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Abstract This paper introduces a general fully stabilized
mesh based shape optimization strategy, which allows for
shape optimization of mechanical problems on FE-based
parametrization. The well-known mesh dependent results
are avoided by application of filter methods and mesh regu-
larization strategies. Filter methods are successfully applied
to SIMP (Solid Isotropic Material with Penalization) based
topology optimization for many years. The filter method
presented here uses a specific formulation that is based on
convolution integrals. It is shown that the filter methods
ensure mesh independency of the optimal designs. Fur-
thermore they provide an easy and robust tool to explore
the whole design space with respect to optimal designs
with similar mechanical properties. A successful application
of optimization strategies with FE-based parametrization
requires the combination of filter methods with mesh reg-
ularization strategies. The latter ones ensure reliable results
of the finite element solutions that are crucial for the sensi-
tivity analysis. This presentation introduces a new mesh reg-
ularization strategy that is based on the Updated Reference
Strategy (URS). It is shown that the methods formulated on
this mechanical basis result in fast and robust mesh regular-
ization methods. The resulting grids show a minimum mesh
distortion even for large movements of the mesh boundary.
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1 Motivation

Adjacent to topology, sizing, and material optimization
shape optimization is a discipline that offers many appli-
cations. Within this method, geometry parameters like
coordinates, lengths or radii are utilized as design vari-
ables. The crucial challenges of shape optimization are
related to the highly non-convex objective and constraint
functions caused by the large number of design variables.
One strategy to overcome these problems is a reduction of
design variables by application of parametrization meth-
ods. Well-known parametrization approaches specify the
design variables on the control points of CAD meshes or
by shape basis vectors generated by morphing boxes. Obvi-
ously, the optimal shape is restricted by the capabilities of
the CAD mesh or morphing boxes, respectively. In gen-
eral, one needs several reparametrization steps until the
geometry model is detailed enough to represent the opti-
mal shape with acceptable accuracy. This restriction and the
resulting inconvenience are resolved via mesh-based shape
optimization strategies, which use the coordinates of the
finite element nodes as optimization variables.

Such FE-based formulations result in a huge design
space but they usually end up in mesh dependent results,
which additionally show each mechanical deficiency of the
applied finite elements. It is well known (Haftka and Gürdal
1992; Bletzinger et al. 2005) that structural optimization



508 M. Firl et al.

problems formulated on such large design spaces require
regularization methods to achieve reliable results.

Following the ideas of shape derivatives formulated by
Hadamard (1968, 1903) the coordinates of the finite ele-
ment nodes are separated in two groups. One group of
coordinates specifies the geometry of the model and there-
fore provides the set of possible optimization variables. This
group of coordinates is denoted by ni in Fig. 1. The other
group contains tangential and internal coordinates, which
only define the shape of elements but not the shape of
the component. These coordinates are identified by t j in
Fig. 1. The separation of coordinates is necessary because
they are stabilized by specific regularization terms during
the optimization process.

Figure 1 presents the separation of coordinates for a
shell model. The general ideas can also be applied to solid
structures, where the surface nodes are separated into the
mentioned groups, following similar ideas. The internal
nodes of a solid model do not specify the shape of the struc-
ture. Hence, they are considered as internal nodes t j by
definition.

The gradient data, which are computed for the shape
characterizing coordinates ni are regularized by a projec-
tion method based on convolution integrals. According to
the normal direction of the parameters ni this method is
denoted as out-of-plane regularization. The internal coor-
dinates t j describe the tangent plane at each surface node.
That’s why the mesh regularization strategy is denoted as in-
plane-regularization method in the subsequent derivations.
These stabilization terms ensure smooth gradient fields and
thus also smooth design updates in addition to robust ele-
ment geometries. This gives rise to efficient formulations
of shape optimization problems that produce smooth results
without the time consuming remodeling of CAD geome-
tries. The proposed method is applicable to all kinds of
shape optimization tasks like stiffness maximization of shell
and solid structures.

The necessity of out-of-plane regularization is based on
non-smooth response function gradients. Independently of
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Fig. 1 Design variables of shell structures

the type of differentiation (analytical, semi-analytical or
global finite difference) the gradients are not smooth. In this
context the term “smooth” is related to a geometrical curva-
ture measure because in shape optimization problems the
smoothness of the gradients directly affects the smoothness
of the geometry.

There exist several reasons for the development of non-
smooth gradient fields. In general, this effect is caused by
mathematical properties of the underlying function spaces,
by kinematics and load carrying behavior of the specific
mechanical model and by deficiencies of the applied finite
element formulations:

– The derivatives of response functions (objectives and
constraints) are not as smooth as the functions them-
selves. This is caused by the fact that the derivatives of
a function exhibit larger local curvatures than the func-
tion itself. There exist only few exceptions from this
statement, e.g. trigonometric functions.

– Especially for stiffness maximization of shell structures
there exists an intrinsic interaction between local and
global improvements of the objective. This results in
local regions with high curvatures (local stiffeners like
beads) and other regions with nearly flat geometries.

– The applied finite elements may also give rise to non-
smooth gradient fields. This is caused by incorrect ele-
ment responses, e.g. if the elements suffer from locking
phenomena. Unstructured grids with different element
aspect ratios may also show such a behavior. These
effects can be decreased by application of elements,
which give reliable responses (hybrid elements, EAS
elements (Camprubi 2004)) or by grids with reasonable
element aspect ratios.

