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Abstract The paper deals with the problem of topologi-
cal design of microstructure with respect to minimization
of the sound power radiation from a vibrating macrostruc-
ture. The macrostructure is excited at a single or a band
of excitation frequencies by a time-harmonic mechanical
loading with prescribed amplitude and spatial distribution.
The structural damping is considered to be proportional
damping. The sound power is calculated using a high fre-
quency approximation formulation and thus the sensitivity
analysis may be performed in a very efficient manner. The
microstructure composed of two different solid isotropic
materials is assumed to be identical from point to point at
the macro-level which implies that the interface between
the structure and the acoustic medium is unchanged dur-
ing the design process. The equivalent material properties
of the macrostructure are calculated using homogeniza-
tion method and the bi-material SIMP model is employed
to achieve zero-one design at the micro-scale. Numerical
examples are given to validate the model developed. Some
interesting features of acoustic microstructure topology
optimization are revealed and discussed.

Keywords Microstructure design · Topology optimization ·
Structural acoustics and vibration ·
Bi-material interpolation · Homogenization method ·
Multiple-frequency design

1 Introduction

In the field of structural acoustics, one of the most impor-
tant issues is noise and vibration control. Unlike active con-
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trol, which requires an external interference source imposed
upon the system, passive control can be achieved by using
sound/vibration insulation/absorbing materials, or even by
direct design of sound/vibration source. For example, sound
radiation from a vibrating structure may be reduced by opti-
mization of the stiffness, mass and damping of the structure,
i.e., structural and material design plays a very important
part in passive control of noise and vibration.

In the literature concerning structural acoustic and vibra-
tion design, a vast majority of works have been focused
on optimization of the size, shape, position parameters
and material parameters of the structure (see e.g. Olhoff
1976, 1977; Cheng and Olhoff 1982; Pedersen 1982; Olhoff
and Parbery 1984; Bendsøe and Olhoff 1985; Koopmann
and Fahnline 1997; Christensen et al. 1998a, b; Kollmann
2000; Marburg 2002; Munjal 2002; Sorokin et al. 2006).
With the advent of the method of topology optimization
(Bendsøe and Kikuchi 1988; Bendsøe 1989; Rozvany et al.
1992), structural design may be performed in a space with
substantially more freedom, thus a better solution than that
obtained by the traditional methods can be expected. During
the last two decades, topology optimization methods have
been developed to a great extent and extensively applied
to various fields of engineering. For details, the reader
is referred to the books by Bendsøe (1995), Bendsøe and
Sigmund (2003), and the survey papers by Eschenauer and
Olhoff (2001), Rozvany (2001, 2009), and Guo and Cheng
(2010). Specifically, topology optimization has been found
to be a powerful tool for vibration and acoustic design to
predict the optimal structural layout or material distribu-
tion (Pedersen 2000; Sigmund and Jensen 2003; Luo and
Gea 2003; Lee et al. 2004; Diaz et al. 2005; Wadbro and
Berggren 2006; Jensen and Pedersen 2006; Du and Olhoff
2007a, b, 2010; Yoon et al. 2007; Dühring et al. 2008;
Olhoff and Du 2009; Yamamoto et al. 2008, 2009).
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Computational models developed by far for topology
optimization of acoustic structure may be classified into
three sets: (a) finite element based analysis combined with
the SIMP model based material interpolation (named as
FEM-FEM+SIMP), see e.g. Yoon et al. (2007); (b) finite
element and boundary element based analysis combined
with the SIMP model (FEM-BEM+SIMP), see e.g., Du and
Olhoff (2007a, 2010), Du et al. (2011a, b); (c) level set
based approach (Shu et al. 2011). Yoon et al. (2007) used
a mixed finite element formulation (Sigmund and Clausen
2007) to circumvent the difficulty of the explicit boundary
representation in structural-acoustic interaction problems.
An alternative way based on the level set method, which
inherently has a well-described boundary, has been pro-
posed recently by Shu et al. (2011). Du and Olhoff (2007a,
2010) developed a high frequency approximation based
model to deal with problems of topology optimization of
vibrating bi-material elastic structures placed in an open
acoustic medium, where the acoustic analysis and the cor-
responding sensitivity analysis can be carried out in a very
efficient manner. In the recent works by Du et al. (2011a,
b), a model combining the FEM-BEM formulation and the
mixed formulation has been proposed to handle the exte-
rior acoustic problem, where the acoustic boundary integral
is performed along a design-independent nominal interface
instead of the real interface between the structure and the
acoustic medium. This way, the complicated sensitivity
analysis due to change of the interface may be avoided.
Moreover, the design domain discretized by the mixed finite
elements is enclosed by the initial structural boundaries and
thus has a finite volume. This is highly advantageous to
reduction of the computational scale of the exterior acoustic
design problem.

Up to now, most of the research concerning structural
acoustic topology optimization has concentrated on the
macro scale, i.e. the macro structural layout or material
distribution. However, if we look into in detail some real
acoustic structures or materials used in engineering, a pat-
tern of composites with periodic microstructure can be often
found. Therefore, it is natural to extend the models for struc-
tural acoustic topology optimization to the micro scale, or
even an integration of the two scales. Topology optimiza-
tion of microstructure, sometimes mentioned as topology
optimization of material, was first realized by using the
technique of inverse homogenization by Sigmund (1994,
1995). Since then, plenty of work on the basis of this tech-
nique has been carried out for different application areas to
obtain the material with prescribed or extremum properties,
such as mechanical properties, thermal or thermal-elastic
properties, electro-magnetic properties, piezoelectric prop-
erties and so on (see e.g. Sigmund and Torquato 1997; Silva
et al. 1997; Gibiansky and Sigmund 2000; Yi et al. 2000;
Hyun and Torquato 2001; Diaz and Benard 2003; Guest and

Prevost 2006; Zhou and Li 2008; Prasad and Diaz 2009;
Choi and Yoo 2010).

