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Abstract In level set based structural optimization, semi-
Lagrange method has an advantage to allow for a large time
step without the limitation of Courant–Friedrichs–Lewy
(CFL) condition for numerical stability. In this paper, a line
search algorithm and a sensitivity modulation scheme are
introduced for the semi-Lagrange method. The line search
attempts to adaptively determine an appropriate time step
in each iteration of optimization. With consideration of
some practical characteristics of the topology optimization
process, incorporating the line search into semi-Lagrange
optimization method can yield fewer design iterations and
thus improve the overall computational efficiency. The sen-
sitivity modulation is inspired from the conjugate gradient
method in finite-dimensions, and provides an alternative
to the standard steepest descent search in level set based
optimization. Two benchmark examples are presented to
compare the sensitivity modulation and the steepest descent
techniques with and without the line search respectively.
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1 Introduction

Among various numerical methods for structural shape and
topology optimization, the level set based approach excels
in smooth structural boundary representation, compared
with the material based approaches. Popular material based
techniques include the homogenization method (Bendsoe
and Kikuchi 1988), the method of Solid Isotropic Material
with Penalization (Zhou and Rozvany 1991; Bendsøe and
Sigmund 1999), and the Evolutionary Structural Optimiza-
tion (Xie and Steven 1993). The level set method, as
introduced in Osher and Sethian (1988), enables numerical
computations of a time-dependent evolution of a free-form
shape, which is represented implicitly over a Cartesian grid
in a higher dimensional space. The pioneer works of incor-
porating this method into structural optimization can be
found in Sethian and Wiegmann (2000), Allaire et al. (2004)
and Wang et al. (2003). For a comprehensive review of
structural optimization, the readers may refer to excellent
surveys (Haftkaa and Grandhib 1986; Eshenauer and Olhoff
2001; Guo and Cheng 2010).

For a material based optimization method, design vari-
ables are explicitly defined using the element densities
or properties. Thus many approximation algorithms, like
the optimality criteria method and the method of mov-
ing asymptotes, are workable and efficient (Bendsoe and
Sigmund 2003). But in the level set based optimization, the
implicit design model is updated by solving a Hamilton–
Jacobi type partial differential equation. It is well known
that for the traditional upwind scheme (Osher and Fedkiw
2002), the time step is strictly constrained by the CFL con-
dition (Courant et al. 1967), which limits the moving front
to propagate not more than one grid length in a single time
step. Therefore, the optimization process usually takes hun-
dreds of iterations to converge, even for simple problems.
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To circumvent this limitation, a number of techniques have
been proposed, including the fast marching method (Sethian
1996), AOS scheme (Lu et al. 1991; Weickert et al. 1998;
Luo et al. 2008), radial basis function based parameteri-
zation method (Luo et al. 2007), and the semi-Lagrange
method (Strain 1999; Xia et al. 2006).

Structural optimization with semi-Lagrange method
(Bargteil et al. 2006; Strain 1999; Xia et al. 2006) has great
potential for fast convergence. It is unconditionally stable
and free of CFL condition, with a larger time step allowed
than that of the upwind scheme. The theoretical framework
of semi-Lagrange method for contouring moving interface
was given by Strain in his seminal articles (Strain 1999,
2000, 2001). In this method, the level set equation is solved
by evaluating an explicit semi-Lagrangian formula through
a backward path tracing. Numerical accuracy is the only
factor that restricts the upper limit of the time step rather
than the CFL condition (Ritchie 1986). Early applications,
like that in (Xia et al. 2006), use semi-Lagrange method
with a fixed time step for level set based structural opti-
mization. In such case, although the optimization process is
accelerated without considering the restriction of CFL con-
dition, to find a proper time step still requires tedious and
repetitive testing for different practical problems. Moreover,
the fixed time step scheme lacks flexibility and theoretical
validity.