The above mentioned observations of shape optimal
finite element models are well known for many years.
There exist several approaches to overcome the problem of
non-smooth gradient fields. They are mostly applied to FE-
based optimization strategies and are able to improve the
smoothness of the gradients.

Mohammadi (1997), Mohammadi and Pironneau (2005)
as well as Jameson and Martinelli (1998) propose a local
smoothing operator, which projects the disturbed gradient
fields to a C1 continuous gradient field. This is realized by
repeated solution of the following system of equations:

(I − ε∇)
d

∼
f

dsl
= d f

dsl
(1)

with the non-smooth derivatives d f
dsl

and the projected

derivatives d
∼
f

dsl
. The parameter ε controls the end of the

iteration procedure by setting ε = 0 if the convergence
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criterion is reached. The term ∇ d f
dsl

specifies the curva-
ture of the objective function, which is eliminated by the
above mentioned iterative procedure. Mohammadi, Jame-
son and Martinelli apply this local second order projection
method for shape optimization of fluid problems. In such
applications the appearance of shock fronts yields to locally
irregular gradient fields.

Azegami and Kaizu (2007) developed the so-called
“Traction Method”. The aim of this method is to compute
a smooth gradient field by the solution of a linear elastic
boundary value problem defined on the original domain.
The Neumann boundary conditions are defined by the non-
smooth gradient field. The authors note that application
of this method is possible to shape as well as to topology
optimization problems.

Bendsøe and Sigmund (2003) propose a so-called sen-
sitivity filter to decrease the mesh dependency of topology
optimization problems. Within this approach the sensitiv-
ity of a single design variable is modified by a weighted
average of the sensitivities in a fixed neighborhood

∂
∼
f

∂sl
= 1

sl
∑N

m=1

∼
Hm

N∑

m=1

∼
Hmsm

∂ f

∂sl
, (2)

where N is the number of elements in the filter domain.
Bendsøe and Sigmund define the weight factor (convolution
operator) as

∼
Hm = rmin − dist(l, m). (3)

The parameter rmin controls the radius of the filter operator
and dist(l, m) specifies the distance between element l and
element m. Elements m with dist(l, m) > rmin are not con-
sidered in the smoothed gradient of element l. The authors
apply this method to topology optimization problems with
the SIMP approach, which treats the density of element l as
design variable sl .

Wang and Wang (2005) propose a sensitivity filter for
SIMP based topology optimization problems. The so-called
bilateral filter is based on a nonlinear filtering process and
prevents checkerboard modes effectively. The presented
examples show the applicability of the method.

Materna and Barthold (2008) apply a method based on
configurational forces, e.g. for in-plane mesh regularization.
Here, they compute variational sensitivities for the internal
potential energy with respect to the coordinates of the finite
element nodes. The final result of the procedure is a grid that
provides a lower internal energy for the mechanical model
and hence a more accurate result.

Recent developments in the field of parameter free shape
optimization strategies are presented by Le et al. (2011).
The authors apply a local smoothing operator to the design

model in order to prevent mesh dependent optimization
results. Several shape optimization examples show the
applicability and efficiency of this method.

2 Projection of sensitivities

In this section, a robust, efficient and reliable projection
method for non-smooth gradient fields is presented. The
method is based on the mathematical theory of convolution
integrals, which is well known for many years.

In order to show the tremendous effects of multimodal
response functions on the gradient fields the simple one
dimensional function depicted in Fig. 2 is applied. It shows
the function f (x) = (x − 2)2 called “Basic Response”.
This function is disturbed by the noise function n(x) =
0.3 · sin(5x). The sum fd(x) = f (x) + n(x) = (x − 2)2 +
0.3 · sin(5x) gives a “Disturbed Response” also visualized
in Fig. 2. The effect of the noise function n(x) increases
tremendously after differentiation of f and fd . The deriva-
tive of the Basic Response (d f (x)/dx = 2x − 4) shows
a completely different behavior compared to the derivative
of the Disturbed Response (d fd(x)/dx = 2x − 4 + 1.65 ·
cos(5.5x)). The former one shows constant slope and no
curvature whereas the latter one exhibits large differences
in slope and curvature. It is easy to observe that gradi-
ent based optimization strategies suffer seriously from such
wavy gradient fields.

This simple example motivates the development and
emphasizes the crucial importance of filter methods for
gradient based optimization schemes. In general, small per-
turbations of response functions can not be prevented, e.g.
due to the approximating character of FE-models. After
differentiation of these response functions the error domi-
nates the whole gradient field and actually prevents accurate
design updates. These disturbed design updates often point
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Fig. 3 2-d Filter functions with
radius r = 3
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to local minima with poor structural properties. Since the
errors are much more visible in the gradients fields than in
the function itself the filter method is conveniently applied
to the gradient fields.