The effect of boundary conditions of the macrostructure
on the optimum layout of the microstructure was studied by
Fujii et al. (2001), where the micro unit cell was assumed to
have the same configuration and was uniformly distributed
over the macroscopic design domain. If the material prop-
erties at the macro level are allowed to be varied from point
to point, a two-scale design is necessary, which is also
known as hierarchical optimization of material and struc-
ture (Rodrigues et al. 2002; Coelho et al. 2011). This model
implemented the concurrent two-scale optimization to the
largest extent, however, in spite of the great computational
cost, the optimum result consisting of macro materials vary-
ing form point to point is a big challenge for manufacturing.
In consideration of this, Liu et al. (2008) introduced two
independent groups of design variables, i.e. micro den-
sities and macro densities, to describe the configuration
of the microstructure and the distribution of the materi-
als (with the specific microstructure) over the macroscopic
design domain respectively. Under the same framework,
Yan et al. (2009) extended the problem of minimization of
the compliance to thermal-elastic structures and materials,
and Niu et al. (2009) studied the problem of maximization
of the fundamental eigenfrequency of the macrostructure.
In the two-scale optimization problems, the homogeniza-
tion method is usually adopted to calculate the equivalent
material properties and link the two scales together. How-
ever, the method itself cannot reveal the size effect when
the characteristic inhomogeneity dimension is finite instead
of infinitesimal. Some work concerning the size effect on
microstructure topology optimization has been reported (see
e.g. Zhang and Sun 2006; Liu and Su 2010; Su and Liu
2010).

The present paper is mostly motivated by the work
mentioned above, aiming at topology optimization of the
periodic microstructure to minimize the total sound power
radiation from the boundaries of a vibrating macrostructure.
The macrostructure is excited at a single or a band of exci-
tation frequencies by a time-harmonic external mechanical
loading with prescribed amplitude and spatial distribution.
The structural damping is considered to be Rayleigh damp-
ing. The microstructure composed of two different solid
isotropic material phases is assumed to be identical from
point to point at the macro level, which implies that the
interface between the structure and the acoustic medium
will not change during the design process. The upper limit
of the volume fraction of the strong material is given in the
design.

The rest of the paper is organized as follows. In Section 2,
the problem formulation is set up with a detailed discussion
on the methods of two-scale structural-acoustic analysis and
the corresponding sensitivity analysis. Based on a general
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analysis-optimization procedure, topology optimization of
the microstructure to minimize the total sound power radia-
tion from the macrostructure is demonstrated by numerical
examples in Section 3. Here no damping is considered
and the macrostructure is excited at several single frequen-
cies. The results are also compared with that of minimum
dynamic compliance design. Section 4 studies the effect of
the structural damping on the optimum layout of the micro
unit cell. In Section 5, the design with respect to multiple
excitation frequencies is considered, which is formulated as
a multiple objective optimization problem. Some interest-
ing results are revealed and discussed. Finally, a conclusion
together with some discussion on future work is given in
Section 6.

2 Topology optimization of microstructure
for minimization of the sound power radiation

2.1 Structural-acoustic analysis model

The linear stationary structural-acoustics model is consid-
ered in the present paper where both the structure and the
acoustic medium (here the air) satisfy the linear constitu-
tive equations and the acoustic medium is assumed to be
inviscid, compressible and small fluctuation. Hereby at the
interface only the normal displacement of the structure is
coupled with the fluid and the fluid just exerts normal loads
on the structure.

Under the above assumption, the governing equations of
the acoustic field can be described by the standard wave
equation:

∇2 p f (t) − 1

c2

∂p f (t)

∂t2
= 0, (1)

where the symbol p f (t) is the pressure, c is the sound speed
and t is the time. When the pressure is considered to be
harmonically varied, the wave equation can be simplified as
the Helmholtz equation by omitting the time term:

∇2 p f + k2 p f = 0, (2)

where the symbol k represents the wave number and p f

represents the amplitude of the pressure.
In the present paper, we focus on the exterior prob-

lem where the vibrating structure is assumed to be sur-
rounded by an infinitely large acoustic medium and is
excited by a time-harmonic mechanical loading. Starting
from the Helmholtz equation (2) and using the continu-
ity conditions at the coupling interface and the boundary
conditions, the Helmholtz integral equation can be derived
by following a standard acoustic boundary integral analysis

(see e.g. Christensen 1999), where the pressure at the
coupling interface satisfies the following equation:

Ca (P) p f (P) = −
∫

S

[
iγ f ωpGvn + p f

∂G

∂n

]
d S. (3)

Here the symbol P denotes the objective field point where
the sound pressure will be calculated and Cα is the spa-
tial angle at the point. The integration of (3) is performed
along the structural surface S (i.e. the coupling interface),
where the symbols γ f , ωp and vn represent the mass den-
sity, frequency and normal velocity of the acoustic medium,
respectively. The symbol G denotes the Green function
which is the fundamental solution of the Helmholtz equa-
tion under unit impulse. The symbol n is the normal vector
of the structural surface and points to the structural part.

The velocity at the coupling interface in (3) is unknown.
In order to establish the whole coupling equations, the
structural equation should be introduced. Taking into con-
sideration the equilibrium equation, continuity conditions
at the coupling interface and the boundary conditions, the
governing equation of the structural part may be formulated
in an equivalent integral equation by using the Galerkin-
method (Zienkiewicz et al. 2005), which gives the following
equation:
∫

V

δui
(
σi j, j + fi − γs üi − μu̇i

)
dv

+
∫

Sσ

δui
(
σi j n j + T i

)
ds

+
∫

S

δui
(
σi j n j + p f ni

)
ds = 0. (4)

Here the symbols V and Sσ denotes the structural domain
and the prescribed mechanical loading boundary. The sym-
bol σ i j denotes the stress (tensor expression). The symbols
ui and δui denote the real and virtual displacements, respec-
tively. The symbol γ s is the mass density of the macro-
structure and μ is the damping coefficient (here the linear
damping model is used). The symbols fi and T i repre-
sent the body force and the mechanical traction force of the
structure. The third term in (4) corresponds to the continuity
conditions at the coupling interface.

