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Abstract In this paper, an efficient classification method-
ology is developed for reliability analysis while maintaining
an accuracy level similar to or better than existing response
surface methods. The sampling-based reliability analysis
requires only the classification information—a success or
a failure—but the response surface methods provide func-
tion values on the domain as their output, which requires
more computational effort. The problem is even more chal-
lenging when dealing with high-dimensional problems due
to the curse of dimensionality. In the newly proposed
virtual support vector machine (VSVM), virtual samples
are generated near the limit state function by using an
approximation method. The function values are used for
approximations of virtual samples to improve accuracy of
the resulting VSVM decision function. By introducing the
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virtual samples, VSVM can overcome the deficiency in
existing classification methods where only classification
values are used as their input. The universal Kriging method
is used to obtain virtual samples to improve the accuracy
of the decision function for highly nonlinear problems. A
sequential sampling strategy that chooses new samples near
the limit state function is integrated with VSVM to improve
the accuracy. Examples show the proposed adaptive VSVM
yields better efficiency in terms of modeling and response
evaluation time and the number of required samples while
maintaining similar level or better accuracy, especially for
high-dimensional problems.

Keywords Surrogate model · Support vector machine
(SVM) · Sequential sampling · Virtual samples ·
Virtual support vector machine (VSVM) ·
High-dimensional problem

1 Introduction

Accurate reliability analysis is of great importance for
solving engineering problems. Inaccurate reliability analy-
sis result can lead to an unreliable or overly conservative
design. Numerous methods that are based on the most prob-
able point (MPP) are available in literature for carrying
out reliability analyses of many engineering problems, for
which the sensitivity information can be obtained (Haldar
and Mahadevan 2000; Tu et al. 1999; Youn et al. 2005).
On the other hand, the sensitivity is often not available
or difficult to obtain accurately in complex multi-physics
or multidisciplinary design problems. Without sensitivity,
an alternative to the MPP-based reliability analysis method
is to directly perform the probability integration numeri-
cally by carrying out computer simulations at the Monte
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Carlo simulation (MCS) sampling points (Rubinstein 1981;
Ching 2011). However, this method requires a large number
of response function evaluations and can be impractical in
terms of computational cost.

Therefore, surrogate-based methods are used to reduce
the computational cost without requiring sensitivity analy-
sis. The main advantage of the surrogate-based method is
that a limited number of function evaluations can be used to
construct surrogate models. Many different surrogates, such
as polynomial response surface (PRS), radial basis function
(RBF), multivariate adaptive regression spline (MARS),
moving least squares (MLS) and Kriging, have been devel-
oped and applied to engineering problems (Cressie 1991;
Barton 1994; Jin et al. 2001; Simpson et al. 2001; Wang
and Shan 2007; Forrester et al. 2008; Forrester and Keane
2009; Zhao et al. 2011). These surrogates provide approxi-
mations of otherwise expensive computer simulations. Once
an accurate surrogate model is generated, MCS can be car-
ried out using the surrogate model to estimate the reliability.
This method is called the sampling-based reliability analy-
sis or sampling-based reliability-based design optimization
(RBDO). In the sampling-based RBDO, probabilistic con-
straints are used. Thus, not only the probability of failure
but also its sensitivity needs to be accurately estimated.

In Zhao et al. (2011), the dynamic Kriging method
was developed and applied successfully for sampling-based
methods. However, when the response values are evaluated,
all samples within the design space are used to calculate the
trend and random component of the Kriging method. There-
fore, response evaluations using the Kriging method could
be computationally expensive since the sampling-based reli-
ability analysis and RBDO need response evaluations at a
very large number of MCS points to accurately estimate
the probability of failure and its sensitivity. Furthermore,
surrogate-based approaches usually obtain response func-
tion values over the entire domain. Therefore, the surrogate-
based method requires a large number of samples even at
the unnecessary regions to reach the target accuracy (i.e.,
mean squared error or R2), and thus they become inefficient
(Hurtado and Alvarez 2003). The computational burden
becomes heavier in high-dimensional space due to the curse
of dimensionality (Vapnik 1998; Cherkassky and Mulier
1998; Burges 1998). Therefore, a classification method
with simpler formulation needs to be investigated while
achieving similar accuracy. There exist several sequen-
tial sampling methods that select new samples near the
constraint boundary using Gaussian process models (Bichon
et al. 2008; Bichon et al. 2011; Ranjan et al. 2008; Lee and
Jung 2008; Bect et al. 2012; Viana et al. 2012).

The support vector machine (SVM) is a classifica-
tion method, so it constructs only the decision (i.e., limit
state) function, which maximizes the distance to the exist-
ing samples (Vapnik 1998, 2000; Cherkassky and Mulier

1998; Scholkopf 1999; Kecman 2001; Scholkopf and Smola
2002). In SVM, only support vectors are used instead of
all samples for evaluations of responses, with the most
calculations performed through the kernel function. Thus,
the response evaluation process is very efficient for MCS,
compared to the Kriging method. Another advantage of
the classification method is that they can deal with multi-
ple constraints at once (Basudhar et al. 2012). The SVM
with a sequential sampling strategy, which is called the
explicit design space decomposition (EDSD), is developed
and applied to discontinuous and disjoint problems success-
fully (Basudhar et al. 2012; Basudhar and Missoum 2008,
2010). Even though EDSD can be also used for contin-
uous and differentiable problems, it often converges very
slowly, and thus requires a large number of samples. One of
the main reasons for the inefficiency of EDSD for continu-
ous problems is that it only uses the classification response
function values rather than the function values to construct
the decision function. Therefore, the accuracy needs to be
improved for continuous problems.