2.1 Theory of convolution integrals

The proposed projection or smoothing operator is based on
convolution (Yosida 1980) of the disturbed gradient field
d fd/dsi with a filter function g written as d fd/dsi ∗ g. It
is defined as the integral of the product of these functions:

d f

dsi
=

(
d fd

dsi
∗ g

)

(si ) =
∫

Rn

d fd

dsi
(si − τ)g(τ )dτ, (4)

whereas Rn represents the n dimensional domain of the
filter function and τ states as local variable of g. For shell
optimization problems the gradient field d fddsi as well as
the filter function g are 2-d functions, c.f. Fig. 3. Hence,

the convolution of these functions is defined by integra-
tion over the area of the filter function g. An application
of this approach to 3-d models (discretized by solids) needs
a volume integral.

The filter function g can be considered as a mollifier
with several characteristic properties. It is non-negative,
has compact support and the integral

∫
gdτ is equal to

1. In mathematics mollifier functions are also infinitely
often continuously differentiable. For application as filter
function for non-smooth gradient fields this property is
not necessary. Further important properties of convolution
integrals are commutativity f ∗ g = g ∗ f , associativity
f ∗(g∗h) = ( f ∗g)∗h, associativity with scalar multiplica-
tion a( f ∗ g) = (a f ) ∗ g = f ∗ (ag) and the differentiation
rule D( f ∗ g) = D f ∗ g = f ∗ Dg. The support of the
smoothed function d f/dsi is slightly enlarged compared to
d fd/dsi , cf. Fig. 4. Additionally, the difference in L1 norm
between the original and the smoothed function is bounded
by a positive constant.
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Fig. 4 Enlarged support due to smoothing operator
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2.2 Application as filter function

The filter method introduced in (4) is defined for continu-
ous functions. In the context of finite element analysis the
filter is usually applied to discrete function values, e.g. at the
nodes, or at the elements. The reformulation of the convolu-
tion integral to discrete values d fd/dsi , g : D with D ⊆ Z

reads as

d f

dsi
=

(
d fd

dsi
∗ g

)

(si ) =
∑

k∈D

d fd

dsi
(si − k)g(k) (5)

For smoothing of discrete response functions of finite ele-
ment models the set D is defined by the set of optimization
variables at finite element nodes.

A set of 2-d functions is drawn in Fig. 3 for filter radius
r = 3. Obviously, the integral of the several filter functions
is not equal to 1. This is considered by a scaling of the RHS
of (5) with 1/

∫
gdτ .

Example I Figure 4 visualizes a basic property of smooth-
ing operations by convolution namely the enlarged support
of the smoothed function. The two dimensional and con-
stant function fc in Fig. 4a has the value 1 in the domain
6 < x < 15, 6 < y < 15 and the value 0 elsewhere.
The function fs plotted in Fig. 4b is obtained by convolu-
tion of fc with a linear filter function with radius equal to 3
(cf. Fig. 3b). The result shows a clear smoothing in the sup-
port region of function fc. But the convolution yields to an
enlarged support of function fs . This function has nonzero
values in the domain 4 < x < 17, 4 < y < 17. In general,
the size of the enlarged support depends on the radius of the
filter function, a large filter radius yields to a big shift in the
support region and vice versa. For applications to optimiza-
tion problems this effect becomes visible near the boundary
of the gradient field because the design space of a mechani-
cal model is limited and, hence, the enlarged support of the
sensitivity field can not be modeled by this space.

Example II The second example of this section shows the
application of 2-d filter functions to a mathematical model

problem. Figure 5a shows a bi-quadratic example function
defined over the domain lx ≤ x ≤ Lx , ly ≤ y ≤ L y with
lx = ly = 1 and Lx = L y = 20 by

fbq(x, y) = 2650((x − Lx )(x − lx )(y − L y)(y − ly))
2

Lx L y(Lx L y − 2Lx − 2L y + 4)

(6)

This function has the value 0 at x = 1 ∧ x = Lx∀y ∈
{ly ...L y} and at y = 1∧y = L y∀x ∈ {lx ...Lx }. The function
reaches its maximum at x = Lx/2 ∧ y = L y/2. A random
function frand(x, y) = rand{−1...1} defined over lx < x <

Lx , ly < y < L y is added to (6) to simulate the noise,
which is contained in the sensitivity fields of mechanical
response functions. The sum fbq + frand = f n

bq is shown
in Fig. 5b. The global characteristics of the basic function
fbq (e.g. global maximum) are also visible in the disturbed
function, but local information cannot be extracted from it.

A set of constant, linear, quadratic and cubic filter func-
tions with a variable filter radius is applied to smooth the
disturbed function. The goal is to obtain the best approxi-
mation of fbq by smoothing the function f n

bq. The resulting
functions are called f s

filt,r for the four different filter func-
tions filt ∈ {constant, linear, quadratic, cubic} and the filter
radii r ∈ {1, 2, 3, 4}. The quality of the smoothed functions
is measured by two performance criteria.

– The L1 norm of the difference between the basic func-
tion fbq and the result of the filtering process f s

filt,r,
– The mean of mean curvature of the nodes of f s

filt,r where
the sum of mean curvature of all nodes is divided by the
number of nodes.

The L1 norm, c.f. (7), of the difference between the
smoothed result and the basic function fbq shows for all
types of filter functions (func) a similar behavior with only
minor differences, cf. Fig. 6a.