For numerical computation, the Helmholtz integral equa-
tion (3) may be discretized using the standard boundary
element method which gives the following discretized equa-
tion:

CαP f = GU − HP f . (5)

Where the symbols P f and U represent the amplitude vec-
tors of the discretized steady pressure and displacement.
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The symbols H, G and Cα are the acoustic matrices and
spatial angle matrix, and the detailed expressions of the
matrices may be referred to the paper by Christensen et al.
(1998a, b).

Similarly, the structure (4) may be discretized using the
standard finite element method and simplified by integra-
tion by parts which gives the following discretized equation
(ignoring the time term):
(

K + iωP C − ω2
pM
)

U = P + LP f . (6)

Here the symbol P is the amplitude vector of the discretized
mechanical loading applied to the structure. The symbols K,
C and M denote stiffness, damping and mass matrices of the
macrostructure respectively. Here K + iωP C −ω2

pM is also
known as the dynamic stiffness matrix denoted by Kd . The
symbol L represents fluid-structural coupling matrix which
is given by (element expression) Le = ∫

Se

NT
s nN f ds, where

Ns and N f are the shape function matrices of the structural
element and fluid element, respectively.

2.2 Problem formulation for micro-structural topology
optimization

Following the notation of the paper (Du and Olhoff 2007a,
b), the macrostructure surrounded by acoustic medium
is assumed to be excited by a time-harmonic mechanical
loading vector p (t) = Pe−iωpt with prescribed forcing
frequency ωp and amplitude vector P. The corresponding
steady structural displacement response vector is Ue−iωpt ,
where U is a complex or a real vector depending on
whether damping is considered or not. The discretized
microstructure optimization model for minimization of the
total sound power flow (denoted by � here) from the vibrat-
ing macrostructure is formulated as follows (ignoring the
time term):

min
κi

⎧⎨
⎩� =

∫

S

Ind S =
∫

S

1

2
Re
(

p f v
∗
n

)
d S

⎫⎬
⎭

s.t.(
K + iωP C − ω2

pM
)

U = P + LP f ,

(Cα + H) P f = GU,

ne∑
i=1

κi Vi − V 1 ≤ 0,
(

V 1 = γ V0

)
,

0 ≤ κi ≤ 1, (i = 1, . . . , ne) .

(7)

Here the symbols p f and v∗
n are the steady sound pressure

(amplitude) and the complex conjugate of the normal veloc-
ity (amplitude) at the boundaries of the macrostructure. The

symbol In is defined as 1
2 Re
(

p f v
∗
n

)
which represents the

sound power per unit area. The symbol S is the integration
boundary of the macrostructure of which the sound power
radiation is minimized.

Now let us consider that the macrostructure is con-
structed by a kind of composite material with periodic
microstructure, where the micro unit cell is composed of
two different solid isotropic materials, and is assumed to be
identical from point to point at the macro level. The micro
unit cell is discretized by ne finite elements, and the sym-
bol κi denotes the relative volumetric density of the stiffer
material in element i and plays the role of the design vari-
able at the micro level. The symbol γ denotes the fraction of
the given volume V 1 of the stiffer material (material 1) and
is given by V 1/V0, where V0 is the volume of the admis-
sible design domain of the micro unit cell. The remaining
part of the total volume V0 is occupied by a softer material
(material 2).

2.3 Two-scale structure-acoustic analysis

It is known that the coupling analysis of the macro
structural-acoustic equations (i.e. the first two constraint
equations in (7)) is normally very time-consuming. Here we
introduce a high frequency approximation of the sound pres-
sure at the structural boundaries (Herrin et al. 2003; Lax and
Feshbach 1947)

p f = γ f cvn, (8)

where c is the sound speed and γ f is the mass density of the
acoustic medium. We further ignore the acoustic pressure in
the structural equation by assuming weak coupling between
the structure and the acoustic medium, and we have

(
K + iωpC − ω2

pM
)

U = P. (9)

With the above simplification, the first two constraint equa-
tions in (7) can be replaced by (8) and (9). The sound power
radiation from the boundaries of the macrostructure can now
be calculated in a very efficient way by

� = 1

2
γ f cω2

pU∗SnU, (10)

where

Sn =
Ne∑
j=1

Snj =
Ne∑
j=1

NSj∑
k=1

⎛
⎜⎝
∫

S jk

NTnnTNd S

⎞
⎟⎠ (11)

is termed as the surface normal matrix (Du and Olhoff
2007a, b). The symbol Ne represents the number of finite
elements used to discretize the macrostructure and N is the
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shape function matrix. The symbol NSj is the number of
the boundaries located at the interface between the struc-
ture and the acoustic medium of the j th structural element.
The vector n denotes the unit normal on the correspond-
ing boundary. (Further study has shown that, even for low
frequency design, the design result derived from high fre-
quency approximation may often be close to the optimum
solution obtained from accurate analysis, c.f. Song (2009).)

The macrostructure is constructed by periodic microstruc-
tures and thus the stiffness matrix of the macrostructure can
be formulated as

K =
Ne∑
j=1

K j =
Ne∑
j=1

⎛
⎜⎝
∫


 j

BT DH Bd


⎞
⎟⎠, (12)

where B is the strain matrix at the macro scale and DH

is the equivalent macro constitutive matrix of the periodic
microstructure that may be obtained by using the classi-
cal homogenization method (see e.g. Bendsøe and Kikuchi
1988; Hassani and Hinton 1998a, b):

DH = 1

|Y |
∫

Y
DMI (I − bu) dY . (13)

Here |Y | is the area (for 2D case) of the micro unit cell. The
symbol DMI represents the constitutive matrix of the ele-
ments consisting of the micro unit cell. In order to achieve
a zero-one design, the SIMP model (Rozvany et al. 1992;
Sigmund 1994; Bendsøe and Sigmund 1999) extended for
bi-material interpolation is employed in the micro scale as

