 3), U(ta)y = [u,uz,...uq...ux] is the vec-
tor of nodal displacements in dynamic situation, P =
[p 1, P2, - Pjs - - .pN] is a vector of exact equivalent static
loads. This equation shows that the ESLs exist for earth-
quake loading at the arbitrary time. Substituting (3) into (1),
relation between exact ESLs and earthquake loading can be
defined as (4).

P = — (MU + CU + MrUy) )

Equation (4) explains that for obtaining the values of ESLs
(P), the transient analysis of structure is required, and this
analysis also needs extensive calculations and informa-
tion processing. Especially for optimization purposes, the
computations are not efficient. Hence, in order to perform
shape optimization, the approximate ESLs are calculated
and applied on the structure. Equation (1) or (4) are cou-
pled equations, and are not easy to solve for large-scale
systems. Direct solution of these equations is easily possi-
ble using high-speed computers and commercial softwares.
However, in linear seismic analysis and design of structures,
eigenvalues (w) and eigenvectors (®) are available data,
and using these data for efficient solution of (1) is a logical
strategy. Here, the modal approach (U = ®Y) is applied for
transformation of (1) into uncoupled second-order equation
as (5).

. . ®T .

Yn + 2£anYH + wﬁyn = M—an‘Ug (5)
n

Where, ® = [®, ®,,....®,] shows the modal matrix,

<1>§ = [¢11, P12, - . . P1n] is the vector of normalized compo-
nents for n-th mode shape, and Y = [y,y,, ...y, refers
to the vector of modal displacements. nm is the number
of applied modes in the calculation of dynamic responses.
Y Yn» Yoo refer to the modal displacement, velocity and
acceleration at n-th mode, respectively. wy, is the frequency
of n-th mode. Damping ratio and the modal mass of the n-th
mode are defined by &, M,.

Because of the complex and irregular forming of earth-
quake loading, a numerical method should be applied for
solving (5). For this purpose, the implicit 3-Newmark aver-
age acceleration algorithm is utilized (Newmark 1959). At
a desired time (t;), the dynamic displacement of the g-th
degree of freedom is determined as (6).

N
Ug (ta) = Y Pqki(ta) 6)
k=1

Here, N refers to the total number of degrees of freedom for
structure, and ¢k is the normalized component of a mode

shape matrix. Equation (6) shows the modal concept in the
dynamic analysis of structures. The following conversion is
used for efficient solution of this equation.

Ut,) =D
D = &Y
Mw?’Y = P (7

For the normalized values of a mode shape matrix, the k-th
component of Y could be calculated as (8)

N

1
=1k

Dynamic displacement at g-th degree of freedom can be
computed as (9) by substituting (8) into (6).

N N
1
Ug(ta) = dg = Z — Z Gk PikP; q=1,2,3,.N
k=1 Yk \ =1

©))

Equation (9) can be defined as a system of simultaneous
linear equations with N variables for P;. Direct solution of
this equation to produce the same displacement field as that
of earthquake loading is a tiresome task. As a result, this
equation is modified to inequality equation as follows:

N

A
|dg| < Z_z Z‘bqkd)jkl’j (10)

k=1 —k \j=1

In engineering designs, the approximate methods are uti-
lized in calculation of the ESLs. There are two approximate
approaches for ESLs computations: displacement-based and
stress-based techniques. In the standard finite element anal-
ysis, stresses in the elements or Gauss points are obtained
from differentiation of the displacements. For this reason,
the accuracies of stresses are less than those of displace-
ments. Accordingly, the displacement-based method is uti-
lized in the ESLs calculations. In dynamic response of
structures, higher frequencies have fewer effects on their
responses. Thus, only first nm natural frequencies are con-
sidered in practical applications, therefore, (10) can be
approximated to (11)

nm 1 ml
|dg| < ZEZ(d’qk(bjkPj) q=1,2,3,.ml  (11)

k=1 K j=I

Where nm refers to the number of the first applied modes,
and ml indicates to the number of the locations of the ESLs
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in structure. In order to find the numerical values of the
ESLs, the optimization problem should be solved as (12)
(Choi et al. 2005).