In this paper, a line search scheme is proposed for
the semi-Lagrange method to allow adaptive time steps
in optimization. By leveraging the stable property of
semi-Lagrange method, this scheme automatically spurs a
sufficient descent of the objective for each design iteration.
Although performing a line search inevitably incurs addi-
tional computational cost, the scheme has a mechanism to
avoid unnecessary searches by taking into account of some
practical characteristics of shape and topology optimiza-
tion. To better illustrate the significance of the line search
in level set based structural optimization, a new Sensitiv-
ity Modulation (SM) scheme is proposed in this paper for
comparative study, which can be regarded as an alternative
to the standard steepest descent method. From the view-
point of an optimization algorithm, the Conjugate Gradient
(CG) method is generally known of better performance than
the Steepest Descent (SD) method for finite dimensional
problems (Nocedal and Wright 2006). Various nonlinear
CG techniques have been well studied in last decades (Dai
and Yuan 1999; Fletcher and Reeves 1964; Fletcher 1987;
Hestenes and Stiefel 1952; Liu and Storey 1991; Polyak
1969; Zhou et al. 2011). Directly inspired from the CG
method in finite dimensions, the scheme is devised in a
heuristic manner with a similar format of the traditional CG
method. Numerical experiments reveal that, by incorporat-
ing the line search, the overall design efficiency of using SD
and SM can improve substantially. Moreover, the proposed

sensitivity modulation scheme behaves as effectively as the
steepest descent method with using line search.

This paper is organized as follows. The basic theory of
the level set based structural optimization and the semi-
Lagrange method is reviewed briefly in Section 2. Detailed
algorithms of the line search and sensitivity modulation
are elaborated in Section 3. Numerical experiments of
two benchmark examples are presented and discussed in
Section 4. Finally, conclusion and future work are stated in
Section 5.

2 Semi-Lagrangian level set method

2.1 Level set based structural optimization

In the level set framework, a Lipschitz-continuous implicit
function �(x(t), t) is used to represent the design domain
D, which includes the admissible shape � of underlying
structure. The domain contains two regions: the structural
interior � and the void D\�. Let � be the structural
boundary:

� = {x (t) : �(x, t) = 0, x ∈ �} . (1)

Thus, the level set equation can be written as:

∂�

∂t
+ vn · |∇�| = 0, � (x, 0) = �0 (x) , (2)

where �0(x) defines the initial model, and vn is the magni-
tude of the velocity of shape transformation along the local
unit normal outward to the structural boundary (Allaire et al.
2004; Wang et al. 2003).

The level set method has been applied to numerous topics
of structural optimization, such as mean compliance, stress
and frequency response problems. In this paper, only the lin-
early elastic problem of the compliance minimization with
volume constraint is concerned to illustrate the effectiveness
of the proposed algorithms. Extensions to other objectives
and constraints are straightforward.

The classical formulation of mean compliance minimiza-
tion with volume constraint is defined as:

min
�

J (u, �) =
∫

�

1

2
Eε (u) : ε (u) d�, (3)

s. t. G (�) =
∫

�

d� − V0 ≤ 0, (4)

a (u, w) = l (w) for all w ∈ U, (5)

where U denotes the space of kinematically admissible dis-
placement field with predefined displacement at Dirichlet
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boundary, u the elastic displacement under external loads,
ε the strain tensor, E the elasticity tensor, and V0 the allow-
able volume of design. Equation (5) corresponds to the
linear elastic equilibrium, where a and l denote the energy
bilinear and the load linear variational form respectively:

a (u, w) =
∫

�

Eε (u) : ε (w) d�, (6)

l (w) =
∫

�

( f · w) d� +
∫

�

(h · w) d�, (7)

where f is the body force, and h the traction force on the
Neumann boundary.

A common technique to solve the constrained opti-
mization problem is to construct an augmented objective
functional as:

L = J + λ

(∫
�

d� − V0

)
, (8)

where λ > 0 is the Lagrange multiplier. The shape gradient
of the general objective L is determined effectively as:

L̇ (�) =
∫

�

Gvnd�, (9)

where G is known as the shape gradient density of the prob-
lem. The SD method simply takes vn = −G, and this choice
guarantees L(�) ≤ 0. This is a common strategy for the
level set method in structural optimization facilitated with
sensitivity analysis of the optimization problem (Wang and
Wang 2004).

