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Abstract An efficient algorithm is presented for solving
optimization problem of geometrical domains in which
elliptic boundary value problems are defined. The surface
of the domain is implicitly described through a level set
function and the moving boundary is determined by the
time-dependent dynamic knots of the radial basis functions
(RBFs). A method of Partition of Unity (POU) is lever-
aged to calculate the solution, which divides the domain
into some smaller overlapping local sub-domains and recon-
structs them into the global surface with less numerical cost.
Apart from the convergence properties, numerical results
are given and discussed.

Keywords Structural optimization · Radial basis function ·
Dynamic knots · Partition of unity

1 Introduction

Numerical techniques for structural optimization have put
emphasis on generality and high efficiency. A preferred
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formulation should allow geometric evolution and mate-
rial distribution simultaneously, and also be simple enough
for developing an effective optimal solution with respect to
various design constraints.

In addition to the well-established numerical methods,
such as the homogenization approach (Bendsøe and Kikuchi
1988), the Solid Isotropic Microstructure with Penaliza-
tion (SIMP) method (Bendsøe 1989; Bendsøe and Sigmund
2003; Rozvany et al. 1992), and the Evolutionary Struc-
tural Optimization (ESO) method (Xie and Steven 1993,
1997), the level set based approach (Allaire et al. 2004;
Wang et al. 2003) excels in smooth structural boundary
representation with versatility in handling both geomet-
ric and topological changes. However, the conventional
level set method requires complex numerical computa-
tion, such as discretization and reinitialization, which may
cause numerical artifacts and thus hinder its potential as
expected.

One successful improvement is to transform the implicit
level set model into a parametric RBF model, either using
globally supported basis functions (Buhmann 2004; Ho
et al. 2011; Lui et al. 2007; Wang and Wang 2006; Wei
and Wang 2006; Xing et al. 2007), or compactly supported
ones (Luo et al. 2007). This technique has been recog-
nized as an effective tool in topology optimization. In the
authors’ previous work (Ho et al. 2011), two major schemes
of RBF parameterizations are studied: (i) varied knots distri-
bution algorithm, and (ii) fixed knots with POU algorithm.
The dynamic knots scheme is aim at utilizing each basis
function to its maximum extend in the level set function
representation. Thus, the benefit is to reduce the number
of basis functions and hence the computational cost. The
POU scheme restrains the span of a set of basis functions
within their local region and consequently saves efforts in
the sensitivity integration computations.
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In this paper, a novel method is proposed by combining
the above two ideas, which aims to use the knot posi-
tion of the local RBFs as the design variable within the
POU scheme. Numerical experiments show that the inves-
tigation yields a concrete technique with a high level of
computational efficiency and desirable capability.

This paper is organized as follows. The RBF with
POU method for level set based structural optimization is
reviewed briefly in Section 2. A detailed sensitivity analy-
sis and the coupled optimization algorithm are elaborated in
Section 3. Numerical experiments of different configuration
settings are presented and discussed in Section 4. Finally,
conclusions and future work are stated in Section 5.

2 Parametric modeling for structural optimization

2.1 Level set based structural optimization

Given a bounded design domain D ⊂ R
d , which includes

all admissible shapes �, i.e. � ⊂ D, the shape and topology
of underlying structure are described through a Lipschitz-
continuous implicit level set function �(x) as follows:

�(x) = 0 ∀x ∈ ∂� ∩ D,

�(x) < 0 ∀x ∈ � \ ∂�,

�(x) > 0 ∀x ∈ (D \ �), (1)

where the structural interface is captured as the zero iso-
surface {x ∈ R

d | �(x) = 0}(d = 2 or 3). In the level set
method, the dynamic interface is assumed to move only in
the normal direction, and its motion is essentially governed
by a Hamilton–Jacobi type equation:

∂�(x, t)

∂t
+ vn · |∇�(x, t)| = 0, �(x, 0) = �0(x), (2)

where vn is the magnitude of normal velocity, and �0(x)

defines the initial model.
For linear elastic structural problem, the classical for-

mulation of mean compliance minimization with volume
constraint is defined as:

min� J (u, �) =
∫

�

ε(u)TCε(u)d�,

s.t. V (�) � Vmax where V (�) =
∫

�

d�, (3)

where u ∈ R
d is the displacement field, ε(u) the strain

field, C the elasticity matrix, and Vmax the volume con-
straint. To solve this constrained optimization problem, a
common technique is to construct an augmented objective

functional by multiplying the volume constraint V (�) with
a positive Lagrange multiplier λ:

min
�

L (u, �) =
∫

�

ε (u)T Cε (u) d� + λ (V (�) − Vmax) .