Accurate probability of failure can be obtained from
accurate limit state function, and accurate sensitivity can
be calculated by using the score function (Lee et al. 2011).
It is interesting to note that the score function depends
on the derivatives of the input joint and marginal distribu-
tions. Therefore, the sampling-based method requires only
an accurate decision function to evaluate the probability of
failure and its sensitivity. That is, only the decision between
a success and a failure is used instead of the function value.
Thus, even though SVM, being a classification method,
cannot be directly used for deterministic design optimiza-
tion due to lack of design sensitivity, it is applicable for
sampling-based RBDO.

In this paper, a virtual SVM (VSVM) is proposed to
improve the accuracy of SVM, while maintaining the desir-
able features of SVM, by using the available response
function values. Unlike EDSD, VSVM is developed pri-
marily for continuous problems. The VSVM constructs the
decision function rather than the surrogate model over the
given domain. The proposed adaptive sampling method pro-
vides new samples near the limit state, which makes the
method efficient. The proposed method provides an explicit
form of the limit state function, so it is efficient in obtain-
ing response values at MCS points. Basic concepts and
important features of SVM are presented in Section 2. In
Section 3, the virtual sample generation method and the
adaptive sampling strategy are explained. Stopping criteria
are defined for the updating process as the target accuracy
is achieved. In Section 4, EDSD and the dynamic Kriging
methods are compared with the proposed VSVM to demon-
strate the efficiency of VSVM while maintaining the
accuracy. An error measure is also defined to compare the
accuracy of the result. The conclusion follows in Section 5.
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2 Support vector machine

An SVM is a machine-learning concept used for the classi-
fication of data in pattern recognition (Vapnik 1998, 2000;
Cherkassky and Mulier 1998; Scholkopf 1999; Kecman
2001; Scholkopf and Smola 2002; Basudhar et al. 2012;
Basudhar and Missoum 2008, 2010). It has the ability to
explicitly construct a multidimensional and complex deci-
sion function that optimally separates multiple classes of
data. Even though SVM is able to deal with multi-class
cases, only two classes—success or failure—are used in
reliability analyses, and thus only a two-class classification
problem will be considered in this paper. Good features for
the high-dimensional problem make SVM an appropriate
method for the formulation of the explicit limit state func-
tion. In this section, a brief overview of SVM is presented,
including basic ideas and some important features.

2.1 Linear SVM

For the given multidimensional problem, N samples are
distributed within the given window. Each sample xi is
associated with one of two classes characterized by values
yi = ±1, which represents a success (−1) or a failure
(+1). The SVM algorithm constructs the decision function
that optimally separates two classes of samples. The corre-
sponding linear explicit boundary function is expressed as

s (x) = b +
N∑

i=1

αiyi (xi · x) (1)

where b is the bias, αi are Lagrange multipliers obtained
from the quadratic programming optimization problem used
to construct SVM, and x is an arbitrary point to be predicted.
The classification of any arbitrary point x is given by the
sign of s(x) in (1). The optimization process is used to solve
for the optimal SVM decision function with a maximal mar-
gin. Figure 1 shows a linear SVM result, and the notion
of margin can be easily noticed. In this case, the margin is
the shortest distance between two parallel hyperplanes given
by s(x) = ±1 in the design space. These hyperplanes are
called support hyperplanes and pass through one or several
samples, which are called support vectors. The SVM opti-
mization process also does not allow any samples to exist
between two hyperplanes.

The Lagrange multipliers associated with the support
vectors are positive while the other Lagrange multipliers are
zero. It means that the explicit SVM decision function uses
only support vectors in its formulation, and thus an SVM
constructed only with support vectors is identical to the one
obtained with all samples. Typically, the number of support
vectors is much smaller than the number of samples N .

Fig. 1 Linear decision function for two-dimensional problem

2.2 Nonlinear SVM and kernel functions

To construct nonlinear decision functions, kernels are intro-
duced in SVM. In the formulation of the SVM decision
function, it is assumed that there exists a higher-dimensional
space where the transformed data can be linearly sepa-
rated. The transformation from the original design space to
the higher-dimensional space is based on the kernel func-
tion K(xi ,x) in SVM. The nonlinear decision function is
expressed as

s (x) = b +
N∑

i=1

αiyiK (xi , x) (2)

Instead of the linear function (xi ·x) in (1), the nonlinear
K(xi ,x) is used in the form of nonlinear decision func-
tion. Therefore, s(x) is linear with respect to K(xi ,x) and
nonlinear with respect to x.