DMI = κ pD1 + (1 − κ p)D2, (14)

where D1 and D2 represent the constitutive matrices of the
two given solid isotropic base materials 1 and 2 as described
in Section 2.2, which will be used for filling up the design
domain of the micro unit cell The symbol κ denotes the rel-
ative volumetric density of the stiffer material (material 1)
and may be varied from element to element in a discretized
micro unit cell. That is to say, if κ = 1, the corresponding
element is occupied by the stiffer material (i.e. DMI = D1),
and if κ = 0, the corresponding element is occupied by
the softer material (i.e. DMI = D2), and if κ ∈ (0,1),
which is often mentioned as intermediate density, the cor-
responding micro-scale element is occupied by an artificial
material mixed by both the stiffer material and the softer
material. Therefore, the zero-one distribution of κ actually
determines the bi-material topology of the microstructure
and hereby affects the equivalent property of the composite
material constructing the macrostructure, and finally affects
the dynamic response of the macrostructure and the design
objective. The symbol p in (14) is a penalty factor for

stiffness (normally taking the value between 3∼4 in topol-
ogy optimization) which aims to suppress the intermediate
density during the design process. The symbol I is a unit
matrix. The symbol b in (13) is the strain matrix at the micro
scale. The displacement field u of the microstructure can be
calculated by the analysis of the unit cell subject to periodic
boundary conditions and equivalent forces corresponding to
uniform strain fields, i.e.

ku =
∫

Y

bTDMIdY , (15)

where k is the stiffness matrix of the micro unit cell and is
given by

k =
∫

Y

bTDMIbdY . (16)

Calculation of the mass matrix of the macrostructure is
much more straightforward, which is given below:

M =
Ne∑
j=1

M j =
Ne∑
j=1

⎛
⎜⎝
∫


 j

ηNT Nd


⎞
⎟⎠, (17)

where η denotes the average mass density of the micro unit
cell, defined by

η = 1

|Y |
∫

Y

ηMIdY . (18)

Here, ηMI is the mass density of the element in the base cell
and is again interpolated by the bi-material SIMP model as

ηMI = κqη1 + (1 − κq) η2. (19)

Where η1 and η2 represent the mass densities of the two
given solid isotropic base materials 1 and 2, and q is
a penalty factor for mass. We have tested several com-
binations of p (3∼4) and q (1∼2), and found that the
combination of p = 4 and q = 2 can normally achieve
good 0–1 result within a relatively large range of the exci-
tation frequency, and thus we choose them as the values of
the penalty factors in the numerical examples of the present
paper.

The damping of the macrostructure is considered as the
Rayleigh damping, which can be expressed by a linear
combination of the stiffness and mass matrices K and M as

C = αM + βK, (20)

where α and β are the mass damping and stiffness damping
coefficients respectively.
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Theoretically, one of basic assumptions of homogeniza-
tion method is that the size of the periodically distributed
microstructure (i.e. the unit cell) should be infinitely small
and infinitely many in the macrostructure (see e.g. Bendsøe
1995). However, when we consider the possibility of the
manufacture, the microstructure always has the finite size,
therefore, some size limitations should be introduced so that
the basic assumption on homogenization method may be
maintained in the sense of approximation. In the present
paper, the size of the microstructure is assumed to be small
enough in comparison to both the size of the macrostructure
and the wave length (λ = 2πc

ωp
) of the dynamic loads con-

sidered in the vibro-acoustic design problem (1) so that the
asymptotic expansion for homogenization calculation and
dynamic analysis is valid.

2.4 Sensitivity analysis

The objective function, i.e. the sound power radiated from
the boundaries of the macrostructure, is determined by the
dynamic displacement response of the macrostructure (c.f.
(10)). The dynamic displacement response is determined
by the distribution of mass, damping and stiffness of the
macrostructure (c.f. (9)). Each point of the macrostructure is
assumed to be constructed by periodic microstructure which
can be regarded as a kind of composite material point with
equivalent property given by homogenization (c.f. (12) and
(13)). Therefore, when the topology of the microstructure is
changed (which is directly controlled by the zero-one distri-
bution of the design variables in the unit cell, c.f. (14)), the
corresponding equivalent property of the composite mate-
rial constructing the macrostructure will change, then the
dynamic displacement response of the macrostructure will
change, and finally the objective function will change.

The sensitivity of the objective function in (10) with
respect to the design variables can be derived by the stan-
dard adjoint method (similar to that used by Du and Olhoff
(2007a, b) except for the damping part), and the result is
given as follows

∂�

∂κi
= γ f cω2

pRe

×
[

U∗
S

∂P
∂κi

− U∗
S

(
∂K
∂κi

+ iωp
∂C
∂κi

− ω2
p
∂M
∂κi

)
U
]

.

(21)

Here Us is given by the solution of the equation

(
K − ω2

pM + iωC
)∗

Us = SnU ≡ fs, (22)

where fs may be regarded as a pseudo loading vec-
tor. In the present paper, we only consider the case of

design-independent mechanical loading, and that means
∂P
/
∂κi = 0 in (21). The sensitivities of the stiffness, mass

and damping matrices of the macrostructure can be derived
from (12), (17) and (20) as

∂K
∂κi

=
Ne∑
j=1

⎛
⎜⎝
∫


 j

BT ∂DH

∂κi
Bd


⎞
⎟⎠, (23)

∂M
∂κi

=
Ne∑
j=1

⎛
⎜⎝
∫


 j

∂η

∂κi
NT Nd


⎞
⎟⎠, (24)

∂C
∂κi

= α
∂M
∂κi

+ β
∂K
∂κi

, (25)

where the derivative of DH can be calculated using the
mapping method (Liu et al. 2002) as

∂DH

∂κi
= 1

|Y |
∫

Y
(I − bu)T ∂DMI

∂κi
(I − bu) dY , (26)

and the derivative of DMI is given by (14) as

∂DMI

∂κi
= pκ p−1

(
D1 − D2

)
. (27)

The derivative of η can be calculated from (18) and (19)
straightforwardly, and is omitted here.