N r,func
L1

=
∑

x

∑

y

∣
∣ fbq(x, y) − f s

filt,r(x, y, filt, r)
∣
∣ (7)
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Fig. 5 2-d Quadratic example function
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Fig. 6 Error propagation of Example II

The linear and the cubic filter functions with a radius of
2 are able to decrease the error. For the quadratic filter
function the error remains constant and for constant filter
function the error becomes larger. With an further increasing
filter radius r the L1 norm increases also. This is caused by
the fact that a small part of the basic response is smoothed
out by the filter function. This small part can be considered
as the smoothing error. The amount of smoothing error is
related to the size of the filter radius. The different graphs
in Fig. 6a show that the type of filter function has also
influence on the smoothing error. The best results in terms
of the L1 norm are obtained by cubic filter functions where
constant filter functions yield to worst results. In general,
the smoothing error can not be measured directly because
the basic function (without noise) is usually not known.

Figure 6b shows the mean curvature of the basic function
(constant graph) and the mean curvatures of the smoothed
functions. Also in this figure the graphs of the different
filter functions show a similar behavior. All four filter func-

tions are able to reduce the mean curvature in the result
efficiently. For filter radii r ≥ 4 the mean curvature of
the smoothed results is smaller than for the basic function.
This phenomenon is also caused by the smoothing error
because the high curvature regions of the basic response
fbq are partially smoothed out. Based on the results visual-
ized in Fig. 6a and b f s

cubic,4 is the best agreement between
good approximation of basic response function fbq and
smoothing of the noise.

The smoothed function f s
cubic,4 depicted in Fig. 7b shows

a very good correlation to the basic function fbq. The basic
properties of fbq like maximum at x = 10, y = 10 and
fbq = 0 at the support are also reflected by f s

cubic,4. This can
be identified in more detail in Fig. 7a. This diagram shows
the function values of fbq, f n

bq and f s
cubic,4 along the cutting

line at x = 10. The graph of f s
cubic,4 is not influenced by the

noise function and shows only minor differences to fbq. But
near the boundary at x = 0 and x = 20 the mentioned
boundary effect (cf. Example II) is also contained in the
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smoothed result. Nevertheless, the filtered function f s
cubic,4

is a good approximation of fbq that eliminates the disturbing
influence of the noise very effectively.

The application of convolution integrals as filter method
for disturbed gradient fields yields to smooth sensitivity
distributions, which can be directly utilized for the design
update. But near the boundary or in regions with high cur-
vatures the smoothing error prevents exact approximations
of the gradients if the filter radius is too large. This problem
can be reduced by multiple filter operations with a smaller
filter radius. Another modification of the original filter algo-
rithm is the application of elliptical filter functions near the
boundary. By this method the enlargement of the support
can be decreased significantly.

As elaborated in this section the presented filter approach
is applied to the derivatives of the response functions with
respect to the design variables. In the proposed parametriza-
tion technique (c.f. Section 1) the design variables are
related to the surface normals. The remaining tangential
coordinates of the surface nodes have to be controlled by
mesh regularization schemes. This applies also to the inter-
nal nodes in case of solid models. The next section presents
an efficient mesh regularization scheme, which is ideally
suited to control tangential and internal coordinates. Only
the combination of filter methods and mesh regularization
schemes ensures robust and mesh independent optimization
results.

3 Mesh regularization

In contrast to the out-of-plane regularization method intro-
duced in the previous section the mesh regularization is
denoted as in-plane-regularization method. The basic goal
is to ensure robust and reliable FE-meshes in order to dis-
turb the sensitivity analysis as less as possible. A proper
mesh regularization scheme requires some basic properties.
It should improve the mesh quality but it has to preserve the
geometry. This leads to methods that allow for a floating
FE mesh over the geometry managed by suitable projec-
tion operators. The determination of mesh quality strongly
depends on the special application and the applied finite ele-
ments. In many cases the quality of quadrilaterals and hex-
ahedrons is determined by the inner angles, which should
be close to 90◦. Triangles or tetrahedrons with good quality
usually have nearly equal edge lengths.

Mesh regularization methods are distinguished in geo-
metrical and mechanical approaches. Pure geometrical
methods are based on a local criterion controlling the mesh
by a geometric measure. Mechanical methods solve the
mesh optimization problem by an auxiliary mechanical
model. Usually, both methods require the solution of an

additional system of equations, which requires significant
numerical effort.

Geometrical methods Geometrical mesh regularization
methods apply a local criterion for mesh improvement.
A famous class of geometrical methods are the Laplace
smoother (Zienkiewicz et al. 2000). These robust and sta-
ble methods are based on the computation of the center of
gravity of point clouds.

Mechanical methods In contrast to geometrical methods
the class of mechanical methods formulate an auxiliary
mechanical problem leading to an improved mesh. In gen-
eral, two mechanical theories are applied, elasticity theory
and potential field theory.

There exist several methods to formulate mesh regular-
ization schemes based on elasticity theory. The class of
pseudo elastic continuum models consider the mesh motion
at the boundary as Dirichlet boundary condition. Instead
of modeling continua the discrete spring analogy formu-
lates a net of discrete spring elements that connect the
nodes. The springs are subjected to an initial strain and
compensate boundary movements by new equilibrium states
in the cable net. Another possible formulation of the dis-
crete spring analogy is provided by the so-called Force
Density method (Scheck 1974; Linkwitz 1999a, b). Such
methods model the grid as cable net consisting of pre-
stressed ropes. Scaling of the prestress with respect to a
specified reference length results in mechanically motivated
mesh regularization schemes that do not require a material
formulation.