The kernel K(xi ,x) in the SVM equation can have differ-
ent forms, such as polynomial, Gaussian, Sigmoid, etc. The
Gaussian kernel is known to have fewer numerical difficul-
ties than other kernels, so it is used in this paper (Hsu et al.
2004). The form of the Gaussian kernel is given as (Vapnik
1998, 2000; Cherkassky and Mulier 1998; Scholkopf 1999;
Kecman 2001; Scholkopf and Smola 2002):

K (x, xi) = exp

(
−‖x − xi‖2

2σ 2

)
(3)

where σ is the parameter of the Gaussian kernel. Figure 2
is an example of nonlinear SVM decision function with
the Gaussian kernel for a two-dimensional problem. Even
though the boundary is always linear in the transformed
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Fig. 2 Nonlinear decision function for two-dimensional problem

higher-dimensional space, the boundary is nonlinear in
the original design space. In this paper, SVM and Kernel
Methods Matlab toolbox (Canu et al. 2005) is used for the
formulation of SVM.

The SVM can deal with high-dimensional problems and
can separate two classes of data with the maximal margin.
The SVM decision function has an explicit form, and thus
predictions based on SVM are faster for MCS than those
based on implicit surrogate methods such as the Kriging
method. The prediction speed is important for sampling-
based RBDO, since a very large number of MCS points are
required in evaluating the probability of failure.

3 Virtual support vector machine

The EDSD, which is based on the conventional SVM, yields
good performance for discontinuous limit state functions.
However, there exists a limitation for continuous problems.
Since EDSD does not use function values, EDSD converges
very slowly, and consequently requires many samples in
dealing with continuous problems. Therefore, the accuracy
needs to be improved for continuous problems, which can
be achieved by inserting virtual samples generated based on
available function values.

3.1 Virtual sample generation and VSVM

For the construction of SVM, initial samples, which include
both success and failure samples, should be given. Initial
samples are generated by Latinized Centroidal Voronoi Tes-
sellation (LCVT), since it shows very good uniformity and
randomness (Basudhar et al. 2012; Saka et al. 2007).

Since SVM deals only with classification of responses,
i.e., successes (−1) or failures (+1), the SVM decision
function is usually located in the middle of opposite signed
samples regardless of the function values of the given sam-
ples as shown in Fig. 3a. However, in reality, samples
with small absolute function values are more likely to be
located closer to the limit state function than those with
large absolute function values.

In this paper, two types of samples are used. The first type
is real samples, which include initial samples and sequential
samples. Sequential samples are inserted when the VSVM
model does not meet the accuracy requirement. These real
samples require function evaluations. The second type is
virtual samples, which are generated using an approxima-
tion method to improve the accuracy of the VSVM decision
function. Such virtual samples do not require real function
evaluations and only have virtual signs. The basic idea of

 (b) VSVM Decision Function with Virtual Samples

Class +1 Class −1

VSVM decision function True limit state

Virtual samples

-10+50

(a) SVM Decision Function

Class +1 Class −1

SVM decision function True limit state

-10+50

Error

Fig. 3 SVM decision function and VSVM decision function with
virtual samples—solid lines
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VSVM is to increase the probability of locating the decision
function close to the limit state function, by inserting two
opposite signed virtual samples between the given two sam-
ples. These virtual samples play two major roles in VSVM.
One is to make the predictions more accurate, and the other
is to locate new sequential samples near the limit state func-
tion, which will be presented in Section 3.2. In Fig. 3b,
the VSVM decision function is shifted towards the sample
with a small absolute function value by inserting two virtual
samples. The virtual samples with opposite signs should be
near the limit state function and be equally distanced from
the limit state function to obtain the best VSVM decision
function.

3.1.1 Informative sample set and valid distance

Virtual samples may be generated from the approximation
method using any pair of real samples. However, it is desir-
able to use two opposite class samples. If both samples have
the same sign, then finding the decision function requires
an extrapolation, which is often inaccurate and the deci-
sion function is not located between two given samples. If
two existing samples have opposite signs (+1 and −1), then
the decision function should exist between the two samples
for the continuous problem. Even though any pair of dif-
ferent class samples can be used in theory, if the distance
between two given samples is large or both samples are far
from the limit state function, then accurate positioning of
the zero point between two samples cannot be expected.
Thus, at least one of two points should be close to the limit
state function, and both should be close to each other to
make approximations more accurate and useful. Therefore,
an informative sample set, from which virtual samples are
generated, is defined first. Original SVM is constructed first
based on existing samples to identify support vectors. Sup-
port vectors are located near the limit state function, and
thus they are included in the informative set. It is highly
probable that some samples with small absolute values are
also located close to the limit state function, even though
they may not be support vectors. Therefore, all samples that
have absolute response values that are smaller than the max-
imum absolute responses of the support vectors are chosen
as members of the informative set. The informative sample
set can be expressed as

fmax = max
i

(∣∣f
(
x∗
i

)∣∣) , i = 1, · · · , NSV
{

xj

∣∣ ∣∣f
(
xj

)∣∣ ≤ fmax, j = 1, · · · , N
} (4)

where x∗
i is the ith support vector, Nsv is the number of

support vectors, xj is the j th sample, N is the number of
samples, and f is the function value at the given sample.