For simplicity, traction-free boundary and body-force
free conditions are assumed in this paper. Thus, the steepest
descent direction of optimization search is found by setting
the normal velocity vn as (Allaire et al. 2004; Wang et al.
2003):

vn = −
(

λ − 1

2
Eε (u) : ε (u)

)
, (10)

with λ updated by the following rule, for iteration number i :

λi+1 = max

{
0, λi + μ

(∫
�

d� − V0

)}
, (11)

where μ is a penalty parameter. Consequently, the optimal
design can be obtained by solving the Hamilton–Jacobi (2)
with (10) and (11).

2.2 Semi-Lagrange method

To be self-contained, the basic theory of semi-Lagrange
method for hyperbolic partial differential equation is
reviewed briefly in this section. Readers may refer to rele-
vant literature, such as Bargteil et al. (2006), Staniforth and
Cote (1991), Strain (1999, 2000, 2001) and Xia et al. (2006),
for more details. Semi-Lagrange method leverages the fact
that (2) propagates the solution � along the characteristic
curve x = c(t) by:

ċ (t) = v (c (t) , t) . (12)

Evaluation of �(xi+1, ti + �t) amounts to tracing the char-
acteristic back in time from xi+1 = c(ti + �t) to the
previous point xi = c(ti ), and then setting �(x, ti+1) =
�(c(ti ), ti ). Different interpolation schemes (Staniforth and
Cote 1991; Xia et al. 2006) are pertinent to compute
�(xi , ti ) even if xi might be off the grid.

In this paper, the first order Courant–Isaacson–Rees
formula (Courant et al. 1952) is adopted to approximate
the characteristic curve through any spatial point x via a
straight line with the speed v(x, t −�t) of the previous time
step:

c (t) ≈ x − �t · v (x, t − �t) . (13)

Thus, the Hamilton–Jacobi equation can be readily
solved as:

�(x, ti+1) = �(x − �t · v (x, ti ) , ti ) . (14)

The explicit semi-Lagrange method is unconditionally sta-
ble, and it allows for a much larger time step compared
to that of the upwind scheme restricted by CFL condition.
Despite the relaxation, it requires repetitive testing to deter-
mine a proper time step for a practical application (Xia
et al. 2006). To alleviate this problem, a line search algo-
rithm is proposed here to determine an appropriate time
step for each iteration, instead of using a fixed setting
throughout the optimization process. It will be seen that the
advantages of semi-Lagrange method can be fully realized
together with the line search for the level set based structural
optimization.

3 Line search and sensitivity modulation

3.1 A line search algorithm

A line search technique generally refers to two mainstreams:
exact and soft line search (Nocedal and Wright 2006). Given
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a predetermined descent direction, the exact line search
locates the exact minimum along the direction, while a soft
search only leads to a result satisfying some liberal crite-
ria but with a cheaper computational cost. For the level set
based structural optimization, performing exact line search
is not necessary due to two considerations. Firstly, each line
search requires a finite element analysis for evaluating the
structural performance, which is computationally expensive
especially for high-accuracy analysis. Secondly, the time
step cannot be set arbitrarily large due to numerical accu-
racy and stability concerns in solving the partial differential
equation, even using semi-Lagrange method. Therefore,
a soft line search strategy is preferred for semi-Lagrange
method.

The infinite-dimensional version of the line search algo-
rithm is listed in Table 1 in pseudo code. It is a direct
adoption of Armijo–Golden’s rule (Burger 2003), which
is well known for its effectiveness. The basic rationale of
this algorithm lies in the idea of sufficient descent in each
search. A bisection technique is adopted here to find an

appropriate time step to locate the target state �∗
k meeting

the following condition:

L
(
�0

k

)
+ β2 · L̇

(
�0

k

)
· �t ≤ L

(
�∗

k

) ≤ L
(
�0

k

)

+ β1 · L̇
(
�0

k

)
· �t, (15)

where �0
k is the initial level set model at iteration k. β1 and

β2 denote two thresholds for checking whether the objective
reduced within the current time step �t meets the expecta-
tion, and, by default, 0 < β1 < β2 < 1.0. Tmin and Tmax

represent the lower and upper limit of time step respectively.
It is quite common that the optimal time step �t may not be
found within a few steps, or it even lies outside the interval
between Tmin and Tmax. Thus, for each iteration, a maximum
number of search M is set to limit unnecessary computation.