Minimize Z Pj2

subject to

nm 1 ml (12)
|dg| < Z — Z (b dikPj)| q=1,2,3,.ml

k=1 Wi j=1

Where, dq is the dynamic displacement of structure at the
critical time for the g-th degree of freedom. Selecting the
objective function as a square sum of P; is the best way
to find the smallest loads. The obtained ESLs in optimiza-
tion formulation create a displacement field equalling the
dynamic loading at the critical times (Grandhi et al. 1986).
The critical times are those in which the selected degrees
of freedom of a structure have a maximum response during
earthquake loading. As the geometry of structure changes
during the optimization iterations, the shape of the structure
modifies. Subsequently, the extreme responses maybe occur
at other critical times. Equation (12) shows the produced
approximated ESLs are usually greater than correspond-
ing dynamic loads at critical times. The obtained static
loads are directly applied to the structures to perform static
optimization.

3 Finite element model

Gravity, hydrostatic, and earthquake loadings have been
included in the finite element model. In civil engineer-
ing, linear design of structures under earthquake loading
is a common methodology. For that reason, linear behav-
ior of the structure is taken into account here. Four- node
quadrilateral solid elements are used for modelling the plane
strain and plane stress type of structures (see Fig. 1). For
numerical calculation of responses, the required vectors and
matrices for the elements are calculated using standard finite
element analysis (Cook et al. 2002).

Y 4y
A 4> Y4 3 (x, y5) s

3(1, +1)

1 (e, yp) 1(-1,-1) 2(,-1)

Physical coordinates Natural coordinates

() (®)

Fig. 1 Physical and natural coordinate systems for solid element
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In order to compute the seismic responses of structures,
Rayleigh damping is used as (13) (Chopra 2001).

C = oK + M (13)

Where, o, [3 are the constants. According to the (13),
these coefficients can be determined from specified damp-
ing ratios &;, &; for the i-th and j-th modes, respectively

(Chopra 2001).
1
1 Zwi a &
2|1 [ﬂ]z[a} 4w

If both modes are assumed to have the same damping ratio
&, which is reasonable based on experimental data, the con-
stants are obtained by solving the two algebraic equations.
Dynamic loading is a single component of earthquake accel-
eration here. The first ten modes of vibration have been
included in the modal response analysis of structures. The
implementation of the above methodologies in the devel-
oped computer program has been verified based-on the Choi
benchmarks (Choi et al. 2005).

4 Shape optimization under seismic excitation

Mathematically, it is impossible to optimize a large-scale
structure under earthquake loadings because the involved
functions are defined over the time domain, and sensitivity
analysis is very difficult. As mentioned earlier, only small-
scale problems have been solved or the dynamic loads have
been transformed into static loads using dynamic factors.

The optimization process under earthquake excitation
can be divided into two parts: the analysis and the design
domains. In the analysis domain, the earthquake loading
is transformed into the equivalent static loads. The trans-
formed ESLs are used in the design domain as the external
forces. Optimum values are found in the design domain.
If the design is changed, the characteristics of the struc-
ture are changed and the transformation process should be
conducted again. Because of this, the entire optimization
process circulates between the two domains. The itera-
tive procedure between the two domains is defined as a
design cycle. The design cycle is performed iteratively until
the design variables converge. The flow diagram of the
shape optimization of structures under earthquake loading
is illustrated in Fig. 2.

Since a structure vibrates under an earthquake loading,
tension and compression can be observed in the same node
(see Fig. 3). The static load makes only tension or compres-
sion at the arbitrary node. It should be mentioned that at
least two static loads are needed to simulate states (B) and
(C), respectively. Consequently, multiple static loads should
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Define design variables (D.Vs)
and initialize them

>

i

Create geometry of the structure
and mesh generation

'

Perform finite element analyses
for static and dynamic loadings

v

Calculate equivalent static loads (ESLs)

at desired D.O.F & at the critical times
v

Calculate sensitivities and perform

static optimization to update D.Vs

urewo(J sisfeuy

Satisfy stopping
criterion?

urewo(] usisa(q

Fig. 2 Shape optimization procedure for earthquake loadings using
ESLs approach

be utilized to represent the effect of an earthquake load-
ing. Then, the critical load should be applied to perform the
static optimization of the structures.