(4)

As derived in Allaire et al. (2004) and Wang et al. (2003),
the shape derivative can be obtained by the differentiation
of the Lagrangian L with respect to time t :

d L

dt
=

∫

∂�

(
λ − ε (u)T Cε (u)

)
vnds. (5)

Then, a standard steepest descent search is generally
adopted with the magnitude of normal velocity defined as:

vn = − (
λ − ε (u)T Cε (u)

)
. (6)

Substituting (6) into (2) and solving the Hamilton–Jacobi
equation, the optimal design can be obtained consequently.

Note that, although only the compliance minimization
problem is concerned in this paper to demonstrate the
effectiveness of the proposed algorithm, extensions to other
objectives and constraints (Allaire and Jouve 2008) are
straightforward.

2.2 RBF+POU model with dynamic knots

To circumvent the disadvantages arising from the discrete
level set method, the RBF based model provides a con-
tinuous parametric representation, which replaces the time-
dependent �(x, t) by a series of coefficients αi and the RBF
interpolants ϕi as follows:

�(x, t) =
N∑

i=1

αiϕi (x, t), (7)

where N is the number of RBFs, and the expansion
coefficients αi (positive or negative) are determined from
the initial model interpolation and remain constant through-
out the optimization process. Similar to the works in Cheng
et al. (2003) and Ho et al. (2011), the following function of
inverse multiquadric (IMQ) is chosen as the basis function
due to the stability and sensitivity concerns:

ϕi (x, t) = 1√
|x − xi (t)|2 + c2

i

, (8)
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where ci is a constant. It should be noted that each IMQ is an
infinitely smooth spline centered at its dynamic knot xi (t),
where the scalar implicit function �(x, t) are interpolated.

The POU method (Ho et al. 2011; Ohtake et al. 2003;
Tobor et al. 2004a, b) is the other key technique adopted
to improve the computational efficiency for the RBF based
model. It divides the design domain into numbers of over-
lapping patches {Di }M

i=1 covering the entire domain D such
that D ⊆ ∪i Di (Fig. 1). Thus, a local RBF model �i can be
reconstructed at each subdomain Di from (7) and (8), and
then the global function �̃ is defined by blending all the
local interpolants through the following expression:

�̃ (x, t) =
M∑

i=1

wi (x)�i (x, t), (9)

where wi (x) is a collection of the non-negative blending
functions. This set of compactly-supported and continu-
ous blending functions are obtained from a set of weight
functions Wi by an inverse distance weighting procedure—
Shepard’s Method (Griebel and Schweitzer 2000):

wi (x) = Wi (x)∑
j W j (x)

, (10)

where it satisfies
∑

wi (x) = 1. The smooth functions Wi

have to be continuous at the boundary of the subdomains
Di . It is defined as the composition of a distance function
Pi : R

n → [0, 1], where Pi (x) = 1 at the boundary of
�i , and a decay function V : [0, 1] → [0, 1], i.e. Wi (x) =
V ◦ Pi (x) (Tobor et al. 2004b). For a 3D axis-aligned box
defined from the two opposite corners S and T , the distance
function Pi is expressed as (Griebel and Schweitzer 2000;
Tobor et al. 2004b; Wu et al. 2005):

Pi (x) = 1 −
∏

r=x,y,z

4 (r − Sr ) (Tr − r)

(Tr − Sr )
2

, (11)

where Sr and Tr are the position of S and T in 3D,
respectively.