From the previously chosen informative samples, the
closest opposite signed samples are paired to generate vir-
tual samples between each pair. However, there exist some
pairs that can generate important virtual samples, even
though they do not belong to the closest pairs. To solve
this problem, a valid distance concept is introduced. Pairs
can generate virtual samples if the distance between them
is shorter than the valid distance. If the valid distance is too
large, then there is a risk of including many unnecessary
virtual samples and producing poor approximations. If the
valid distance is too short, it may not include information
that is more useful. To introduce more informative virtual
samples while maintaining virtual samples from the clos-
est pairs, the largest distance among all distances between
the closest pairs is defined as the valid distance. Figure 4
shows the influence of the valid distance concept in a two-
dimensional example. By inserting three additional pairs of
virtual samples, the accuracy is improved in the area near
the new virtual sample pairs.

(a) Without the Valid Distance Concept (i.e., Closest Samples Only)

(b) With the Valid Distance Concept

Fig. 4 VSVM decision functions without/with valid distance concept
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3.1.2 Approximations for zero positions

Two additional steps are needed for the generation of the vir-
tual samples after the informative sample set and the valid
distance are defined. Firstly, since the true limit state func-
tion is not known in general, a zero position is approximated
from two different class samples by using approximation
methods such as linear approximation, Kriging, MLS, etc. A
zero position means a point where the approximation value
is zero among all the points on the line between two oppo-
site signed samples. A linear approximation simply assumes
that the function value between two given samples is linear
and finds the zero point. The linear approximation is very
efficient and easy to apply but can be inaccurate for highly
nonlinear functions.

The Kriging or MLS methods are accurate near existing
samples, so they are appropriate to obtain better approxi-
mations, especially for highly nonlinear functions. In this
paper, the universal Kriging method is used by using all
existing samples to approximate zero points between two
opposite signed samples, and the SURROGATES toolbox
(Viana 2010) is used for the construction of the universal
Kriging model. The optimization problem for finding the
zero position between two samples is expressed as

min
x

∣∣f̂ (x)
∣∣

s.t. x = xi · t + xj · (1 − t)

0 ≤ t ≤ 1

(5)

where xi and xj are original samples with opposite signs,
x is a point on the straight-line connecting xi and xj , and
f̂ (x) is an approximated value at x obtained by the universal
Kriging method.

It requires a fair amount of computational time to solve
(5) accurately. In particular, Kriging approximations take a
large amount of time if approximations are calculated one
by one due to its implicit formulation. Therefore, the line
connecting two opposite signed samples xi and xj is divided
into multiple elements, their Kriging approximations are
evaluated all at once, and the position with the minimum
absolute function value is chosen. The size of one element
needs to be smaller than the virtual margin, which is the
distance between a pair of virtual samples, to generate an
accurate surrogate. Thus, the number of elements depends
on the virtual margin. Then vector calculation can be carried
out all at once rather than one-by-one calculation, which is
more efficient in Matlab. In this way, the elapsed time for
generating virtual samples is reduced from 39.94 s to 2.01 s
per iteration for a twelve-dimensional problem.

In the Kriging model, the correlation function R(θ , xi ,
xj ) should be estimated from the sample data, where xi

and xj are given samples and θ is the process parameter.
The influence of the parameter θ on the performance is

significant, and thus the determination of the parameter is
important. To find the optimum θ , different methods such
as the Hookes&Jeeves (H-J), Lavenberg-Marquardt (L-M),
genetic algorithm (GA), and Pattern Search (PS) methods
(Viana 2010; Martin 2009; Lewis and Torczon 1999) have
been applied. Among them, the PS method is most accurate,
but it requires more computational effort than other meth-
ods. However, with VSVM, a smaller number of iterations
can be used to achieve a similar level of accuracy with more
accurate Kriging models by locating new samples correctly.
Therefore, time and resources can be saved by using the
PS method.

To make the estimation process more efficient, the his-
tory of parameter changes was investigated to find that the
new optimum θ is close to the previous optimum θ in gen-
eral. If the current VSVM model is similar to the previous
VSVM, then both optimum Kriging parameters are also
close to each other. Therefore, the previous optimum Krig-
ing parameter θ value is used as the initial value for the
PS method. By implementing this efficiency strategy, the
elapsed time to find the optimum θ is reduced by 90 % per
iteration on average.

3.1.3 Generation of virtual samples from zero positions

Secondly, two opposite signed virtual samples are generated
near the zero point. One is located in the direction of the
success sample, and the other is in the direction of the failure
sample. Both virtual samples should be between the given
two opposite signed samples and on the line that connects
these points, as shown in Fig. 3. Then, a new SVM decision
function based on the original and virtual samples will be
located between the virtual sample pairs, because the virtual
samples in each pair have different signs and are close to
each other. If approximations for zero points are accurate,
then both virtual samples and a new decision function will
be near the limit state function.

One important question is how closely a pair of vir-
tual samples should be located. If the distance between a
pair of virtual samples is too long, then these virtual sam-
ples will not be chosen as support vectors and they become
ineffective. To make the virtual samples effective, the dis-
tance should be short enough that the virtual samples are
selected as support vectors so that the supporting hyper-
planes are located near the decision function. If a smaller
target error is required, the virtual margin needs to be
reduced accordingly.