3 Computational scheme for topology optimization
of acoustic microstructure

A computational scheme for the design of acoustic
microstructure is illustrated in Fig. 1. The sound power
flow of the vibrating macrostructure and the correspond-
ing sensitivities with respect to the micro topological design
variables (i.e. the relative volumetric density of elements of
the unit cell) are obtained by a two-scale analysis. Then
an approximate sub-problem can be generated and solved
by using the MMA method (Svanberg 1987), by which
the topological design variables are updated. If the design
result meets prescribed convergence criteria, the design pro-
cess will be stopped. Otherwise a new design cycle will be
started.
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INITIALIZATION 
Setting up initial microstructure 

MICROSTRUCTURE ANALYSIS 
Calculating the equivalent material properties of 

the macrostructure 

MACROSTRUCTURE-ACOUSTIC 
ANALYSIS 

Calculating the sound power of the macrostructure

SENSITIVITY ANALYSIS 
Calculating derivatives of the objective and 

constraint functions

OPTIMIZATION OF SUB-PROBLEM
Solving the approximate sub-problem (MMA) and 

updating the design variables 

CONVERGED 

OUTPUT 
Post-processing

No 

Yes 

Fig. 1 Flow chart for topology optimization of acoustic microstructure

4 Numerical examples

4.1 Code validation for microstructure topology
optimization

A homemade computer program written in MATLAB
has been developed for handling the problem of acoustic
microstructure topology optimization. In order to validate
the code, a benchmark example of microstructure design
aiming at minimization of the static compliance of the
macrostructure (see Fujii et al. 2001) has been selected for
testing and comparison.

The size, boundary and loading conditions of the
macrostructure are illustrated in Fig. 2a (see also Fujii

Copt = 3.64×10-2 Copt = 3.52×10-2

(a) (b)

Fig. 3 Comparison of optimum configurations of the micro unit base
cell (2 × 2 array). a Present paper; b Reference (Fujii et al. 2001)

et al. 2001). Due to non-convexity of the design prob-
lem, there may exist different locally optimal solutions.
Some tests have been performed and it was found that
the local optimum solution strongly depends on selection
of the initial designs. In order to reproduce the optimum
topology in the reference, we tested several different ini-
tial designs and found one of them converged to a local
optimum solution which was most similar to that obtained
in the reference, and so that the comparison here makes
sense. The initial material distribution within the micro unit
cell is shown in Fig. 2b. Under the assumption of plane
stress, the macrostructure and the unit cell are discretized
by 10 × 10 and 40 × 40 mesh respectively using the 8-node
isoparametric elements. The meshing for the macrostruc-
ture seems to be a little coarse, but since high order finite
elements are used in our calculation, the accuracy of analy-
sis for the mesh adopted is acceptable. Moreover, we have
investigated the convergence of the result as a function of
mesh refinement and found that, at least for the test exam-
ple, the optimal topologies with respect to different mesh
refinement are similar and consistent. On the other hand,
the computational cost of sensitivity analysis in our model is
proportional to the multiply of the numbers of elements used

Fig. 2 Shear plate.
a Configuration, boundary and
loading conditions of the
macrostructure; b Initial
material distribution within the
micro unit cell where the
relative material volumetric
densities of elements are
denoted by grey scale figure

(b)(a)
1m 

1m 

t = 0.01m 1kN/m 
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Fig. 4 Simply supported beam.
a Configuration, boundary and
loading conditions of the macro
beam; b Initial material
distribution within the micro
unit cell

1kN/m 

3m 

t = 0.01m 

10m 

(a) (b)

for macrostructure and microstructure. In order to finely
define the micro-structural topology and at the same time
keep a balance between the efficiency and accuracy, it is bet-
ter to use a fine mesh for the microstructure and “relatively
coarse” mesh for the macrostructure.

The given stiffer material has the Young’s modulus E1 =
72.4 GPa, Poisson’s ratio v1 = 0.15, and the softer material
has the properties E2 = 3 GPa and v2 = 0.25. The upper
limit of the volume fraction of the stiffer material is 0.5. The
symmetric condition with respect to the transverse axis, the
longitudinal axis and the diagonal lines of the unit cell is
imposed as that of the reference.

Figure 3 gives the optimal bi-material topologies of
the micro unit base cell (2 × 2 array) obtained in our
test and the reference, as well as the corresponding min-
imized static compliance of the macrostructure. The two
results are similar except that the latter has more details
emerged, and the explanation lies in the different tech-

niques used for suppressing the checkerboard problem. In
our test, the sensitivity filter (Sigmund and Petersson 1998)
is applied, while a perimeter control approach is adopted in
the reference.

4.2 Minimization of the total sound power radiation
from a simply supported vibrating beam excited
at a single frequency

The upper surface of a simply supported 2D beam is excited
by a uniformly distributed time- harmonic loading, as is
illustrated in Fig. 4a. The design objective is minimization
of the total sound power radiation from all the boundaries of
the beam. The initial design of the micro unit cell is given
in Fig. 4b. A small disturbance of material volume density
is introduced into the central elements of the design domain
to avoid the trivial solution that all the elements have the
same material volume density in the final design. Under the

Fig. 5 Optimum bi-material
topologies of the micro unit cell
at six different single excitation
frequencies (without damping).
The total sound power flow of
the macro beam is minimized

p = 100rad/s p = 300rad/s p = 400rad/s

p = 600rad/s p = 800rad/s p = 1500rad/s
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assumption of plane stress, the macrostructure and the base
cell are discretized by 10 × 3 and 40 × 40 mesh respectively
using the 8-node isoparametric elements.

The given stiffer material has the Young’s modulus E1 =
210 GPa, Poisson’s ratio v1 = 0.3, mass density η1 =
7800 kg/m3 and the softer material has the properties E2 =
E1/10, v2 = 0.25 and η2 = η1

/
10. The mass density of

the acoustic medium (i.e. air) is γ f = 1.29 kg/m3, and the
sound speed is c = 343.4 m/s. The upper limit of the vol-
ume fraction of the stiffer material is 0.5. No filter is applied
in this example.