Fig. 1 POU: subdomains Di constitute the entire domain D

The choice of the decay function V determines the con-
tinuity between the local interpolant �i in the global recon-
struction function �̃. In this paper, the following decay
functions are suggested for different constraint cases:

continuity C
0 : V0 (d) = 1 − d,

continuity C
1 : V1(d) = 2d3 − 3d2 + 1,

continuity C
2 : V2(d) = −6d5 + 15d4 − 10d3 + 1. (12)

3 Sensitivity analysis and optimization algorithm

3.1 Sensitivity analysis

As the positions of the knots x j in each patch �i change
with time, (8) can be modified as:

ϕi j (x, t) = 1√∣∣x − x j (t)
∣∣2 + c2

j

, (13)

and the local reconstruction function �i becomes:

�i (x, t) =
N∑

j=1

αi jϕi j (x, t). (14)

Substituting (14) into (9) for the global function �̃, the
Hamilton–Jacobi equation (2) can be rewritten as:

M∑
i=1

wi

N∑
j=1

αi j
∂ϕi j (x, t)

∂xi j
· ẋi j + vn

∣∣∣∇�̃

∣∣∣ = 0, (15)

where

∇�̃ = ∂�̃

∂xi j

=
M∑
i

wi

N∑
j

αi j
∂ϕi j

∂xi j
+ 1∑

j
W j

∑
i

∂Wi

∂xi
·(�i − �̃

)
.

(16)

The normal velocity vn on the moving boundary can be
obtained consequently by rewriting (15) as:

vn = 1∣∣∣∇�̃

∣∣∣
M∑

i=1

wi

N∑
j=1

αi j
∂ϕi j (x, t)

∂xi j
· ẋi j . (17)

Then, by substituting (17) into (5), the shape derivative in
term of xi j appears as:

d L

dt
=

M∑
i=1

N∑
j=1

αi j

∫

∂�

(
λ − ε(u)TCε(u)

) 1∣∣∣∇�̃

∣∣∣
wi

· ∂ϕi j (x, t)

∂xi j
ds · ẋi j , (18)
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Table 1 Optimization algorithm

1: Choose initial �̃0 ∈ D, set n = 0.

2: Compute the initial RBF basis function ϕ0 of �0.

3: repeat

4: Compute un of �n using FEM.

5: Solve the descent gradient ∂ J
∂xi j

, ∂V
∂xi j

from (20) and (21).

6: Evaluate the search direction ẋi j in (22).

7: Update the position of knots xn+1
i j by (23).

8: Update the RBF basis function ϕn .

9: Update level set function �̃n+1 by (24).

10: Update shape �n+1.

11: n + +.

12: until
∥∥∥J

(
�̃n+1

) − J
(
�̃n

)∥∥∥ < ε.

On the other hand, the following derivative can also be
obtained by chain rule as:

d L

dt
=

M∑
i=1

N∑
j=1

∂L

∂xi j
· ẋi j

=
M∑

i=1

N∑
j=1

∂ J

∂xi j
· ẋi j + λ

M∑
i=1

N∑
j=1

∂V

∂xi j
· ẋi j . (19)

Therefore, as shown in (18) and (19), the sensitivities of the
objective function and the volume constraint can be derived
by comparing them in the following way:

∂ J

∂xi j
= − αi j

∫

∂�

ε(u)TCε(u)
1∣∣∣∇�̃

∣∣∣
wi

∂ϕi j

∂xi j
ds,

i = 1, ..., N ; j = 1, ..., M, (20)

∂V

∂xi j
= αi j

∫

∂�

1∣∣∣∇�̃

∣∣∣
wi

∂ϕi j

∂xi j
ds,

i = 1, ..., N ; j = 1, ..., M. (21)

Fig. 2 Design domain: cantilever beam with dimension L : H = 2 : 1

(a) 2D plot with overlapping knots

(b) 3D contour plot of     (x)Φ

Fig. 3 Patch pattern of Case 1b

3.2 Optimization algorithm

Table 1 lists the detailed optimization algorithm. To find the
local minimum of the objective function as stated in (3), the
steepest descent method is employed to proceed with the
search in the descent direction of the sensitivity functions