If many virtual samples are clustered together within
a small region, the additional information from the most
closely located virtual samples is negligible, and the compu-
tational time increases. In selection of virtual samples, the
trade-off between the amount of additional information and
the computational cost should be considered. After the valid
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distance is defined based on SVM with an initial sample set,
virtual sample candidates are generated from two opposite
samples within the valid distance. The first pair of virtual
samples is the pair between a sample with the smallest abso-
lute function value and its closest opposite signed sample,
since they provide the most accurate information. Next pair
is the candidate which has the longest distance from both
real and previously selected virtual samples to prevent clus-
tered virtual samples within a small region. Virtual samples
are selected and added until new virtual samples are close
to previously chosen virtual samples. In Fig. 5, suppose that
pair 2 is generated from the smallest absolute value. Then,
pair 2 is the first pair of virtual samples. Pair 4 has the
longest distance from pair 2 and thus pair 4 is selected as
virtual samples next. By applying this method, virtual sam-
ples are located uniformly in the design space. Once all
virtual samples are selected, the VSVM decision function is
constructed by using both existing and virtual samples.

As explained in Section 3.1, true function values at loca-
tion of “zero point” and virtual samples are not evaluated.
Their signs are decided by approximations. Even though
signs and locations of virtual samples may not be accu-
rate with initial samples, the accuracy is improved as new
samples are inserted sequentially.

3.2 Adaptive strategy for sampling and stopping criteria

3.2.1 Adaptive sequential sampling

The surrogate-based methods construct a model that is accu-
rate over the given domain, and thus samples tend to spread
out on the given domain to satisfy the target accuracy. How-
ever, since only an accurate decision function is required
for the sampling-based reliability analysis and RBDO (Lee
et al. 2011), samples near the limit state function are more
informative than samples far away from the limit state func-
tion. Such efficiency cannot be achieved by using a uniform
sampling strategy, and thus a sequential sampling method is
proposed for better efficiency and accuracy.

In this paper, new samples are selected such that they
are located within the margin (|s(x)| < 1), which is narrow
since each pair of virtual samples are closely located near
the decision function. In addition, new samples should have
the maximum distance from the closest existing sample to
maximize additional information from new samples. This
strategy is similar to the sequential sampling method devel-
oped by Basudhar and Missoum (2010), but the computa-
tional burden can be reduced by using the within-the-margin
(i.e., inequality) constraint (|s(x)| < 1) rather than the on-
the-decision-function (i.e., equality) constraint (s(x) = 0),
which is more difficult to satisfy. On the other hand, this
new constraint is effective since the virtual margin is very
narrow compared with conventional SVM margins. A less
strict constraint can be used with VSVM since new samples
do not need to be on the limit state function by introducing
virtual samples. In other words, if new samples are located
near the limit state function, accurate virtual samples close
to the limit state function can be obtained. The optimization
problem is defined as

max
x

‖x − xnearest‖
s.t. |s (x)| < 1

(6)

where xnearest is the existing sample closest to the new
sample x. Since xnearest changes as the position of new sam-
ple candidate x moves, (6) is a moving target problem. In
Fig. 6a, a new sample is positioned by solving (6) and
inserted into a region near the limit state function and where
there is no existing sample nearby. In Fig. 6b, the VSVM
decision function is improved significantly near the newly
inserted sample.

Any efficient optimization method can be applied to
solve (6). The gradient-based optimization methods such
as trust-region-reflective algorithm (Coleman and Li 1996;
1994), active-set algorithm (Powell 1978a, b) or interior-
point algorithm (Byrd et al. 2000; Waltz et al. 2006) can
be used instead of the PS method since they are faster
than the PS method (Lewis and Torczon 1999) without
sacrificing much accuracy. In the paper, active-set algorithm

Fig. 5 Selection of virtual
samples—pairs within solid
squares are selected

Pair 1

Pair 2

Pair 3

Pair 4

Class +

SVM decision 
function

Pair 1

Pair 2

Pair 3

Pair 4

Class +

SVM decision 
function

__
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(a) VSVM Decision Function and a Sequential Sample

(b) VSVM Decision Function with a New Sample

Fig. 6 Changes of the VSVM decision function in normalized
design space

is used and initial points are selected among zero points in
sparse region.

In the beginning, locations of virtual samples may not be
accurate, because their signs are decided based on approxi-
mations. However, the accuracy is improved as new samples
are inserted sequentially near the decision function.