The optimum bi-material topologies of the micro unit cell
with respect to six different single excitation frequencies are
given in Fig. 5 (without damping). The sound power radia-
tion values of the initial design and the optimum design are
compared in Table 1 with the unit dB transformed in the
following way

�̃ (dB) = 10 · lg (�/�0) (28)

where �0 = 1 × 10−12W is a reference sound power. The
results in Table 1 indicate that the gain of the reductions of
sound power radiation obtained by the current bi-material
topology optimization of the microstructure are much less
than that obtained by topology optimization of the macro-
scale structure consisting of the same amounts of the two
materials in isotropic form (Du and Olhoff 2007a). This is
perhaps less surprising because in the present model it is
assumed that the periodic microstructure is uniformly dis-
tributed within the macro-structural domain (i.e. the mate-
rial properties at the macro-scale are identical from point to
point over the macro-structural domain), and obviously the
design freedom of the problem in the current setting is much
less than that of the problem on topology optimization of the
macrostructure itself (see e.g. Du and Olhoff 2007a).

Taking ωp = 800 rad/s for example, the effect of a 6 ×
6 array of the optimal base cell is illustrated in Fig. 6, and
a typical iteration history curve of the objective function is
given in Fig. 7a. The curve is not monotonically decreasing
because we relax the material volume fraction constraint a

Table 1 Sound power radiation values of the initial design and optimal
design

Excitation Initial Optimal

frequency (rad/s) design (dB) design (dB)

100 88.22 82.58

300 112.69 98.35

400 105.61 98.21

600 95.71 90.56

800 95.30 88.44

1500 89.01 83.08

Fig. 6 6 × 6 array of the base cell (ωp = 800 rad/s)

little bit at the very beginning and then gradually modify
it approaching the prescribed value (i.e. 0.5) as shown in
Fig. 7b, by which we have found that the design process
is much more stable and easier to converge to a zero-one
solution.

Obviously the optimal configuration of the base cell is
very sensitive to the excitation frequency when no damp-
ing is considered. Moreover, it is also found that as the
excitation frequency increases, the iteration process may
possibly become unstable, e.g. in some cases it is difficult to
converge to a clear 0–1 solution in the high frequency inter-
val (compared with the fundamental eigenfrequency of the
macrostructure which is about ω0 = 327.8 rad/s).

It was discussed in the paper by Du and Olhoff (2007a)
that substantial reductions in sound power radiation from
a structure immersed in a light acoustic medium can also
be achieved by minimization of the dynamic compliance of
the structure placed in vacuum. For microstructure design of
the present paper, the minimum dynamic compliance design
problem can be formulated in a similar way as

min
κi

{
Cd = ∣∣PTU

∣∣ = ∣∣UTKdU
∣∣}

s.t.(
K − ω2

pM
)

U = KdU = P,

ne∑
i=1

κi Vi − V 1 ≤ 0,
(

V 1 = γ V0

)
,

0 ≤ κi ≤ 1, (i = 1, . . . , ne) .

(29)

Solution of the above problem for the current test gives
the following results shown in Fig. 8. It should be mentioned
that ωp = 0 rad/s in Fig. 8 corresponds to minimization
of the static compliance of the macrostructure. In com-
parison with Fig. 5, the optimum microstructures obtained
by minimum dynamic compliance design remain more ele-
ments with intermediate density at high excitation frequency
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Fig. 7 Iteration history curves
(ωp = 800 rad/s). a Objective
function, i.e. the total sound
power flow of the beam;
b Volume fraction of stiffer
material

(a) (b)

levels after the same steps of iteration. A possible explana-
tion is that the dynamic stiffness matrix Kd in (29) may
not be positive definite when the excitation frequency is
higher (compared with the fundamental eigenfrequency of
the initial macrostructure ω0 = 327.8 rad/s). On the other
hand, the surface normal matrix Sn in (10) is always posi-
tive definite, which in some sense implies that the former is
a “more well-posed” problem relative to the latter.

4.3 Damping effect

As we know, there is always some damping in a real-
life structure. The damping, even with a small value, may

possibly have remarkable effect on the dynamic/acoustic
behavior of the structure. Therefore, in this section the
impact of structural damping on optimal configuration of
the base cell is studied. Here the structural damping is
considered as Rayleigh damping.

Taking the same problem settings as in Section 4.2, in
the first test, we fix the excitation frequency at a moderate
value ωp = 800 rad/s and a larger value ωp = 40000 rad/s,
respectively. We assign a small value to the stiffness damp-
ing coefficient i.e. β = 1×10−5 and vary the mass damping
coefficient within a certain range (α = 1 × 10−5 ∼ 1 ×
10−2). The optimum microstructure topologies with respect
to minimization of the total sound power radiation from the
macro beam are given in Fig. 9.

Fig. 8 Optimum bi-material
topologies of the micro unit cell
at six different single excitation
frequencies (without damping).
The dynamic (or static for the
first case) compliance of the
macro beam is minimized

p = 100rad/sp = 0rad/s p = 300rad/s

p = 400rad/s p = 600rad/s p = 1500rad/s
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 = 1×10-5 ω p = 800rad/s  = 1×10-2 ωp = 800rad/s 

 = 1×10-5 ωp = 40000rad/s  = 1×10-2 ωp = 40000rad/s 

Fig. 9 Effect of the mass damping coefficient on the acoustic
microstructure design (β = 1 × 10−5)

It is seen form Fig. 9 that the effect of the mass damp-
ing on the optimum topology of the micro unit cell is very
small. On the other side, we assign a small value to the
mass damping coefficient (α = 1 × 10−5) and vary the
stiffness damping coefficient in a certain range (β = 1 ×
10−5 ∼ 1 × 10−2), and the results are shown in Fig. 10.