Practical experience of using the level set method reveals
that the remarkable shape and topological changes occur
mostly at the beginning of the optimization process. It is
in this phase that the design process finds its way to the

Table 1 Pseudo code of the line search algorithm

Algorithm 1. Line Search 

Input: current level set model 0
k ; maximum time step allowed by CFL condition CFLt ; lower and upper limits 

of time step minT  and maxT ; maximum number M of line search for each iteration. 

1:   Set 0 , 0 , min1 Tt , max2 Tt , 0.10 21  , 1i ; 

2:   if (conditions (16)−(18) are all satisfied) 

CFLtt ; 

3:  else  

4:         while Mi

)(
2

1
21 ttt ; 

5:                  Compute  the new level set model i
k using semi-Lagrange method; 

6:                  Evaluate objective function )( i
kL ; 

7:                  if ( tLLL kk
i
k )()()( 0

2
0 )                     

tt1 ; 

8:                 else if ( tLLL kk
i
k )()()( 0

1
0 )             

tt2 ; 

9:                 else break; 

10:               end 

11: i ;

12:         end

13: end
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near-optimum region. Once the region has been found, the
overall topology usually has little change, but a relatively
long oscillation process follows afterwards which deals with
local geometry adjustment as well as convergence. This
two-phase phenomenon is basically due to the augmented
Lagrange multiplier strategy, and it is also affected by
parameter setting, such as the penalty parameter. There-
fore, performing a line search seems necessary to guide the
optimization at the beginning, when there is little informa-
tion known except the search direction. For the later phase,
as the proper topology and general shape have been deter-
mined, improving the accuracy can reduce oscillation, and
thus lead to a quick and smooth convergence. Therefore, a
line search is not needed for the later stage.

For these reasons, a criterion is set with the following
three conditions:

1)

∣∣∣∣ V − V0

V0

∣∣∣∣ ≤ ε, (16)

2)

∣∣∣∣ L (�k) − L (�k−1)

L (�k−1)

∣∣∣∣ ≤ α, (17)

3)

∣∣∣∣ L (�k−1) − L (�k−2)

L (�k−2)

∣∣∣∣ ≤ α, (18)

where V is the structural volume at current iteration, V0 the
volume constraint,and and α the thresholds defined by the

user. In each iteration, if all the three conditions are sat-
isfied, it implies that the optimization process is about to
converge. Then the time step is simply set to be the max-
imum allowed by the CFL condition. Otherwise, the line
search is performed.

Note that the above criterion is restricted to the optimiza-
tion problem with volume constraint. For other different
problem formulations, a proper relaxation of the conver-
gence criterion may be served as a similar criterion to
terminate the line search.

With the proposed line search scheme, although addi-
tional computation cost arises for each search, the overall
convergence efficiency can be enhanced with much fewer
iterations. A reasonable final design can also be obtained
effectively, as shown in the numerical tests presented in
Section 4.

3.2 A sensitivity modulation scheme

In this section, a sensitivity modulation scheme is proposed
for semi-Lagrangian level set based structural optimization.
The scheme is directly inspired from the idea of CG method
in finite dimensions, and thus is formulated similar to the
CG method.

In the algorithm of steepest descent of semi-Lagrange
method, it simply takes vn =−G as current search direction,
without considering the information of either the structural

Table 2 Sensitivity modulation algorithm

Algorithm 2. Quasi-conjugate gradient 

Input: level set model k  of iteration k ; resetting condition number pn . 

1:   Start with 0k , set 0 , and initialize 00
Gvn ;   

2:   Determine the time step t  using line search method in direction of 
knv ; 

3:   Compute the new shape using Semi-Lagrange method: 

),),((),( 1 kknk ttvtt
k

nxxx ; 

4:   Find the new direction of search by: 

kk nkkn vGv 11
,         

k

k

dGG

dGG

kk

kk

k
1

11

5:   If any of following cases happens, reset  0k

1)
k

dGG kk

2) 0)()( 1 kk LL

3) 1)mod( pnk

6:   k , and then repeat steps 2 - 5 until convergence 
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configurations or the search directions at previous steps. A
strong motivation for devising a modulated sensitivity is
essentially to incorporate the earlier updating information
into the current search.