The potential field theory is a common model to describe
electric, gravitation, magnetic and aerodynamic fields,
respectively. The governing equation of this theory is the
Poisson equation including the Laplace operator. A basic
property the modeled field is that the field lines show a very
smooth and regular behavior. This motivates the application
of potential field theory as mesh regularization method.

4 Minimal surface regularization

In this section the Minimal Surface Regularization (MSR)
method is presented in detail. Basically, this method
belongs to the class of mechanical mesh regularization
methods. It is shown that this approach allows for large
mesh deformations where the distortion of each single ele-
ment is as small as possible. The theory of this method is
related to the well-known form finding problem (Otto and
Trostel 1962; Otto and Schleyer 1966). The formulation
applied here is based on the Updated Reference Strategy
(Bletzinger and Ramm 1999). The derivations of the MSR
approach start with the discretized virtual work of the
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standard form finding problem formulated in the reference
configuration

∂w

∂br
= t

∫

A
(F · S) : ∂F

∂br
d A = 0 (8)

with the deformation gradient F, the PK2 stresses S and the
area of the membrane element A. It is referred to Bletzinger
and Ramm (1999), Wüchner (2007) and Linhard (2009) for
more information about the necessary steps to derive (8).

It is well known that linearization of the form finding
problem defined by (8) results in a singular system matrix
due to the undetermined tangential position of the nodes.
This deficiency can be resolved by stabilization methods
like geometrical constraints or methods of numerical con-
tinuation. In the latter approach the idea is to modify the
original problem by a related one, which fades out in the
vicinity of the solution. The Updated Reference Strategy
(URS) (Bletzinger and Ramm 1999) applies the formulation
of the form finding problem in the reference configuration

δw = t
∫

A
(F · S) : δFd A = 0 (9)

and a homotopy parameter λ to stabilize the singular formu-
lation in (8). Therefore, the modified stationary condition
reads as

δwλ = λt
∫

A
detF(σ · F−T ) : δFd A

+ (1 − λ)t
∫

A
(F · S) : δFd A = 0. (10)

The stabilization effect is based on the prescribed PK2
stresses S that are related to a constant reference
configuration during the equilibrium iterations of the actual
step. Since the reference configuration is updated after con-
vergence of the actual step the difference between actual and
reference configuration fades out. The value of the homo-
topy factor λ can be chosen such that 0 ≤ λ < 1. For
λ = 1 the stabilization term would not work and the sys-
tem of equations would be singular. For decreasing values
of λ the solution process becomes more and more stable but
the speed of convergence decreases. It is also possible to
perform the whole computation only with the stabilization
term (λ = 0 in (10)). This approach results in a linear sys-
tem of equations and is the generalized version of the force
density method (Scheck 1974; Linkwitz 1999a, b; Maurin
and Motro 1998). The URS turns out to be an extremely
stable and robust solution algorithm and provides the basis
for the proposed MSR formulation.

So far the discrete system of equations (10) is nonlinear
in the terms of the discretization parameters br . It is solved
iteratively by consistent linearization using the Newton–

Raphson method. Linearization of (10) with λ = 0 is
formulated by

LIN

(
∂w

∂br

)

= t
∫

A
(F · S) : ∂F

∂br
d A

+ �bst
∫

A

∂

∂bs

(

(F · S) : ∂F
∂br

)

d A

= 0. (11)

with r, s ∈ {1, ..., n}. Reformulation of (11) yields to the
problem: Find the unknown geometry x such that the vector
of unbalanced forces f is equal to zero.

K(x)u = f(x) with

⎧
⎨

⎩

K = t
∫

A(F,s ·S) : F,r d A

f = −t
∫

A(F · S) : F,r d A
(12)

The geometry of the actual configuration follows from the
reference configuration X and the incremental displace-
ments u by x = X + u. Stiffness matrix K and vector of
unbalanced forces f depend on membrane thickness t , sec-
ond Piola Kirchhoff stress tensor S, deformation gradient F
and derivatives of deformation gradient F,r and F,s where
the subscripts r and s indicate the degrees of freedom of
the model, e.g. the unknown nodal positions. It should be
clearly indicated that the stiffness matrix K and the vector
of unbalanced forces f are related to the mesh regulariza-
tion problem only. The solution of the underlying structural
problem is governed by a different set of equations. Accord-
ing to membrane theory the tangential prestress is defined as
boundary condition of the governing PDE. Equation (12) is
solved iteratively until the solution is converged (|�u| <

tol) where the reference configuration is updated at each
iteration step. When the solution is converged the reference
configuration X is nearly equal to the actual configuration x.

The URS based form finding approach introduced so far
was extended by adaptive prestress modification to prevent
numerical problems for ill-posed formulations (Wüchner
and Bletzinger 2005; Wüchner 2007) where equilibrium
geometries for isotropic prestresses do not exist. These kind
of problems often result in extreme element distortions,
which end up in numerical problems. The reason for this
mesh distortions is the fact that the element prestress S in
(12) does not depend on the element geometry. In the fol-
lowing a method is presented that allows for an adaptive
prestress update in each element. By this approach the stress
update rule can be defined in a way that the size and the
shape of the elements fulfills defined quality criteria. This
extension allows a generalization of the URS approach to a
effective mesh regularization method applicable to all kind
of finite elements.