Table 2 Comparison of results for Case 1

Case Overlap size Patch Total no. Time/step Compliance

no. nx × ny pattern knots (s)

1a 41 × 21 2 × 2 3444 6.83 60.6

2b 42 × 22 2 × 2 3696 7.12 60.4

3c 43 × 23 2 × 2 3956 7.32 61.7
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at the current point. From (19) the search direction can be
defined as:

ẋi j = −
(

∂ J

∂xi j
+ λ

∂V

∂xi j

)
, i = 1, ..., N ; j = 1, ..., M,

(22)

(a) CASE 1a

(b) CASE 1b

(c) CASE 1c

Fig. 4 Optimization step 127 of Case 1

Table 3 Comparison of results for Case 2a

Case Patch Total no. Time/step Compliance Volume

no. pattern knots (s) fraction

i 1 × 2 3362 8.05 60.4 0.499

ii 1 × 4 3444 6.96 60.5 0.499

iii 1 × 5 3485 6.69 61.0 0.498

iv 1 × 8 3608 6.41 61.1 0.499

v 1 × 10 3690 6.29 60.8 0.499

Table 4 Comparison of results for Case 2b

Case Patch Total no. Time/step Compliance Volume

no. pattern knots (s) fraction

i 2 × 1 3402 7.95 60.5 0.499

ii 4 × 1 3564 6.87 60.8 0.499

iii 5 × 1 3645 6.69 60.5 0.498

iv 8 × 1 3888 6.49 60.8 0.499

v 10 × 1 4050 6.35 60.7 0.499

Table 5 Comparison of results for Case 2c

Case Patch Total no. Time/step Compliance Volume

no. pattern knots (s) fraction

i 2 × 2 3444 6.86 60.4 0.499

ii 4 × 4 3696 6.07 60.5 0.499

iii 5 × 5 3825 5.98 61.0 0.498

iv 8 × 8 4224 5.93 61.1 0.499

v 10 × 10 4500 5.93 60.8 0.499

Fig. 5 Plot of sensitivity time vs patch number for Cases 2a and 2b
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Fig. 6 Optimization steps of Case 2a(iv): patch pattern (Py × Px ) = 1 × 8, total knots number = 3608, time consumed per iteration = 6.41 s



Parametric structural optimization with dynamic knot RBFs and partition of unity method 359

Fig. 7 Optimization steps of Case 2b(iv): patch pattern (Py × Px ) = 8 × 1, total knots number = 3888, time consumed per iteration = 6.49 s
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and the position of knots xi j can be updated as:

xn+1
i j = xn

i j + τ ẋi j , i = 1, ..., N ; j = 1, ..., M, (23)

where τ is the fixed time step.
Once the knot position is updated as xn+1

i j , it is substituted
into (13) and (14) to get the updated local interpolant. Then,
the new level set function can be deduced from (9) as:

�̃n+1 =
M∑

i=1

wi

N∑
j=1

αi jϕ
n+1
i j . (24)

Thus, the implicit function is computed everywhere in the
domain and the boundary of the structure is propagated
accordingly.

4 Numerical results

In this section, the optimization problem (3) is concerned,
and a benchmark example of a short cantilever beam is
utilized to analyze the proposed algorithm with different set-
tings. As shown in Fig. 2, a point load F = 1 is applied at
the middle of the right end, meanwhile a fixed boundary
condition is imposed on the left side. The structure is dis-
cretized with a rectilinear mesh of 80 × 40 elements, and
the size of each element is h = 0.025. The volume frac-
tion is ζ = 50 % of the design domain, and the time step is
tτ = 5×10−3. For finite element analysis, the “ersatz mate-
rial” method (Allaire et al. 2004) is adopted, for which a
weak material with Young’s modulus E = 10−3 is assumed
in void region (i.e. holes), and E = 1 for solid mate-
rial. Specifically, for an element containing solid material
of density ρe , its stiffness Ke is defined as: Ke = ρe × Ks ,
where Ks is the stiffness of a fully occupied element. To
evaluate the boundary integral of the sensitivities (20) and
(21), a standard Gaussian integration (Wei and Wang 2006)
is performed over the zero-level contour of the level-set
function. In the implementation, three sampling points are
employed over a boundary segment inside an element. In
addition, the second decay function in (12) of continuity C

1

is implemented, and stopping threshold ε = 10−6 is set.