The effect of the stiffness damping on the optimal topology
of the micro unit cell is quite remarkable, especially when
β > 1 × 10−4. An explanation is given below: the macro-
structural damping model considered here is the Rayleigh
damping, i.e. the damping matrix is a linear combination of
stiffness matrix and mass matrix. It has been found that in
the present example the magnitude of the values of the ele-
ments in stiffness matrix is approximately 109 larger than
that in mass matrix, and thus it is less surprise that the
stiffness damping coefficient has more remarkable effect on
the result of topology optimization than the mass damping
coefficient dose.

In the second test, the damping coefficients are fixed at
large values α = 1 × 10−2 and β = 1 × 10−2, the optimum
bi-material topologies of the micro unit cell with respect to
different excitation frequencies are given in Fig. 11. It is
found that the optimal design of the base cell is insensitive
to the change of the excitation frequency within a broad fre-
quency interval when the structural damping, especially the
stiffness damping, is large. Moreover, the iteration process
becomes more stable even in the high excitation frequency
interval as the structural damping increases.

5 Multiple-frequency optimization

When the value of the excitation frequency varies within
a prescribed interval, e.g. [ωp1, ωp2], and the total sound
power radiation from the structure is minimized for all
possible frequencies simultaneously, a multiple objective

Fig. 10 Effect of the stiffness
damping coefficient on the
acoustic microstructure design
(ωp = 800 rad/s)

 = 1×10 -5  = 1×10 -5  = 1×10 -5  = 1×10 -5

 = 1×10-5  = 1×10-5  = 1×10-5

 = 1×10 -4  = 3×10 -4

 = 5×10-4
 = 1×10-3  = 1×10-2
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Fig. 11 Optimal bi-material
topologies of the micro base cell
at different excitation
frequencies with large structural
damping (α = 1 × 10−2 and
β = 1 × 10−2)

p = 1000rad/s p = 1500rad/s p = 2000rad/s

p = 3000rad/s p = 5000rad/s p = 7000rad/s

optimization (or multiple-frequency optimization) should
be performed, where the design objective may be formu-
lated in a weighted form as

�̃ =
∫ ωp2

ωp1

w
(
ωp
)
�
(
ωp
)

dωp. (30)

Here w(ωp) is the prescribed weight coefficient which
satisfies

∫ ωp2
ωp1

w
(
ωp
)

dωp = 1. For numerical implemen-
tation, the sound power radiation is normally calculated
at a group of selected sampling points in the prescribed
frequency interval, and a linearly weighted summation of
these values is taken as the design objective. The multiple-
frequency optimization problem can be stated as

min
κi

{
�̃ =

N∑
k=1

wk�
(
ωpk
)}

s.t. (
K + iωpk C − ω2

pk
M
)

U = P, (k = 1, 2, · · · , N ) ,

p fk = γ f cvnk , (k = 1, 2, · · · , N )
ne∑

i=1
κi Vi − V 1 ≤ 0,

(
V 1 = γ V0

)
,

0 ≤ κi ≤ 1, (i = 1, . . . , ne) .

(31)

where N is the number of sampling points and the weight

coefficients satisfy
N∑

k=1
wk = 1.

Now let us consider again the problem in Section 4.2. We
fix the mass damping coefficient at the value α = 1 × 10−2

and first assign a small value to the stiffness damping
coefficient i.e. β = 1 × 10−4. Multiple-frequency opti-
mization with respect to a low excitation frequency interval
(ωp = 200 ∼ 1000 rad/s) with 9 equally distributed sam-
pling points (with the same weight coefficients) and a high
excitation frequency interval (ωp = 3000 ∼ 5000 rad/s)
with 11 equally distributed sampling points (with the same
weight coefficients) are performed, respectively. The opti-
mum bi-material topologies of the micro unit base cell are
shown in Fig. 12. Frequency responses of the sound power
radiation associated with the initial design and the optimum
designs respectively are calculated within the frequency

(b)(a)

Fig. 12 Optimum bi-material topologies of the micro unit base
cell obtained by multiple-frequency optimization with small stiffness
damping (α = 1 × 10−2, β = 1 × 10−4) a ωp = 200∼1000 rad/s (9
uniformly distributed sampling points), b ωp = 3000∼5000 rad/s (11
uniformly distributed sampling points)



Microstructural topology optimization with respect to sound power radiation 203

Fig. 13 Sound power radiation versus excitation frequency (α = 1 ×
10−2, β = 1 × 10−4)

interval ωp = 10∼5000 rad/s. The corresponding frequency
response curves are plotted in Fig. 13. Figure 14 compares
the frequency response curves between the optimum designs
obtained by the multiple-frequency optimization (ωp =
200∼1000 rad/s) and the single frequency optimization
(ωp = 500 rad/s).

It is seen from Figs. 13 and 14 that the frequency
response curve of the initial design has two peak values
at the resonance frequencies (ωp = 328 rad/s and ωp =
913 rad/s) within the frequency interval [200, 1000]. The
single-frequency design, as we have expected, makes the
sound power take the smallest value at the specific excita-
tion frequency (ωp = 500 rad/s) in comparison with the
initial design and multiple-frequency design. On the other
hand, multiple-frequency design makes the area under the
frequency response curve take the “smallest value” (strictly
saying, this is true just for the case that the design objective
takes the form of (30) with a constant weight coefficient
over the frequency interval), which implies that the sound
power is the lowest in the sense of mean value within
the frequency interval considered. Moreover, the peak val-
ues of the frequency response curve within the frequency

Fig. 14 Comparison between single-frequency optimization and
multiple-frequency optimization (α = 1 × 10−2, β = 1 × 10−4)

Fig. 15 Comparison between two different multiple-frequency opti-
mizations (α = 1 × 10−2, β = 1 × 10−4)

interval considered are decreased effectively (e.g. ωp =
200∼1000 rad/s) or even totally disappear (e.g. ωp =
3000∼5000 rad/s).