Figure 8 defines the applied configurations for the deriva-
tion of the MSR algorithm. The covariant basis vectors for



Regularization of shape optimization problems using FE-based parametrization 515

Fig. 8 Configurations for MSR

initial configuration

∼
G02

∼
G01

G02

G01

actual/reference configuration

∼g1

∼g2

g 2

g1

limit
configuration

∼
Gmax1

∼
Gmax 2

Gmax 2

Gmax1

Ft ,
∼
Ft

Fmax ,
∼
Fmax

the initial and the actual configuration are specified as G0α

and gα respectively. The maximum allowed element defor-
mation is specified by the covariant basis vectors of the
limit configuration Gmaxα . There exist several possibilities
to specify the limit configuration:

– In several application it is sufficient to apply the best
possible element shape as limit configuration. The best
possible shapes for quadrilateral and triangles are the
unit square and the unit triangle respectively. In this
case all elements that are regularized try to reach the
respective optimal shapes as close as possible.

– Whenever properties of the initial mesh should be pre-
served during the mesh regularization process the opti-
mal element shapes are scaled with the initial volume
of the respective element. In this case it is ensured that
regions with specific mesh densities keep their element
sizes during mesh regularization whereas the element
shapes where improved.

– Instead of using auxiliary optimal elements as limit
configuration the initial element geometries itself can
be used. By this approach the regularized mesh shows
only minimal differences to the initial grid.

The introduced basis systems can be transformed in prin-
cipal directions indicated by a tilde. Transformations
between initial and actual configuration and initial and limit
configuration are indicated by Ft and Fmax respectively.

Element shape control of the MSR method is based
on the principal stretches of the elements in the reference
configuration. The deformation at iteration step k is defined
by the total deformation gradient Fk

t :

Fk
t = gk

α ⊗ Gα
0 (13)

The subscripts and superscripts α ∈ {1, 2} indicate the plane
co- and contravariant basis vectors, respectively. The total
right Cauchy Green tensor Ct follows from the deformation
gradient by

Ct = FT
t Ft (14)

where the iteration counter k is omitted for simplicity. The
element distortion is measured by principal stretches, which
follow from the eigenvalues of the right Cauchy Green
tensor by the equation

(Ct − λ2
i I)

∼
Ni = 0. (15)

The principal stretches are denoted by γtα with α ∈
{1, 2}. These parameters are compared with predefined limit
stretches γmaxα and γminα . If the principal stretches violate
these bounds the element prestresses are modified by the
factors βα:

βα =

⎧
⎪⎪⎨

⎪⎪⎩

γmaxα

γtα
if γtα > γmaxα

γminα

γtα
if γtα < γminα

with α ∈ {1, 2}

(16)

The general stress update procedure can be formulated
by a nested sequence of pull back and push forward
operations:

1. Apply prestress to limit configuration
2. Perform pull back operation to initial configuration
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3. Compute push forward operation to actual configuration

Smod = ∼
Ft

∼
F

−1

maxS
∼
F

−T

max

∼
F

T

t

with

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∼
Ft =

[
γt1 0
0 γt2

]

∼
Fmax =

[
γmax1 0

0 γmax2

] (17)

The deformation gradients
∼
Ft and

∼
Fmax (cf. Fig. 8) define

the transformation of the principal directions from the ini-
tial configuration to the actual configuration and the limit
configuration, respectively. After substitution of (16) in (17)
one obtains a simple equation for the modified prestress
Sαβ

mod:

Sαβ

mod = Sαβ

βαββ

with α, β ∈ {1, 2}. (18)

The modification of the prestress during the iterative solu-
tion procedure ensures that the principal deformation of all
elements does not exceed the region defined by γmax and
γmin. If an element becomes too large during the regular-
ization process the prestress is increased. Otherwise if an
element becomes too small the prestress is decreased. This
results in a model where the necessary mesh deformation is
distributed to all elements in the mesh.

The regularization method introduced so far computes
the equilibrium shape for a given boundary and a given pre-
stress with a limited element distortion. But in the context
of shape optimization this approach is applied to a known
geometry, which should be preserved. Here the geometry is
defined by nodal coordinates and respective directors. This
constraint is fulfilled by application of the MSR approach
to the set of tangential coordinates. In general there exist

f

10 40 40

10

40

40

10

10

10

thickness
t=0.5

filter
radius

5

P1

15

P2

10

Fig. 9 Geometry, support and loading of quadratic plate

several possibilities to include such constraints in the for-
mulation like Lagrangian multipliers or Penalty methods. In
the proposed MSR method the normal degree of freedom at
each node is eliminated by the Master Slave Method. Due
to the reduced number of dofs the system of equations is
smaller and the solution is more efficient.

Application of the MSR method for mesh stabilization
during the FE-based shape optimization process yields to
robust element aspect ratios without large local element
distortions. Such meshes are the crucial prerequisite for
accurate sensitivity responses. Thus, the MSR method and
the sensitivity filter allow for accurate sensitivity analysis
during the whole optimization procedure.

5 Model Problem Ia

The first model problem intends to demonstrate the mesh
independency of the optimal solutions.

It shows a quadratic plate with corner support and cen-
tral loading by four nodal forces f according to Fig. 9. The
specified geometry is discretized by 1,600 (Mesh I), 6,400
(Mesh II) and 14,400 (Mesh III) elements, respectively.