4.1 Case 1—Effect of the amount of overlapping knots

The first experiment is to study the effect of the overlap-
ping knots. It is because the size of the overlapping regions
of the adjacent patches may impose different effects on the
Shepard functions wi and may cause very large gradient of
wi close to the boundary of the respective support �i . In
result, the accuracy of the global approximation �̃ may be
jeopardized by the insufficient representation.

In this test, three overlapping configuration settings
are studied: (a) 1-knot, (b) 3-knots and (c) 5-knots in
both directions of the rectangular patch (i.e. nx and ny).
Figure 3a depicts the initial patch configuration of Case 1b,
and the corresponding � is plotted in Fig. 3b. The over-
lapping regions between the patches are reconstructed
smoothly using the proposed method. Table 2 summarizes
the different cases and the corresponding computation time.

It is straightforward to understand that the computational
time is directly related to the number of the overlapping
knots, because the scale of the coefficient matrix of RBF
interpolation enlarges as the amount of knots increases. As
shown in Table 2, Case 1a scores the shortest computa-
tional time, for which there is only one knot situated in the
overlapping region.

Nonetheless, from the observation of the optimization
process, the rate of the topological change of the three cases
are almost the same. Figure 4 captures the configurations at
design iteration 127, which shows that the topology of all
the designs are very similar.

This evidence implies that the amount of the overlap-
ping knots decides the computational efficiency, but it does
not apply any noticeable impact on the simulation result.
Therefore, the overlapping region with one knot from the
neighboring patch is sufficient. Besides, the final opti-
mal designs also reveal that the boundaries of Di can be
well represented by the Shepard function wi and thus the
accuracy of the global approximation �̃ is maintained in a
good condition.

4.2 Case 2—Effect of the patch pattern

The second study focuses on the effect of the patch pattern
(Py × Px ) to the simulation result and overall efficiency,
where Px and Py denote the number of patches in x-
and y-direction respectively. Note that the 1-knot overlap-
ping condition is adopted here for efficiency concern as
concluded from Case 1.

As a comparison, the domain is divided into patches
in x-direction only (Case 2a), y-direction only (Case 2a),

Table 6 Comparison of results for Case 2d

Case Patch Total no. Time/step Compliance Volume

no. pattern knots (s) fraction

i 5 × 10 4050 5.92 60.6 0.500

ii 10 × 5 4250 5.94 60.6 0.500

iii 10 × 20 5000 5.99 61.4 0.500

iv 20 × 10 5400 6.01 61.2 0.500

v 20 × 20 6000 6.14 62.3 0.500

vi 20 × 40 7200 6.50 94.3 0.500
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Fig. 8 Optimization steps of Case 2d(i): patch pattern (Py × Px ) = 5 × 10, total knots number = 4050, time consumed per iteration = 5.92 s
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Fig. 9 Plot of sensitivity time
vs patch number

and both x- and y-directions (Case 2c). For each case,
there are five model settings to be evaluated, and all the
simulations stops at iteration 500 unless it converges before-
hand. The corresponding experimental data are tabulated in
Tables 3, 4 and 5 respectively. Remarkably, the computa-
tional cost of each case drops proportionally as the number
of patches and overlapping knots increases, and the final
optimal designs have little differences from each other with
similar compliance values.

Note that for each design iteration, the main computa-
tional effort consists of three parts: (1) finite element analy-
sis (FEM), (2) sensitivity analysis, and (3) model updating.
Because the processes (1) and (3) are determined by the
discretized grid which is the same for all the test cases,
comparison on the computational cost of process (2) may
reveal the truth. Hence, Fig. 5 plots the computational time
of the “sensitivity analysis” against the number of patch for
Cases 2a and 2b. The differences between these two cases
are less than 2 % in terms of number of knots and sensitivity
time. However, the result shows that the computation time

is mainly governed by the number of patch if the difference
in the knot amount is not significantly large.