3.2.2 Stopping criteria

Stopping criteria are required to determine when the deci-
sion function is converged. Since the true limit state function
is not known, the criterion is based on the variations of the
approximated decision function. A set of testing points is
generated using input distributions because the MCS points

are also generated in the same way for the sampling-based
reliability analysis. In this paper, ten thousand testing points
for stopping criteria (Nstop) were used for all examples. The
fraction of testing points that show different signs from the
previous surrogate is calculated as (Basudhar and Missoum
2008)

�k =

Nstop∑
i=1

Ik (xi)

Nstop
× 100 (%) (7)

where k is the current iteration number in the sequential
sampling process, and �k is the fraction of testing points for
which the sign of the VSVM evaluation changes between
k-1th and kth iterations. Ik(xi) in (7) is an indicator function
defined as

Ik (xi ) ≡
{

0, sign (sk−1 (xi)) = sign (sk (xi ))

1, otherwise
(8)

where sk−1(xi) and sk(xi) represent the VSVM value at xi

at the k-1th and kth iterations, respectively. Changes in the
VSVM decision function fluctuate and usually decrease as
the number of iterations increases, as is shown in Fig. 7.

In order to implement more stable stopping criteria, the
fraction of testing points changing signs between successive
iterations is fitted by an exponential curve as Basudhar and
Missoum (2008)

�̂k = AeBk (9)

where �̂k represents the fitted values of �k , and A and B

are the parameters of the exponential curve. The value of �̂k

Fig. 7 Changes of �k and fitted exponential curve
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and the slope of the curve are calculated when new samples
are added. If �k is large while �̂k is small, it means that a
large change occurred in the model at kth iteration, which
�̂k did not catch. If �k is small while �̂k is large, the situ-
ation is that the new sample is inserted into a region where
zero-position approximations are already accurate, so there
is a small change between recent two models but it may not
be converged yet. Therefore, both �k and �̂k should be kept
small for more robust results. In addition, the slope of the
curve needs to be small for stable convergence.

To stop the updating process, the maximum of �k and
�̂k should be less than a small positive number ε1. Simul-
taneously, the absolute value of the slope of the curve at
convergence should be lower than ε2. Thus, the stopping
criteria can be defined as

max
(
�k, �̂k

)
< ε1

−ε2 < BAeBk < 0.
(10)

where ε1 and ε2 are determined so that the target classifi-
cation error level can be achieved. The target classification
error is 2.0 % in this paper. For more accurate limit state
function, smaller values can be used. Generally, ε2 should
be smaller than ε1 for stable convergence.

The overall procedure of the proposed VSVM method
with the sequential sampling strategy is shown as Fig. 8.

Fig. 8 Flowchart of VSVM with sequential sampling strategy

4 Comparison study between VSVM
and other surrogates

4.1 Comparison procedure

Recently developed classification and surrogate modeling
methods with sequential sampling schemes are selected
for comparison with the proposed VSVM method. The
classification method is the explicit design space decompo-
sition (EDSD) method with an improved adaptive sampling
scheme that is based on the conventional SVM (Basudhar
et al. 2012; Basudhar and Missoum 2008, 2010). The adap-
tive sampling method of EDSD has two kinds of methods
to select new samples. One method is to select new samples
which maximize the distance to the closest existing sam-
ples while lying on the SVM decision function. The other
method is to increase the convergence and selects new sam-
ples in a region where data from one class is sparse in the
vicinity of the boundary. For a fair comparison for both
EDSD and VSVM, the same Gaussian kernel parameter σ

in (3) is used. We have exactly implemented EDSD fol-
lowing Refs. Basudhar and Missoum (2008, 2010). Authors
of Refs. Basudhar and Missoum (2008, 2010) also applied
their EDSD to the same examples in this paper under the
same condition and their results are similar to our results.

The surrogate modeling method is the dynamic Kriging
(DKG) method with a sequential sampling method
(Zhao et al. 2011). Zhao et al. showed that, when the same
number of samples is used, DKG performs better com-
pared with the polynomial response surface, radial basis
function, support vector regression, and universal Kriging
method. Therefore, DKG is chosen to compare the accu-
racy of VSVM. The basic form of the DKG prediction is
expressed as

ŷ (x) = (r0 − Fλ)T R−1y (11)

where R is the symmetric correlation matrix, r0 is the cor-
relation vector between the prediction location x and all N

samples xi , i = 1, · · · , N , y is the response vector, F is a
design matrix of basis functions, and λ is a regression coeffi-
cient vector. In the DKG method, F is not fixed, but the best
basis function set is chosen by the genetic algorithm (GA)
(Zhao et al. 2011). The sequential sampling method chooses
new samples where the prediction variance is largest. R is
calculated implicitly and thus DKG is an implicit surrogate
method.

Three examples are used to test the performance of
the adaptive sampling-based VSVM. One example is a
low-dimensional problem, and the other two are high-
dimensional problems. All three methods can be applied to
both global and local windows. However, a global window
usually requires unnecessarily many samples to achieve the
target accuracy in RBDO compared with local windows.
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Therefore, all three methods are applied to local windows
of the original input domain. Since classification methods
can be used when the limit state function exists within the
local window, original functions are shifted appropriately
to include both signed samples. In Sections 4.2, 4.3, and
4.4, the domains of interest are hyper-cube local windows,
which are defined by the lower and upper bounds.

For the Gaussian kernel in (3), parameter σ should be
provided. Selection of optimum σ is an ongoing research
subject. In this paper, a fixed σ value, which is small enough
to maintain zero training error, is used. The training error is
defined as the classification error with respect to the existing
and virtual samples and not testing samples.