Table 2 lists the detailed algorithm of the sensitivity mod-
ulation. Starting with an initial design �0(k = 0) and a
normal velocity of steepest descent vn0 = −G0, the line
search is first evoked to find a proper time step. After the
updated design �k+1 with the corresponding shape gradient
density Gk+1, a modulated search direction is defined by:

vnk+1 = −Gk+1 + βkvnk , (19)

βk =
∫
�k+1

Gk+1 · Gk+1d�∫
�k

Gk · Gkd�
, (20)

where �k denotes the structural boundary at iteration k.
Note that βk is taken in a similar form to that of the finite
dimensional problem (Fletcher 1987). Here, for the infinite
dimensional problem at hand, the gradient vector norm is
replaced analogously with the integration over the boundary.

Nonetheless, the newly generated direction from (19)
may lose significance for optimization after a few iterations,
due to the inexact soft line search and the infinite dimen-
sional nature of the problem. As a remedy, it is advisable to
restart with the steepest descent search to ensure meaningful
computation and efficiency. The following three resetting
conditions are suggested:

1)

∫
�k

Gk · Gkd� < γ, (21)

2) L (�k+1) − L (�k) ≥ 0, (22)

3)
(
k mod n p

) = 1, (23)

where γ is a small positive number and n p is a pre-defined
number of steps. If any one of the conditions occurs, then
the search direction will be reset to the steepest descent
direction. However, a proper selection of n p depends on
applications, and no universal optimal setting may exist.

4 Numerical examples

In this section, two benchmark examples of structural opti-
mization are studied using the schemes of SD and SM with
and without line search respectively. An “ersatz material”
approach (Allaire et al. 2004; Wang et al. 2003) is adopted
for finite element analysis. Without loss of generality, a
fixed time step of �t = tC F L is used for the traditional cases
without using the line search, so that the numerical accuracy
and stability are guaranteed. Re-initialization is performed
at the end of each design iteration after the level set model
has been updated. All the examples are carried out on a PC
with 4 GB RAM and Intel Core2Quad CPU of 2.66 GHz
speed.

4.1 Cantilever beam

The first classical example, a cantilever beam, is considered
with the design domain and initial design shown in Fig. 1.
The structure is discretized with a mesh of 80 × 40 ele-
ments. The volume ratio of the final design is constrained to
be 60 % of the design domain.

In order to better demonstrate the effectiveness of the
proposed algorithms, the following parameters are consis-
tent for all the four experiments: L = 200, H = 100,
F = 10, λ = 0.3, Tmin = 0.8 × tC F L , Tmax = 6 × tC F L ,
β1 = 0.1, β2 = 0.9, E = 1, Eo = le − 3, = 5 %, α = 1 %,
γ = 0.1, where Eo denotes the Young’s modulus of the
weak material phase.

4.1.1 Steepest descent

First, the SD method is used for the cases of with and with-
out line search respectively. Figures 2 and 3 illustrate the
results of optimization for the respective case. The corre-
sponding convergence curves are depicted in Fig. 4a and b.
In Fig. 4, the left vertical marking line in each sub-figure
indicates the near-optimal region of the first phase of the
optimization process, where the volume constraint is sat-
isfied, and the optimal topology and shape are generally
determined. The second vertical marking line indicates that
the final optimum design has been obtained. Key indicators

Fig. 1 Cantilever beam:
(a) design domain; (b) initial
design
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Fig. 2 Cantilever beam:
steepest descent with line search

Step 5 Step 11 

Step 22 Step 30 

Step 44 Final after 50 steps 

Fig. 3 Cantilever beam:
steepest descent without line
search

Step 10 Step 20 

Step 30 Step 57 

Step 90 Final after 100 steps 
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Fig. 4 Convergence curves of
the cantilever beam example:
(a) SD with line search;
(b) SD without line search;
(c) SM with line search;
(d) SM without line search
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Table 3 Results of the cantilever beam example for different search algorithms

Final mean No. of steps Time to No. of steps Time to

compliance to near-optimum near-optimum (s) to converge converge (s)

SD with line search 5363 22 303 44 443

SD 5466 57 356 90 563

SM with line search 5373 22 310 43 439

SM 5500 93 632 119 808

of the optimization processes are listed in Table 3 for the
cantilever beam example. Note that for structural optimiza-
tion, in order to find a global optimum, it relies on convex
problem formulation and proper optimization techniques,
which is beyond the scope of this paper. Thus, only the local
optimum is considered here.