Another interesting phenomenon in Fig. 14 is that the
two peaks of the frequency response curve of the multiple-
frequency design (i.e. ωp = 200∼1000 rad/s) locate at the
frequency values about 350 and 950, which are in the mid-
dle of two adjacent sampling frequencies, respectively (the
9 sampling points are taken at the frequency values 200,
300, 400, ..., 900 and 1000 for this case). We may imag-
ine that as the number of sampling points increases, the
design will make the peak of the frequency response curve
settle down at a proper location in the gap between the adja-
cent sampling frequencies in order to prevent the resonance
from happening at the sampling points. One of the problems
for such a design is that as the gap between the adjacent
sampling points becomes smaller, the resonance peak of the
frequency response curve corresponding to the optimal solu-
tion may be very close to some sampling points, the design
process will become unstable due to the resonance. On the
other side, if the resonance peaks of the frequency response

(a) (b)

Fig. 16 Optimum bi-material topologies of the micro unit base cell
by multiple-frequency optimization with large stiffness damping (α =
1 × 10−2, β = 1 × 10−2). a ωp = 200∼1000 rad/s (9 uniformly
distributed sampling points), b ωp = 3000∼5000 rad/s (11 uniformly
distributed sampling points)
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Fig. 17 Multiple-frequency optimization with large stiffness damping
(α = 1 × 10−2, β = 1 × 10−2)

curve of the initial design locate out of the given design
frequency interval, it is always possible for the design to
drive the peaks far away from the given frequency interval
and the resonance can be avoided effectively. This can be
illustrated by Fig. 15, where the multiple-frequency design
is performed in the interval ωp = 400∼900 rad/s which
locates between the first two resonance frequencies of the
initial design.

If we increase the stiffness damping coefficient to a
larger value (i.e. β = 1 × 10−2) and run the test again,
the corresponding results are shown in Figs. 16 and 17. The
optimum bi-material topologies in Fig. 16 are very similar
to each other and are also close to those of Fig. 11, and this
proves again that a large structural stiffness damping makes
the optimal configuration rather insensitive to variation of
the excitation frequency and the design converges to a more
consistent result in a broad frequency interval.

6 Conclusions

Topology optimization of the periodic microstructure with
respect to minimization of the total sound power radia-
tion from the boundaries of the macrostructure is studied in
the present paper. A high frequency approximation model
is employed to implement calculation of the sound power
and the corresponding sensitivity analysis in a very efficient
manner. The design results of minimum sound power radia-
tion are compared with those of minimum dynamic com-
pliance. Similarity can be viewed in the low excitation
frequency interval, while differences appear in the high fre-
quency interval. Numerical examples show that a larger
structural stiffness damping coefficient may not only reduce
the sensitivity of the optimum topology of the micro unit
cell with respect to variation of excitation frequency, but
also make the iteration process more stable. The effect of

mass damping coefficient is not as remarkable as that of
stiffness damping. Tests for multiple-frequency design show
that the frequency response of the macrostructure can be
decreased to a lower level in a mean sense within the fre-
quency interval considered. At the same time, if the peaks
of the frequency response curve locate out of the frequency
interval considered, the design will move the peaks far away
from the frequency interval considered.

Numerical problems have been encountered in some tests
and are briefly reported here. One of the problems is that the
micro unit cell is filled out with the softer material after sev-
eral (few) steps and cannot be changed any more. Another
problem is that the base cell still contains many elements
with intermediate density after a large number of iteration
steps. It is found that the above phenomenon always occurs
when the excitation frequency is close to one of the res-
onance frequencies of the initial design, and they more
often happen when the structural damping is small or is
not considered. A possible explanation is given as follows.
When we start the design from the neighborhood of a reso-
nance frequency (i.e. the excitation frequency is close to a
resonance frequency of the initial design that we have cho-
sen), the optimization problem is not well-posed due to the
fact that the dynamic stiffness matrix is close to singular-
ity. As a result, numerical instability may easily occur if
the moving limit (the MMA method is used in the present
paper) is not controlled very well. It is possible to overcome
this difficulty by imposing a better control on the iteration
process (e.g. reducing the step-size of iteration or using
GCMMA to construct a more convex sub-problem) which,
in spite of how the effect is (in some tests that we have per-
formed using the reduced step-size, the design converged
to a local optimum with many “grey” elements which is
not a preferred result), may increase the computational cost
of the design remarkably. In order to overcome the above
difficulty, we suggest another solution for this problem
which is based on “continuity technique”. The idea is, since
it is not necessary for us to start the design from an ill-posed
problem that is defined in the neighborhood of resonance
point, we may possibly redefine the initial design problem
as a well-posed one by keeping it away from the resonance
point. Here two approaches are proposed to implement the
above idea: a) frequency moving approach, i.e. starting
the design with an excitation frequency far away from the
resonance frequency, then moving the excitation frequency
continually to the prescribed value during the design pro-
cess; b) damping variation approach, i.e. starting the design
with a larger damping, then decreasing the damping con-
tinually to the prescribed value in the later design process.
For multiple-frequency design, approach b) is much easier
implemented than approach a) due to that the former has
nothing to do with the frequency interval considered. Tests
based on the above methods show that numerical instability
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has been suppressed to a large extent, and the design can
normally converge to a “better” optimum solution with less
grey elements and smaller value of the objective function,
which we believe is closer to the global optimum. Further
detailed studies on numerical instability problem in acoustic
and dynamic design will be carried out in the future work.

Another work being performed is to check the effects of
shape parameter of the micro unit base cell, where the shape
parameter is defined as the ratio between the length and
the width of the unit cell and is dealt with as an additional
design variable. Computational results show that in very few
cases, introduction of shape parameter as additional design
variable may improve the optimal solution, while in most
cases the effect of shape parameter is insignificant. It should
be pointed out that the problems discussed here concerning
numerical instability and the effect of shape parameter is
preliminary. Further detailed studies are necessary and will
be performed in the future work.

The work of the present paper provides us a primary view
on the characteristics of topology design of microstruc-
ture with respect to acoustic criteria, which, together with
previous work on macrostructure design, may help us to
understand further how to improve the vibration and acous-
tic behavior of the structure by structural and material
topology optimization.
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