(a) Mesh I

(b) Mesh II

(c) Mesh III

Fig. 10 Optimal design for model Problem Ia
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Fig. 11 Path plots for model
Problem Ia
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The goal of the optimization problem is to maximize the
stiffness of the structure. The shape derivatives are regular-
ized with the projection method introduced in Section 2.2.
For this example cubic filter functions (Fig. 3d) with a
radius r = 5 are applied.

The optimal geometry specified by the different dis-
cretizations is presented in Fig. 10. It is characterized by a
membrane dominated load carrying behavior utilizing eight
bead like structures that transfer the load from the center to
the supports near the corners. The mesh independency of the
results is more clearly shown by the graphs in Fig. 11. Here,
the cross sections along the paths P1 and P2 are compared
for the three discretizations. It is easy to verify that the three
different discretizations describe nearly the same geometry.
Only along path P1 some minor differences between Mesh
I and the finer grids are visible. A possible reason is the
small filter radius, which controls the curvature of the geom-
etry. In general, a sufficient number of elements is required
to ensure a robust approximation of highly curved geome-
try regions. Obviously, Mesh I is a little bit too coarse for
this small filter radius. Along path P2 the curvature is small
enough so that the coarse grid of Mesh I allows for a good
approximation too.

6 Model Problem Ib

This model problem is related to the previous Model Prob-
lem Ia but here the influence of an increasing filter radius
on the optimization result should be demonstrated. Again
the quadratic plate problem depicted in Fig. 9 is investi-
gated. Instead of varying the mesh density this example uses
a fixed mesh with 40 × 40 elements (Mesh I). All other
parameters of the mechanical problem and the optimization
model are similar to Model Problem Ia. Filter radii of of size
5, 10, 15 and 20 are applied and their effects on the optimal
geometries are visualized.

Figure 12 compares the optimal geometries along the
paths P1 and P2. Especially the optimal geometries along
path P1 are significantly influenced by the size of the filter
radius. It can be observed that the curvature of the opti-
mal geometry decreases when the filter radius increases.
Thus, application of a large filter radius yields to smooth
geometries whereas a small filter radius allows for wavy
geometries. Comparing Fig. 12a and b shows that a smaller
filter radius does not automatically yield to wavy geome-
tries. Along path P2 the varying filter radius has only a
small influence on the optimal geometries. The reason is

Fig. 12 Path plots for model
Problem Ib
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Table 1 Displacements and compliance of MP Ib

Design Scaled displacement Scaled compliance

Initial 1.0 1.0

r = 5 mm 0.0124 0.0123

r = 10 mm 0.0130 0.0131

r = 15 mm 0.0135 0.0137

r = 20 mm 0.0139 0.0139

that the optimal geometry along path P2 is less wavy than
the optimal geometry along path P1. Such a smooth optimal
geometry would be only affected if the filter radius would
be significantly increased.

The previously presented optimization results show that
the radius of the filter function is an appropriate tool to
control the curvature of the optimal result. But the more
important question is: How does the size of the filter radius
influence the quality of the optimum? The quality of an
optimum is usually measured by the value of the applied
objective function. The optimal geometries computed for
this model problem exhibit nearly the same objective value
(c.f. Table 1) and convergence behavior. Thus, there exist
many nearly equivalent solutions for the presented opti-
mization problem. Obviously, this statement is problem
dependent and not always true. Nevertheless, many shape
optimization problems have a significant number of possi-
ble solutions with nearly equal mechanical properties. By
variation of the filter radius the designer has the possibility
to choose between several solutions, which look different
but act similar.

7 L-shaped cowling

This shape optimization example was originally proposed
by Emmrich in his PhD thesis (Emmrich 2005). It describes
the stiffening of a bending dominated cowling structure by
beads.

The geometry, the material data and the supports are
equal to the model proposed in Emmrich (2005). The cowl-
ing structure is clamped near both sides of the upper blank.
The length of each clamping is equal to 2.5 mm. In con-
trast to the problem proposed by Emmrich the loading
acts perpendicular to the lower flat part of the cowling. In
Emmrich (2005) the loading acts as a tension force in z-
direction. Thus, the lower flat part of the cowling transfers
the loads via membrane loading. For the optimization exam-
ple shown here the loading acts in x-direction. This results
in a bending load of the whole structure. It should be noted
that the chosen thickness and geometry result in a very thick
shell with an radius to thickness ratio of 10.

Fig. 13 Cowling geometry

The goal of this optimization problem is minimization of
linear compliance with geometric constraints. These con-
straints limit the height of the resulting beads to 2.5 mm.
Furthermore it is enforced that the dimensions (width and
height) of the cowling remain constant. The optimization
variables are defined as the directors of the FE-nodes.
The optimization starts with the initial design depicted in
Fig. 13.

This relatively simple shape optimization problem should
be used to visualize

– The effect of a varying filter radius and
– The mesh and parametrization independency of the

proposed methods.

Therefore, the results of three different filter radii (r = 1,
r = 2 and r = 3 mm) are compared. The parametriza-
tion independency is investigated by FE-models with 1,650,
3,735 and 6,600 shell elements.