The approximated ESL can reduce considerable calcula-
tions. Structural optimization under dynamic load seems to
be quite difficult. By using this method, dynamic response
optimization can be accomplished for structures. A dynamic
load can be transformed to the multiple static loads. The
multiple loads can be handled as a multiple loading condi-
tion in optimization procedure.

A B

Fig. 3 Schematic deformations of a cantilever beam under vibrating
load

4.1 Static shape optimization

As be mentioned, the earthquake loading is transformed
into the equivalent static loads in the appropriate degrees
of freedom. Thus, the dynamic response optimization prob-
lem is converted to the static optimization formulation. Each
optimization problem can be written in the general form
as (15).

minimize f(X)

subject to:

15
gX) <0, j=12,...nc (15)
Xt <x <xY

Here, f(X) is the objective function, XL, and XY are the
lower and the upper bounds of the vector of the design vari-
ables, and nc is the total number of constraints. Since the
costs of structural responses and sensitivity analyses dur-
ing optimization iterations are expensive, direct solution of
(15) is not easy. Using the finite element method for struc-
tural response, explicit relations between design variables
and behavioral constraints are not available. Hence, the con-
straints and the objective function are approximated to the
form of Taylor series expansion. For instance, for stress vec-
tor (6®) at the Gauss or nodal points, implicit and explicit
relations can be defined as (16).

o¢ = EBD®

- 3o (Xo)
o(X) = 0 (Xo) + Y (xi —X0) — > (16)
im1 0xi
Where E, B, d° are the constitutive matrix, strain-
displacement matrix and vector of nodal displacement,
respectively. X = {Xi, X2, X3, ...Xy} shows the vector of
design variables in the optimization process, and X is the
vector of design variables in which the Taylor series are
expanded around it. Consequently, each cycle of the static
shape optimization problem is as the following explicit
form.

Minimize weight
subject to:

t
(op); < Ollw

[(00)il < 0%y

A7)

(oy);i and (oc); refer to the tension, and compression
stresses, respectively. The allowable values of the tension
and compression stresses are shown by U;llw, Oy Forward
finite difference method is applied for gradient calculations

of stresses.
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4.2 Sensitivities calculations

To calculate the sensitivities using forward finite difference
method, the finite element analysis should be performed for
each design variable. In forward finite difference method,
the derivatives are approximated from the exact response at
the original design point X and at the perturbed design point
X + 60X as (18).

R R(X+ 0xi) — R(X)
0Xj B Oxi

(18)

Here, R(X) refers to the response of the structure, and 0x;
indicates the predetermined step-size of each design vari-
able. Finite difference methods are the easiest to apply, and
they are attractive for many applications. When R(X) is
known, application of (18) involves only one additional cal-
culation of the responses at X + 6x;. For a problem with
n design variables, finite-difference derivative calculations
require repetition of the analysis for n + 1 (using (18))
different design points.

Finite-difference approximations might have accuracy
problems. Two sources of errors should be considered
whenever these approximations are used. First, the trun-
cation error, which is a result of neglecting terms in the
Taylor series expansion of the perturbed response. The sec-
ond is the condition error, which is the difference between
the numerical evaluation of the function and its exact value.
These are two conflicting considerations. That is, a small
step size 0x; will reduce the truncation error, but may
increase the condition error. To eliminate round-off errors
due to approximations it is recommended to increase the
step-size. Here, the step size is assigned to the dxj =
0.005x;.

5 Numerical studies

Shape optimization of two-dimensional structures under
earthquake loading is studied here. The first case is a plane
stress cantilever beam, and the second one is a plane strain
concrete gravity dam. Vertical component of Kobe earth-
quake is used for the beam excitation, and horizontal com-
ponent of El-Centro earthquake is applied for the dam exci-
tation. Design variables in both cases are X = {h, hy,, hp}.
Where h, hy,, hy are the widths of the structures at the
reference points (two ends and middle), respectively.