Since SVM is a classification method and only takes care
of the decision function, the mean squared error (MSE) or
R2, which are widely used for the surrogate-based methods,
is not appropriate for comparison. Therefore, the accuracy
of the SVM decision function should be judged by its close-
ness to the true limit state function. In practical applications,
the true limit state function is not known, and so is the
error measure. However, the error measure can be obtained
for academic analytical test problems. One million testing
points for error measure (Ntest) are generated based on input
distributions because the MCS samples are also generated
in the same way for the sampling-based reliability analysis.
These testing points are used to calculate the classification
error, which is the fraction of misclassified testing points
over total number of testing points. A test point for which
the sign of VSVM does not match the sign provided by the
true limit state function is considered as misclassification
(Basudhar and Missoum 2008). Therefore, the classification
error c is

c =

Ntest∑
i=1

I (xi)

Ntest
× 100 (%) (12)

where I (xi) is the indicator function defined as

I (xi) ≡
{

1, s (xi) · yi < 0
0, otherwise

(13)

where yi represents the corresponding classification value
(±1) at xi , and s(xi) is the VSVM approximation at xi .

Our purpose is to evaluate the probability of failure
accurately and efficiently. The relationship between the
probability of failure measurement error and the classifica-
tion error is approximately proportional. Therefore, accurate
probability of failure can be obtained by keeping the clas-
sification error small. In addition, the classification error
represents the accuracy of the obtained limit state function,
so the classification error is used as the error measure for
comparison in this paper.

4.2 2-D example

The analytic function is Iowa example function (Tu et al.
1999; Youn et al. 2005), which is expressed as

f (x) = 1 + (0.9063 · x1 + 0.4226 · x2)
2

+ (0.9063 · x1 + 0.4226 · x2 − 6)3

− 0.6 (0.9063 · x1 + 0.4226 · x2)
4

− (−0.4226 · x1 + 0.9063 · x2)

4.5 ≤ x1 ≤ 6.5, 5.5 ≤ x2 ≤ 7.5 (14)

Since the performance is influenced by sample positions,
20 different test cases are used. The number of initial sam-
ples, Ni , is 10, and parameters σ , ε1, and ε2 are 3, 0.8,
and 0.3, respectively, for both EDSD and VSVM. To com-
pare these methods, VSVM is performed first, and DKG
and EDSD are applied later using the same number of addi-
tional samples, Na , as VSVM. Each process is forced to stop
when it reaches the same number of final samples. Since
each method has its own sequential sampling strategy, sam-
ple profiles of the final results are different except the 10
initial samples. According to Table 1, which shows aver-
aged values of 20 test cases, EDSD is the fastest, but the
classification result is not accurate. This clearly shows that
EDSD converges slowly since it does not use the response
function values. VSVM is the most accurate and requires a
similar amount of time as DKG (33.1 s vs. 35.3 s) for mod-
eling. However, VSVM is about 30 times faster than DKG
(1.1 s vs. 32.5 s) in estimating response values at one million
MCS points due to its simpler formulation. Better classifi-
cation error (2.57 % vs. 0.34 %) is due to different sampling
strategies.

4.3 9-D example

The nine-dimensional extended Rosenbrock function
(Dixon and Szegö 1978) is used for the test, which is
expressed as

f (x) =
8∑

i=1

[
(1 − xi)

2 + 100
(
xi+1 − x2

i

)2
]

− 68000

−3 ≤ xi ≤ −2, i = 1, . . . , 9. (15)

Table 1 Average results for 2-D example (Ni = 10, Na = 5.6, 20 test
cases)

DKG EDSD VSVM

Classification error (%) 2.57 15.34 0.34

Elapsed time (sec) Modeling 35.3 3.2 33.1

MCS 32.5 0.6 1.1
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Table 2 Average results for 9-D example (Ni = 20, Na = 27, 20 test
cases)

DKG EDSD VSVM

Classification error (%) 2.31 6.79 1.78

Elapsed time (sec) Modeling 196 60 103

MCS 49.6 1.8 3.4

The initial sample size is 20; and 20 different test cases
are used. For both EDSD and VSVM, σ , ε1, and ε2 are 5,
0.5, and 0.03, respectively. Twenty-seven additional sam-
ples are used for all surrogate methods. In Table 2, EDSD
requires less time than other methods, but it is not accu-
rate. The VSVM uses about half amount of time as DKG
(103 s vs. 196 s) for modeling and results in better classifi-
cation error. While VSVM is about twice faster than DKG in
estimating response values for MCS at one million sample
points, VSVM is about 15 times more efficient than DKG
(3.4 s vs. 49.6 s).

4.4 12-D example

For a twelve-dimensional example, the Dixon-Price func-
tion (Dixon and Szegö 1978) is used and its mathematical
expression is

f (x) = (x1 − 1)2 +
12∑

i=2

i
(

2x2
i − xi−1

)2 − 36000

3 ≤ xi ≤ 4, i = 1, . . . , 12. (16)

is used. The initial sample size is 35 for 20 different test
cases. Parameters σ , ε1, and ε2 are 15, 0.25, and 0.015,
respectively. Thirty-three additional samples are used for all
three methods. In Table 3, EDSD is very efficient but does
not provide accurate results. The VSVM uses less time than
DKG for both modeling and estimating response values for
MCS and results in a better classification error.