As shown in Fig. 2, with the line search, major topolog-
ical and shape changes occur at the first 10 steps. The line
search is performed only for about 20 steps at the beginning
before conditions of (16)–(18) are satisfied. Subsequently, a
smooth and quick convergence is observed. For this exam-
ple, the SD method with line search finds the near-optimal
region within 22 steps of 303 s. Convergence is obtained
within 44 steps of 443 s. Comparatively, for the case without
the line search, as shown in Fig. 3, it takes 57 steps of 356 s

to find the near-optimal region, and 90 steps of 563 s to con-
verge. The final designs are also slightly different for the
two cases, with the line search scheme resulting in a lower
mean compliance in the final design, thus a better design.

With the line search, each iteration generally takes longer
execution time due to additional finite element analysis, but
the total time to reach the near-optimal region and the final
convergence is reduced by about 15 % and 21 % respec-
tively, compared to that without the line search, as shown in
Table 3.

4.1.2 Sensitivity modulation

The SM is also applied to the same cantilever beam exam-
ple with and without using line search. Figures 5 and 6

Fig. 5 Cantilever beam:
sensitivity modulation with line
search

Step 5 Step 11 

Step 22 Step 30 

Step 43 Final after 50 steps 
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Fig. 6 Cantilever beam:
sensitivity modulation without
line search

Step 10 Step 30 

Step 50 Step 93 

Step 119 Final after 150 steps 

show the optimization processes of each case. The corre-
sponding convergence history are depicted in Fig. 4c and d
respectively.

For the design process shown in Fig. 5 with the line
search, it takes 22 steps of 310 s to find the near-optimal
region, and 43 steps of 439 s to converge. Comparing to that
using the standard SD method with line search as shown in
Fig. 2, although different intermediate designs are observed,
the final optimal designs are similar, which demonstrate
the effectiveness of the proposed SM scheme with line
search.

On the other hand, if no line search is used for the SM
scheme, the optimization process is highly oscillatory with
a much larger number of iterations to converge (Fig. 4d).

Specifically, it requires 93 steps of 632 s to find the near-
optimal region, and 119 steps of 808 s to converge. This
scheme produces the largest mean compliance in the final
design among all the numerical schemes examined. The
corresponding final structure, as shown in Fig. 6, has less
geometric complexity than the benchmark result (Allaire
et al. 2004; Xia et al. 2006). In the implementation, n p = 4
is adopted. If a larger value is chosen, invalid results, such
as thin-wall or broken structure, may be obtained.

4.2 Bridge-type structure

The second example studied is a bridge-type structure with
the design domain and initial design shown in Fig. 7. A

Fig. 7 Bridge-type structure:
(a) design domain; (b) initial
design
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Fig. 8 Convergence curves of
the bridge-type structure
example: (a) SD with line
search; (b) SD without line
search; (c) SM with line search;
(d) SM without line search
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Table 4 Results of the bridge-type structure example for different search algorithms

Final mean No. of steps Time to No. of steps Time to

compliance to near-optimum near-optimum (s) to converge converge (s)

SD with line search 2914 22 410 88 1041

SD 3184 112 1076 180 1697

SM with line search 3042 40 638 121 1441

SM 3010 92 972 193 1935

mesh of 80 × 48 elements is used for both the structural
analysis and the level set calculation. The final design is
constrained to occupy 30 % volume of the design domain.
Meanwhile, the parameters used for each experiment are as
follows: L = 200, H = 120, F1 = 10, F2 = 3, λ = 0.5,
Tmin = 0.8 × tC F L , Tmax = 6 × tC F L , β1 = 0.1, β2 = 0.9,
E = 1, Eo = 1e − 3, = 5 %, α = 1 %, γ = 0.1.