5.1 Case 1
This case study is a weight minimization of a cantilever

beam. According to Fig. 4, during the shape optimization
process, length and thickness of the beam are fixed to 6.0 m
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h=1.5m

t

bt
b=0.3m

X L=6m —— =

Fig. 4 The geometry and finite element mesh of the cantilever beam
for initial design

and 0.30 m, respectively. The material properties for the
beam are also presented in Table 1.

Here, f.. is the uniaxial compressive strength of concrete
at the age of 28 days, E. is the Young’s modulus of concrete,
v weight specific of concrete, and v is Poisson ratio. The
beam widths (h¢, hy, hy) should not be less than 30 cm any-
where. Initial values of design variables are set to 1.50 m.
The beam’s support is excited in y direction by TAZ(090
component of Kobe earthquake loading (Fig. 5). Damping
ratios for all modes have been assigned to 5 percent.

Free end vertical displacements of the beam are calcu-
lated using dynamic analysis, and their values are illustrated
in Fig. 6. According to this figure, the critical time at initial
design is at 5.32 (sec). At this time, maximum negative dis-
placement of the free end of the beam is -0.68 mm. At the
next critical time (6.15 (sec)), maximum positive displace-
ment of the beam is 0.71 mm. In the optimization procedure,
these critical times produce the multiple ESLs. As a result,
for the first cycle of the optimization process, the critical
time is 6.15 (sec).

The following optimization problem is utilized to com-
pute the ESLs of the beam under Kobe earthquake.

Finding P;

to minimize Z sz

subject to ,j=1,2,...6 (19)
nm 1 ml

il < >0 — > (dpxbikPs)
k=1 Yk j=1

Here i is the index for the numbers of ESLs in structure.
The locations of d; are shown in Fig. 7. In order to show
the details of calculations, linear constraints of (19), are

Table 1 Material properties and allowable stresses of the cantilever
beam

fec Ec Yc ve Tl Oliw
(MPa) (GPa) (KN/m3) (MPa) (MPa)
35.00 21.00 23.50 0.30 2.50 0.20f¢
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Fig.5 TAZ090 component of 0.80
Kobe earthquake

0.60
0.40
0.20

I

(a/g)

presented as the compact form |d;| < |aiij‘. In (20), the
values of constant coefficients a;j and |d;| are also shown.

ajj = 1079[39.7,29.8,20.7, 12.6, 6.18, 1.84] ,
d; = 0.00068

aj = 1079[29.8,23.3,16.5, 10.3, 5.12, 1.56] ,
d> = 0.00054

azj = 1072(20.7, 16.5, 12.4,7.87, 4.05, 1.28] ,
d; = 0.00039

g = 1079[12.6, 10.3,7.87, 5.64,2.98,0.99] ,
ds4 = 0.00026

asj = 1079[6.18,5.12, 4.05, 2.98, 2.06, 0.71]
ds = 0.00014

agj = 1079[1.84, 1.56, 1.28,0.99, 0.71, 0.58] ,
de¢ = 0.00004 (20)

Fig. 6 Free end vertical s
displacements of the beam
under Kobe earthquake for
initial design

Displacement {(mm)

T T el | N 1]1]

-0.20
-0.40
-0.60
-0.80
10 15 20 25 30 35 40
Time (S)

As seen in Fig. 7, the values of ESLs (Pj) are calcu-
lated using the SQP algorithm as a solution algorithm of
(19). In addition, nodal displacements of the beam under
original loading and ESLs, and errors are summarized in
Table 2. Node numbers in this table indicate to the loca-
tions of the ESLs. e.g node number 1 refers to the node
under P;.

Table 2 shows that the displacements under ESLs are
greater than those in the dynamic status. The last column of
the table shows the errors of the selected degrees of free-
dom. The average error for this case is 0.15. The values
of error in compare with Choi et al. (2005) are relatively
reasonable. As the number of nodes where the ESLs are
applied increases, the errors decrease. According to (17),
to evaluate the values of constraints in the shape optimiza-
tion procedure, stress analysis is required. Comparison of
principal stresses for selected nodes as seen in Fig. 8, is pre-
sented in Table 3. Whereas in the ESL loading for nodes