For another way of comparison, EDSD is performed
using the same stopping criteria as VSVM so that EDSD
can use more samples to construct the decision function.

Table 3 Average results for 12-D example (Ni = 35, Na = 33.3, 20
test cases)

DKG EDSD VSVM

Classification error (%) 2.02 8.88 1.67

Elapsed time (sec) Modeling 289 64 169

MCS 64.3 1.9 4.6

Table 4 Average results of EDSD and VSVM for the same stopping
criteria (ε1 = 0.25, ε2 = 0.015, 20 test cases)

EDSD VSVM

No. of additional samples 77.9 33.3

Classification error (%) 6.90 1.67

Elapsed time (sec) Modeling 149 169

MCS 1.9 4.6

According to Table 4, the average number of additional
samples of EDSD is 77.9, which is far more than 33.3
of VSVM. The EDSD also uses a similar amount of time
as VSVM, and the classification error is still quite large.
Clearly, VSVM is more accurate than EDSD.

Since DKG and VSVM use different stopping criteria,
a smaller stopping criterion is used for DKG to achieve a
classification error similar to that of VSVM. In Table 5,
DKG can achieve a classification error level similar to that
of VSVM after it uses about six more samples. Furthermore,
the elapsed time of DKG is larger than that of VSVM for
both modeling (341 s vs. 169 s) and estimating response
values for MCS (65.1 s vs. 4.6 s).

In Fig. 9, even though classification errors with initial
samples are not satisfactory, they are decreasing as new
samples are inserted. Compared with EDSD, the classifica-
tion error of VSVM is significantly reduced. Both VSVM
and DKG are accurate overall and their convergences are
also stable. If new samples are inserted into the region
which is already accurate, then new surrogate model will be
almost identical to previous surrogate model. This is the rea-
son some flat regions exist for all three methods as shown
in Fig. 9.

The VSVM is more efficient than DKG in terms of
the elapsed time for both surrogate modeling and estimat-
ing response values for MCS, while maintaining a better
accuracy level. The EDSD converges very slowly and is
inefficient in terms of the number of additional samples.
This will be more problematic when the computer sim-
ulations at each sample point are expensive for practical
application problems.

Table 5 Average results of DKG and VSVM for similar classification
errors (20 test cases)

DKG VSVM

No. of additional samples 39.4 33.3

Classification error (%) 1.74 1.67

Elapsed time (sec) Modeling 341 169

MCS 65.1 4.6
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Fig. 9 Classification error changes as VSVM converges

5 Conclusion

A sequential sampling-based virtual support vector machine
(VSVM) method is proposed to efficiently construct the
accurate decision function for the reliability analysis. Vir-
tual samples are generated from real samples to improve the
accuracy of the SVM decision function, and a sequential
sampling method is developed to increase the efficiency and
accuracy of VSVM by inserting new samples near the true
limit state function.

The proposed method is compared with a classification
method EDSD and a surrogate modeling method DKG with
their own sequential sampling strategies. DKG can con-
struct accurate surrogates with a relatively small number of
samples, but it is inefficient for MCS since it has an implicit
expression for response evaluations, and the dynamic basis
selection process requires significant computational effort.
For a low-dimensional problem, both VSVM and DKG
are accurate and require similar modeling time. However,
VSVM becomes more efficient than DKG or EDSD while
achieving excellent accuracy for high-dimensional prob-
lems. VSVM is much more efficient than DKG in evaluating
response values for MCS, and thus VSVM is preferred for
sampling-based RBDO. In this comparison study, better
classification error of VSVM compared with DKG is due
to the fact that VSVM used the new sequential sampling
method near the constraint boundary. Therefore, sampling
near the constraint is more efficient than sampling on the
whole domain; and it is desirable to implement a constraint
boundary sampling method (Bichon et al. 2008, 2011;
Ranjan et al. 2008; Lee and Jung 2008; Bect et al. 2012;
Viana et al. 2012) for DKG for sampling-based RBDO.

Since the proposed method is developed for contiguous
and differentiable problems. For disjoint problems, ordi-
nary classification methods are better suited. Since VSVM
requires an approximation method, it is desirable to investi-
gate different approximation methods for generating virtual
samples. The choice of the best kernel function and its
parameter can be investigated, too. The RBDO problem usu-
ally has multiple constraints and the current VSVM method
requires building VSVM model for each constraint. It would
be more efficient if we can construct one VSVM model for
multiple constraints.

The proposed method is developed and applied to
sampling-based RBDO using local windows. Therefore,
whenever the design is changed, active/violated constraints
are identified and DKG and VSVM are applied only for
the active/violated constraints (Lee et al. 2011; Youn et al.
2005; Zhao et al. 2011). Thus, both DKG and VSVM use
the same local windows and same samples on the local
windows. Another fact to point out is that response sur-
face methods such as Kriging have advantage that they can
describe not only the limit state but also the overall design
space. However, only the limit stat information is required
for the sampling-based RBDO so the classification method
can be very effectively used.
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