7.1 Filter radius as design tool

The influence of the filter radius is shown on the finest
discretization with 6,600 finite elements and 6,771 design
variables. Figure 14 compares the optimal geometries after
30 iteration steps. The dependency on the filter radius is
clearly visible. The bead structure obtained for r = 1 mm
shows local beads at both sides of the cowling and a rel-
atively flat inner part. This results in an explicit bead
structure that is well suited to transfer the load to the sup-
ports. Increasing the filter radius (c.f. Fig. 14b and c) gives

Table 2 Comparison of cowling designs

Design Scaled displacement Scaled compliance

Initial 1.0 1.0

r = 1 mm 0.063 0.068

r = 2 mm 0.044 0.047

r = 3 mm 0.061 0.065
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(a) r=1mm

(b) r=2mm

(c) r=3mm

Fig. 14 Optimal cowling geometries

an increased bead width. The resulting geometries show
reduced curvatures and a smoother shape. But the crucial
question is how much does the increased filter radius affect
the mechanical properties of the structure? In this example
the mechanical properties are measured by the compliance
and the displacements at the loaded node. The objective val-
ues at the optimum are listed in column 3 of Table 2. They
differ only slightly compared to the initial compliance value.
A similar behavior is observed by comparing the displace-
ment norms of the loaded node. These displacements show

(a) mesh 1650

(b) mesh 3735

(c) mesh 6600

Fig. 15 Mesh independent optimal geometry

that all three designs are efficient improvements of the ini-
tial design but the displacements of the optimized designs
are nearly equal.

Comparing compliance and displacements substantiates
that a variation of the filter radius yields to different designs
with similar mechanical properties. Thus, the filter radius
can be used as a design tool to explore the space of optimal
solutions. All the resulting designs are efficient improve-
ments of the initial model with similar performance. Finally,
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Table 3 Comparison of cowling parametrizations

Grid size Scaled displ. norm Scaled compliance

1,650 0.0599 0.0646

3,735 0.0400 0.0432

6,600 0.0440 0.0476

the designer can choose between different optimal designs
according to his own subjective measures.

7.2 Mesh and parametrization independency

In order to show the parametrization independency of the
proposed optimization method a fixed filter radius of 2 mm
is chosen. The cowling geometry is discretized by three
grids with 1,650, 3,735 and 6,600 shell elements. The
parametrizations defined by these three grids contain 1,736,
3,864 and 6,771 optimization variables, respectively. The
optimization results are visualized in Fig. 15. Obviously,
all three optimization problems give the same result. The
only difference is the parametrization that is applied to
represent the optimal geometry. Table 3 compares displace-
ment norms and compliances of the optimal cowling design
described by the specified parametrizations. In order to sim-
plify comparability the values are scaled with respect to the
values of the initial design represented by the respective
grids. The differences in the displacement norms as well as
in the compliance are very small. The values are placed in
a range between 4.0 and 6.5 % of the respective initial val-
ues. Thus, it can be noticed that the three presented results
describe the same geometry with nearly equal mechanical
properties.

It should be stated that the parametrization independency
is only obtained if the optimal geometry can be repre-
sented with sufficient accuracy. It is well known that a
sufficient mesh density of finite element analysis depends
on the geometry, the boundary conditions, the applied finite
elements, etc. In structural optimization also the applied
response functions, the constraints and the filter radius have
to be considered before choosing a parametrization. Thus,
establishing general guidelines for a sufficient mesh density
is not possible.

Nevertheless, many optimization problems result in
parametrization independent solutions if the edge length
of the finite elements lele and the filter radius r fulfill the
relation

r

lele
> 4. (19)

Thus, the whole filter function spans at least over 8 ele-
ments. This usually ensures a relatively smooth approxima-
tion of the optimal geometry.

The property of parametrization independency is very
important for shape optimization methods. It ensures that
the optimal design is not restricted by the chosen design
space. Parametrization independency can only be obtained
if regularization methods like the proposed sensitivity
filter are applied. Common parametrization techniques like
CAGD, Morphing or shape basis vectors do not contain
such approaches. Thus, the optimal results obtained by these
methods strongly depend on the chosen parametrization.

8 Conclusion

This paper introduces a fully stabilized formulation for FE-
based shape optimization problems. The motivation, the
detailed derivation and the application of normal and tan-
gential regularization methods were presented. The basic
properties of the proposed approach are summarized in the
following concluding remarks.

– The sensitivity filter and the mesh regularization
method are applicable to all kind of shape optimiza-
tion problems, independent from type of objective,
constraints or mechanical model.

– The numerical effort of the regularization methods
compared to sensitivity analysis and system evalua-
tion is negligible. Both methods are well suited for
parallelization on HPC-systems.

– The introduced filter method is based on the well
known mathematical theory of convolution integrals.
The specific properties of the filter method applied to
shape optimization problems are presented in Section 2.
It was shown that the method offers a direct control of
the smoothness of the optimal geometry. The presented
examples show that the proposed filter method guar-
antees mesh independent results and provides an upper
limit to the maximum curvature of the optimal design.

– Exact numerical response of the mechanical model
requires robust element aspect ratios. This is ensured
by the proposed mechanically motivated mesh regular-
ization algorithm. Here, the necessary mesh distortion
is distributed equally over the whole mesh. Hence, the
geometry of each single element is distorted as less as
possible.
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