0.80
0.60
0.40
0.20
rstedminnainit— 0.00
-0.20

- -0.40
-0.60

-0.80
10 15 20 25 30 35 40

Time (S)
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8.79
ars 612 ¥
276 341

Yk yB  yR yB YR yh

hy b he

Fig. 7 ESLs locations and their values (kN) under Kobe earthquake
for initial design

1 through 7 the stress concentrations are significant, nodes
8 through 14 are selected for comparison of stresses. As
seen from the table, the value of error for node 8 is not
acceptable becuase the characteristics of the earthquake
loadings and the ESLs are not same. Earthquake loadings
are imposed at the supports of structures, and the stiffness,
damping, and mass components of structures have an effect
on produced displacements. However, in the ELSs, the
displacements are affected only by the stiffness part of the
system, and deformations are usually made under concen-
trated loads. Therefore, to our knowledge, the stresses are
not comparable in these cases.

According to (12), the values of displacements under
ESLs are usually greater than those from original dynamic
loading. In spite of displacements, for stresses this criterion
is not satisfied. As seen from Table 3, at some nodes such
as 9, 12, 13 and 14, values of principal stresses under ESLs
are less than those under earthquake loading.

Applying the calculated ESLs in the desired nodes, as
shown in Fig. 7, shape optimization of the beam under
Kobe earthquake is transformed into a static optimization
problem. For initial design variables, the shape optimization
formulation is as (21).

Table 2 Vertical displacements for the ESLs and the earthquake
loading

Node ESLs Dynamic Error
no. displacements displacements dd’('jffyd‘“
(mm) (mm)

1 —0.836 —0.684 0.22

2 —0.647 —0.536 0.21

3 —0.463 —0.394 0.18

4 —0.293 —0.256 0.14

5 —0.149 —0.135 0.10

6 —0.047 —0.044 0.07
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Finding h, hy, hp
to minimize W = 32.25h, + 70.50h;, + 32.25hy,

subject to

0.445h; 4+ 0.057hy, — 2.777hy < —3.624 1)
0.445h; 4+ 0.481hy, — 3.17%h, < 0.9137

0.131h. — 0.764hy, — 0.13%h;, < 0.4684

he, hy, hy > 0.30

For finding the new values of design variables, a numerical
optimization algorithm is used to solve (21) (Arora 2004).
Accordingly, the shape of the beam is modified as the design
variables are changed. The optimization process converged
to the optimum design after three cycles, as shown in Fig. 9.
In initial design, weight of the beam is 211.50 kN and in
final iteration, it reaches to 79.90 kN.

5.2 Case 2

This case is a weight minimization of a concrete gravity
dam. The shape of the dam, as shown in Fig. 10, is similar
to that of the Koyna dam. Free-bord of the Koyna dam, the
part higher than EL66.5 m, is not modeled here. The upper
face of the dam is subjected to hydrostatic pressure. The
water level is at EL66.5 m. Moreover, the foundation of the
dam is rigid and has not been included in the finite element
model. The mesh dimensions in the finite element analysis
have been selected based on sensitivity analysis studies. In
addition to the earthquake loading, the weight of the dam
and hydrostatic pressure loading are included in the finite
element model. The dam is subjected to the horizontal com-
ponent of El-Centro earthquake as seen in Fig. 11. In this
case, damping ratios for all modes have been designated to
4.5 percent.

Initial values of design variables are set to 16.30, 43.25
and 70.20 m, respectively. Values of design variables (hc,
hp,, hy) should not be less than 15 m anywhere. In Table 4,
material properties for this case are presented, in which vy,
is weight specific of water.

In Fig. 12, dynamic displacements of the crest of the
dam under El-Centro earthquake are illustrated. Two crit-
ical times should be considered here. The first time is at
5.20 (sec) and the maximum positive displacement of the
crest is 5.70 mm. The second one is at 6.12 (sec) and the
maximum negative displacement of crest is —8.80 mm. For
that reason, the calculation of the ESLs should be carried
out at 6.12 (sec).