In addition, Figs. 6 and 7 illustrate the simulation of
Case 2a(iv) [1 × 8] and Case 2b(iv) [8 × 1] in details.
The results ensure that the POU method does not impose
significant quality problem onto the accuracy of the calcu-
lation. Besides, the boundary propagations in both cases
are very close and the final topologies are approximately
the same.

Theoretically, a contradiction exists between the number
of patches and knots towards the efficiency of optimiza-
tion, because more patches result in a smaller scale of
interpolation matrix but bring more overlapping knots to
be considered. Therefore, in order to further study the
efficiency issue against the number of patches and knots,
the last Case 2d is performed to accommodate more patch
combinations and knots. The details of the model settings
are listed in Table 6.

In Case 2d(i) [5 × 10], it finishes an iteration in 5.92 s
which is the quickest in this study, and the total number of

Fig. 10 Plot of sensitivity time
vs knot number
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Fig. 11 Optimization steps of Case 2d(vi): patch pattern (Py × Px ) = 20 × 40, total knots number = 7200, time consumed per iteration = 6.50 s
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patches and knots are 50 and 4050, respectively. As shown
in the Fig. 8, the final result converges to the similar topol-
ogy obtained from the typical dynamic knots scheme as
well. The overviews of the comparison results are given in
the Fig. 9 (number of patch vs sensitivity time) and Fig. 10
(number of knot vs sensitivity time). The results show that
when the number of patches exceed 100, the sensitivity
time increases even if the patch number is still increasing.
It is because the density of the overlapping knots become
significant such that the computational speed slows down
eventually. In Case 2d(vi), the numbers of patches and knots
are the highest. However, the over-populated knots span
deteriorates the simulation quality, and the optimization
process does not converge as shown in Fig. 11.

5 Conclusion

In this paper, an effective structural optimization scheme
is proposed by combining the dynamics knots with the
RBF+POU based parametric model representation.

Numerical experiments reveal that the POU method is
stable against different arrangements of the patch patterns,
and the computational efficiency is directly proportional
to the number of patches. However, proper deployment of
patches and overlapping knots plays a key role on the per-
formance. In fact, there is no need to place large amount
of knots in the overlapping region, because the combination
of the continuous function ϕi and the compactly supported
shape function wi provide a sufficient representation over
the whole domain . Otherwise, the overall performance may
be dragged down due to large interpolation matrix. In addi-
tion, the best patch deployment is obtained in Case 2d(i),
for which each patch covers a region of 2 × 2 grid elements.
Therefore, as long as the number of patches and knots is
in a reasonable ratio, the proposed scheme can reduce the
computation time.

It is also worthy noted that compactly supported RBF
method has the same advantage to the POU method in
reducing the computational burden. However, due to the
local influence nature of compactly supported basis func-
tion, it is possible that certain design domain may not be
covered or supported after arbitrarily moving the knots.
Therefore, it is dangerous to directly apply the algo-
rithm proposed in this paper for compactly supported RBF
method. Instead, a careful optimization strategy shall be
derived to prevent such phenomenon, which is hopefully a
promising research topic.

Nonetheless, the current numerical scheme is by no
means complete. To extend it to three dimensional design
with practical engineering problems is targeted as the future
work. One promising area is the multi-material microstruc-
ture design of multi-physics, such as designing materials

with unusual properties, like negative Poisson’s ratio and
zero thermal expansion coefficient (Bendsøe and Sigmund
2003). It would be informative to compare the results of
the proposed approach with the homogeneous method and
discrete level set method.

Acknowledgement This research work is supported by the Research
Grants Council of Hong Kong SAR (Project No. CUHK417309).