4.2.1 Steepest descent

The bridge-type structure is firstly optimized using the SD
method with and without line search. The optimization pro-
cesses are illustrated in Figs. 9 and 10 respectively, and the
corresponding convergence curves are depicted in Fig. 8a

and b. Key indicators of the optimization processes are listed
in Table 4 for the example.

As shown in Fig. 9, major topological and shape change
occur during first 22 steps of 410 s. After that, a process of
local geometrical adjustment is observed, followed with a
convergence in 88 steps of 1041 s. Comparatively, if no line
search is employed as shown in Fig. 10, it takes 112 steps
of 1076 s to find the near-optimal region, and 180 steps of
1697 s to converge.

Similar to the previous example, the line search scheme
results in a better structural design of lower mean compli-
ance. Meanwhile, as shown in Table 4, the total execution
time to reach the near-optimal region and the final conver-
gence is reduced by about 62 % and 39 % respectively.

Fig. 9 Bridge-type structure:
steepest descent with line search

Step 4 Step 7 

Step 11 Step 22 

Step 88 Final after 150 steps 
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Fig. 10 Bridge-type structure:
steepest descent without line
search

Step 33 Step 44 

Step 56 Step 112 

Step 180 Final after 300 steps 

Fig. 11 Bridge-type structure:
sensitivity modulation with line
search

Step 5 Step 10 

Step 20 Step 40 

Step 121 Final after 200 steps 
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4.2.2 Sensitivity modulation

Figures 11 and 12 illustrate the optimization processes
of the bridge-type structure using the SM with and with-
out line search respectively. Figure 8c and d depict the
corresponding design history.

As shown in Table 4, only 40 steps of 638 s are needed
to reach the near-optimum region, and 121 steps of 1441 s
are needed to obtain the optimal design. On the other hand,
the SM without line search takes 92 steps of 972 s and 193
steps of 1935 s to achieve the same level of convergence
respectively. Thus, line search scheme is more efficient for
the SM method.

Interestingly, as shown in Figs. 9, 10, 11 and 12, although
the design processes vary for different techniques used, all
the final structural configurations have the same topology.
However, as shown in Table 4, the SD with line search
scheme is the most effective and efficient combination,
which results in the lowest mean compliance of the final
design and the shortest convergence time among all the test
cases. The SM without line search behaves as effectively as
the pure SD method with a lower mean compliance value of
the final design but a longer convergence time. Note that,
every optimization technique has its strength and weakness
under certain circumstances. As a numerical technique, the
proposed SM scheme may serve as an alternative to the

standard SD method. In this implementation, n p = 7 is
adopted.

5 Conclusion

In this paper, a simple and workable line search algorithm
is presented to enhance the efficiency of semi-Lagrangian
level set based structural optimization. It allows for an adap-
tive time step to achieve sufficient descent of the objective
for each design iteration. A strategy is given for its imple-
mentation to consider practical characteristics of shape and
topology optimization. The strategy makes the line search
computation worthwhile. For comparative study, a sensitiv-
ity modulation scheme is also presented as an alternative of
the steepest descent search.

Numerical tests of two benchmark examples reveal that
both the number of design steps and overall computational
cost can be reduced substantially by incorporating the pro-
posed line search scheme into semi-Lagrangian level set
based structural optimization, compared to the conven-
tional scheme. Meanwhile, both SD and SM can produce
reasonable optimal designs effectively with the line search.

However, the numerical experiments show that the SM
scheme may not behave as effectively as the steepest descent
method in some cases without the line search. In other

Fig. 12 Bridge-type structure:
sensitivity modulation without
line search

Step 33 Step 44 

Step 56 Step 92 

Step 193 Final after 300 steps 
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words, by altering the search direction along from the steep-
est descent direction to the modulated direction, it may not
contribute to a significant reduction in computational effort.
Employing a line search is important and indispensible to
put the sensitivity modulation into effect. Note that, the
proposed sensitivity modulation scheme is limited to level
set based structural optimization, not a direct extension of
CG method for general infinite dimensional problems. Its
mathematical property will be further explored.
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