Values of the ESLs, displacements of the selected nodes
under earthquake loading and ESLs, and also errors are
presented in Table 5.
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Fig. 8 Nodal numbers for 77
comparing the principal stresses 6 e ¥ 3 5 :
for the cantilever beam z
14 12 1 10 9 8
21 19 18 17 16 15
Equation (22) is solved using SQP algorithm for obtain-  subject to
ing of the ESLs from El-Centro earthquake for selected
0.01190h, — 0.02860h,, — 0.03000hy,
degrees of freedom.
< —2.753 at h.
Finding P;
0.02377h, — 0.13261hy, — 0.03969hy,
to minimize Z Pj2 (23)

subject to i,j=1,2,...15 (22)
nm 1 ml

di <Y =" (dpkdicPy)
k=1 Pk =1

It is seen from Table 5 that the displacements under ESLs
are greater than the displacements in dynamic case. The last
column of table indicates the errors of the selected nodes.
According to this table, the average error for the ESLs is
equal to 0.15. In compare with first case study, values of the
errors are approximately acceptable.

Static shape optimization of the dam is performed using
the obtained ESLs in the identified nodes. For initial design
variables, first cycle of shape optimization formulation
is as (23).

< —=2.0764 at hp
— 0.00184h; 4 0.02398h,, — 0.03883hy
< —0.1589 at hp

he, hy, hy > 15.0
Solving (23), modifies the geometry of the dam and new
design variables change to 15.0, 37.0, 62.3 m, respec-

tively. For new design variables, second cycle of shape
optimization formulation in the explicit form is as (24).

Finding h_, hy, hyp
to minimize

W = 390.81h; + 781.38hy, + 390.81hy — 9.17

) 24)
Finding h,., hy, hy subject to
{0 minimize 0.01343h — 0.02507hy, — 0.03407h,,
W = 390.81h. 4 781.38hy, + 390.81hy, 4 20.68 < =2.08 at he
Table 3 Principal stresses for el dyn . dyn
ESLs, earthquake loading and Node oy s oy Error 03S 03 Error
.. . dyn7 Esl dY“_ Esl
errors for original design 1. (Mpa) (Mpa) o Udyrc‘rl (Mpa) (Mpa) 03 cdyf3
1 3
8 —10.42 4.00 3.61 —75.97 —4.00 17.99
9 14.95 16.00 0.07 —42.19 —16.00 1.64
10 34.63 31.98 0.08 —53.22 —31.98 0.66
11 48.19 47.95 0.01 —62.73 —47.95 0.31
12 58.97 63.90 0.08 —69.55 —63.90 0.09
13 67.07 79.84 0.16 —75.07 —79.84 0.06
14 73.12 91.79 0.20 —74.84 —91.79 0.25
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Fig.9 Final geometry of the beam and ESLs values (kN) for optimum
design
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Fig. 10 The finite element mesh of the dam and the locations of the
ESLs

: 0.40
0.30
| 0.20
| 0.10
2 0.00
m
; -0.10
-0.20
| -0.30
-0.40
0 10 20 30 40 S0 60 70 80

Time (5)

Fig. 11 Horizontal component of El-Centro earthquake
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Table 4 Material properties and allowable stresses for the concrete
gravity dam

fCC
(Mpa)

Ec
(Gpa)

(kN/m3)

Yw

(kN/m3)

Ve ot

allw

(Mpa)

Ol
(Mpa)

25.00

20.00

23.50

10.00

020  2.00

0.22f¢
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Fig. 12 Horizontal displacements of top of the dam under El-Centro
earthquake for initial design

Table 5 Values of ESLs, displacements uder ESLs and dynamic
loading and errors in the initial design for the concrete gravity dam

Node ESLs ESLs Dynamic Error
no. Py displacements displacements ddﬁffyds'
(kN) (mm) (mm)

1 —2860 —10.401 —8.757 0.19
2 —2720 —-9.125 —8.033 0.14
3 —2640 —8.212 —7.285 0.13
4 —2590 —7.332 —6.522 0.12
5 —2410 —6.465 —5.763 0.12
6 —2220 —5.631 —5.024 0.12
7 —1976 —4.837 —4.316 0.12
8 —1798 —4.099 —3.650 0.12
9 —1599 —3.414 —3.029 0.13
10 —1369 —2.782 —2.459 0.13
11 —1194 —2.210 —1.941 0.14
12 —1013 —1.693 —1.475 0.15
13 914 —1.234 —1.060 0.17
14 —730 —0.816 —0.693 0.18
15 =511 —0.430 —0.362 0.19
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Fig. 13 Shape variations of the dam during optimization iterations