References

Allaire G, Jouve F, Toader A-M (2004) Structural optimization using
sensitivity analysis and a level-set method. J Comput Phys
194(1):363–393

Allaire G, Jouve F (2008) Minimum stress optimal design with the
level set method. Eng Anal Bound Elem 32(11):909–918

Bendsøe MP (1989) Optimal shape design as a material distribution
problem. Struct Multidisc Optim 1:193–202

Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in struc-
tural design using a homogenization method. Comput Methods
Appl Mech Eng 71:197–224

Bendsøe MP, Sigmund O (2003) Topology optimization: theory,
methods and applications, 2nd edn. Springer, Berlin

Buhmann MD (2004) Radial basis functions: theory and implementa-
tions. In: Cambridge monographs on applied and computational
mathematics, vol 12. Cambridge University Press, New York

Cheng AD, Golberg MA, Kansa EJ, Zammito G (2003) Exponential
convergence and h-c multiquadric collection method for partial
differential equations. Numer Methods Partial Differ Equ 19:
571–594

Ho HS, Lui BFY, Wang MY (2011) Parametric shape and topology
optimization with radial basis functions and partition of unity
method. Optim Methods Softw 26(4–5):533–553

Griebel M, Schweitzer MA (2000) A particle-partition of unity method
for the solution of elliptic, parabolic, and hyperbolic pdes. SIAM
J Sci Comput 22:853–890

Lui BFY, Wang MY, Xia Q (2007) Parametric shape and topology opti-
mization via radial basis functions, partition of unity and level set
method. In: Proceedings of 5th China–Japan–Korea joint sym-
posium on optimization of structural and mechanical systems.
Jeju, Korea

Luo Z, Wang MY, Wang SY, Wei P (2007) A level set-based parame-
terization method for structural shape and topology optimization.
Int J Numer Methods Eng 76(1):1–26

Ohtake Y, Belyaev A, Alexa M, Turk G, Seidel HP (2003) Multi-level
partition of unity implicits. In: Proceedings of ACM SIGGRAPH
2007 (SESSION: Surfaces), pp 463–470

Rozvany GIN, Zhou M, Birker T (1992) Generalized shape optimiza-
tion without homogenization. Struct Multidisc Optim 4(3–4):
250–252

Tobor I, Reuter P, Schlick C (2004a) Efficient reconstruction of large
scattered geometric datasets using the partition of unity and radial
basis functions. J WSCG (12):467–474

Tobor I, Reuter P, Schlick C (2004b) Multi-scale reconstruction of
implicit surfaces with attributes from large unorganized point sets.
In: Proceedings of shape modeling applications, pp 19–30

Wang SY, Wang MY (2006) Radial basis functions and level set
method for structural topology optimization. Int J Numer Methods
Eng 65:2060–2090

Wang MY, Wang XM, Guo DM (2003) A level set method for struc-
tural topology optimization. Comput Methods Appl Mech Eng
192:227–246



Parametric structural optimization with dynamic knot RBFs and partition of unity method 365

Wei P, Wang MY (2006) Parametric structural shape and topology opti-
mization method with radial basis functions and level-set method.
In: Proceedings of IDETC/CIE, pp 19–30

Wu X, Wang MY, Xia Q (2005) Implicit fitting and smoothing using
radial basis functions with partition of unity. In: Proceedings
of the ninth international conference (2005) on computer aided
design and computer graphics, pp 139–148

Xie YM, Steven GP (1993) A simple evolution procedure for structural
optimization. Comput Struct 49(5):885–896

Xie YM, Steven GP (1997) Evolutionary structural optimization.
Springer, New York

Xing XH, Wang MY, Lui BFY (2007) Parametric shape and topology
optimization with moving knots radial basis functions and level
set methods. In: Proceedings of the 7th WCSMO, pp 1928–1936


	Parametric structural optimization with dynamic knot RBFs and partition of unity method
	Abstract
	
Introduction
	
Parametric modeling for structural optimization
	
Level set based structural optimization
	
RBF+POU model with dynamic knots

	
Sensitivity analysis and optimization algorithm
	
Sensitivity analysis
	
Optimization algorithm

	
Numerical results
	
Case 1---Effect of the amount of overlapping knots
	
Case 2---Effect of the patch pattern

	
Conclusion
	References