0.01627h, — 0.13763hy, — 0.04137hy

<-1.78 at hy
— 0.0023h + 0.0224h,, — 0.04086hy,
< —0.220 at hy

he, hy, hy > 15.0

Table 6 Values of ESLs during optimization iterations

Node ESL (kN) ESL (kN) ESL (kN)
no. iteration. 1 iteration.2 iteration.3
1 —2860 —2104 —2010
2 —2720 —2011 —1900
3 —2640 —1920 —1820
4 —2590 —1831 —1705
5 —2410 —1750 —1600
6 —2220 —1653 —1523
7 —1976 —1570 —1350
8 —1798 —1504 —1110
9 —1599 —1421 —1001
10 —1369 —1350 —-922
11 —1194 —1274 —780
12 —1013 —1190 —660
13 -914 —1103 —500
14 —730 -910 —421
15 =511 —782 —253

After three iterations, values of design variables are con-
verged to 15.0 m, 28.5 m, 46.0 m. These few iterations show
that the proposed method is efficient. Weight of the dam
in initial design is 67604.80 kN and in optimum design, it
reduces to 41726.60 kN. Figure 13, illustrates the shape of
the dam in the optimization iterations, and Table 6 shows
the values of ESLs during the optimization process.

The developed computer program is verified using the
benchmarks in the literature for calculated ESLs. However,
to the best of our knowledge, there are not similar bench-
marks in the literature to compare the obtained optimum
shapes.

6 Conclusion

This study employs an organized methodology for find-
ing the optimum shape of the structures under earthquake
loading. To perform dynamic response optimization as a
static optimization problem, earthquake loading is trans-
formed into the equivalent static loads (ESLs). The pro-
posed method is efficient and has practical advantages.
The numerical examples show that the optimum shapes
are obtained in a few iterations. Furthermore, it could be
applied easily with small modifications and with automated
mesh generations to three-dimensional structures. All the
presented methods in this paper were programmed and
tested successfully. Based on the present study, following
conclusions have been drawn:

1. Inorder to obtain accurate results, the number of equiv-
alent static loads on the structures should be increased.
In the proposed approach, the displacement field of
the ESLs is greater than that of the dynamic load.
Consequently, the design under the ESLs might be
over-designed; however, because of different natures
of static and dynamic loadings, the responses are not
comparable.

2. The proposed approximate method is useful in its engi-
neering designs. In this method, the determination of
the number of nodes in which the ESLs are imposed, is
important since it is the index of approximation.

3. In the finite element analysis, the stresses are com-
puted from the differentiations of the displacement
field. Therefore, the accuracies of stresses are less than
the accuracies of the displacements. Accordingly, the
displacement-based finite element analysis has been
used in the calculation of ESLs.

4. 1In order to evaluate the constraints in the shape opti-
mization process, stress analysis is needed. Neverthe-
less, in spite of displacements, the stresses in the ESLs
and original dynamic loading cases are not compa-
rable, because the natures of ESLs and earthquake
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loadings are not same. Accordingly, calculation of ESLs
using stress-based finite element approach could be an
alternative method. This method could be used as a
new research methodology for the optimum design of
structures.

5. In the previous researches, shape optimization has been
done at each time intervals. In comparison with the past
researches, using obtained ESLs by this method to per-
form the optimum design in the critical times is more
efficient and cost effective.

6. The proposed method needs transient dynamic analysis
of the structure in calculation of the ESLs in each opti-
mization cycle. However, the optimum design of struc-
ture is independent of performing the dynamic analysis.
Similarly, the building codes and static optimizations do
not require performing a dynamic analysis.

7. Shape optimizations are achieved with only a few itera-
tions, and the computations are efficient in comparison
with past researches.

Open Access This article is distributed under the terms of the Cre-
ative Commons Attribution License which permits any use, distribu-
tion, and reproduction in any medium, provided the original author(s)
and the source are credited.
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