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Abstract Despite the rapid growth of computing power
and continuing advancements in numerical techniques, sig-
nificant complexity exists when applying traditional sensi-
tivity based optimization to such highly nonlinear problems
as crashworthiness design. As a major alternative, surrogate
modeling techniques have proven considerably effective.
However the challenge remains how to determine the most
suitable surrogate scheme for modeling nonlinear responses
and conducting optimization. This paper presents a compar-
ative study on the different surrogate models, such as poly-
nomial response surface (PRS), Kriging (KRG), support
vector regression (SVR) and radial basis function (RBF),
which have been widely used for a variety of engineer-
ing problems, thereby gaining insights into their relative
performance and features in computational modeling and
design. In this study, a foam-filled tapered thin-walled struc-
ture is exemplified. Both the gradient and non-gradient
algorithms, specifically sequential quadratic programming
(SQP) and particle swarm optimization (PSO), are used for

X. Song · G. Sun (B) · G. Li · W. Gao
State Key Laboratory of Advanced Design and Manufacture
for Vehicle Body, Hunan University, Changsha, 410082, China
e-mail: sgy800@126.com

X. Song
Department of Mechanical Engineering, Dong-A University,
Busan, 604-714, South Korea

G. Sun
State Key Laboratory of Vehicle NVH and Safety Technology,
China Automotive Engineering Research Institute Co.,
Chongqing, 400039, China

Q. Li
School of Aerospace, Mechanical and Mechatronic Engineering,
The University of Sydney, Sydney, NSW 2006, Australia

these abovementioned four surrogate models, respectively.
The design results demonstrate that simultaneous use of
different surrogate models can be essential for both gradient
and non-gradient optimization algorithms because they may
generate different outcomes in the crashworthiness design.

Keywords Foam-filled · Crashworthiness ·
Design optimization · Multiple surrogate models

1 Introduction

Computational analysis and design of structural crashwor-
thiness often involve multiple materials, strong nonlinearity
and complicated contact, which require significant numer-
ical effort and high computational cost. In this scenario,
the conventional sensitivity-based optimization that typi-
cally necessitates a large number of analysis iterations to
converge to an optimal design may be of limited practi-
cal value. In many cases it is extremely (if not impos-
sible) to formulate a mathematical relationship between
design objectives/constraints and design variables, making
the sensitivity based approaches less feasible. To ease the
mathematical and computational burden, one of effective
alternatives is to construct a surrogate model based on a
limited number of finite element analyses, which enables
to formulate an explicit relationship between the objec-
tive/constraint functions and design variables with relatively
simple expressions for optimization.

To date, substantial efforts have been devoted to apply
specific surrogate models for different design problems
(Hussain et al. 2002; Simpson et al. 2004; Lee and Kang
2007; Marzbanrad and Ebrahimi 2011; Lanzi et al. 2004;
Acar et al. 2011; Kaya and Ozturk 2010; Jin et al. 2001;
Yang et al. 2000, 2005a, b; Yang and Gu 2004; Viana
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et al. 2009; Song et al. 2010; Liao et al. 2008a, b). It must
be pointed out that these different surrogate models often
provide rather different modeling accuracy (Viana et al.
2009), gradient information and design outcomes (Wang
et al. 2011). It is unclear which surrogate model is most
suitable for a particular case. Sometimes justification of a
surrogate model itself may not be sound without compar-
ing it with other models. Often researchers must make use
of their past experience and/or literature data in order to
choose a suitable surrogate model. To account for uncer-
tainties in predictions, a simple and preferable way is to
attempt different surrogate models, from which the best can
be selected based upon the relative fitting accuracy (Viana
et al. 2009; Wang et al. 2011). Nevertheless, it may not guar-
antee that such a surrogate model with the best global fitness
(or the lowest modeling errors) would necessarily lead to the
best optimal results. Hence a comparative study on different
surrogate techniques for both modeling accuracy and design
optimization often becomes essential. Unfortunately, sys-
tematic studies on this issue, particularly across different
types of surrogate modeling techniques, have been rather
limited thus far (Viana et al. 2009; Wang et al. 2011; Zhao
and Xue 2010; Yang and Gu 2004).

As one of most typical energy absorbers, thin-walled
structures have been widely used in automobile, aerospace
and transportation engineering for their high ratio of energy
absorption induced by progressive axial folding to structural
weight. The early investigations of thin-walled structures
were concentrated on the straight columns with circular,
square, rectangular and/or multi-corner cross-sections using
analytical, numerical (Liu 2008) and experimental meth-
ods (Abramowicz and Jones 1986). In addition to straight
columns, experimental (Alghamdi 2002) and numerical
(Nagel and Thambiratnam 2004a) studies were also con-
ducted for tapered structures under axial or oblique loads
(Ahmad et al. 2010). Compared with straight tubes, taper
tubes have been considered more preferable because they
can more likely provide a desired constant mean load-
deflection response and are capable of withstanding oblique
and axial loads (Nagel and Thambiratnam 2004b). Fur-
thermore, tapered tubes are less likely to fail in a global
buckling, thereby avoiding an undesirable crushing (Hou
et al. 2011).

To increase the energy absorption without sacrificing too
much weight, recent attention has been paid to cellular
materials such as sawdust, honeycomb, foam, et al., filled
in straight (Santosa et al. 2000; Seitzberger et al. 1997;
Borvik et al. 2003) and tapered (Mirfendereski et al. 2008;
Ahmad and Thambiratnam 2009a, b) thin-walled structures.
Of these cellular filler materials, foam has proven particu-
larly ideal for its large deformation at nearly constant load
(Hou et al. 2009). To gain further insights into the effects of
foam filling on the energy absorption characteristics of thin-

walled tubes, the substantial experimental (e.g. Mamalis
et al. 2008) and numerical studies (e.g. Bi et al. 2010) were
conducted. New interest has been given to taper structures
filled with foams for its superior balance of crashing stabil-
ity and energy absorption capacity (Hou et al. 2011). From
design perspective, foam-filled taper structures are more
sophisticated and a single response model may not be ade-
quate. But how to more properly relate the design variables
to crashworthiness criteria remains questionable.

Unlike most of traditional crashworthiness designs
involving single response model, the present study concerns
four typical surrogate models, namely polynomial response
surface (PRS), Kriging (KRG), support vector regression
(SVR) and radial basis function (RBF), for optimizing
foam-filled taper column. Any of these four surrogate mod-
els, as long as its modeling errors meet the accuracy require-
ments, will be used for the design optimization using both
gradient based and non-gradient based algorithms. The final
optimum will be selected through a comparative assessment
of all the optimal solutions. This case study is expected
to shed some light in advocating a more proper way of
justifying adoption of surrogate models.

2 Numerical analysis of foam-filled taper structure

2.1 Crashworthiness criteria

To systematically study the crashworthiness of foam-filled
tapered thin-walled structures and optimize the perfor-
mance, it is essential to define the crashworthiness criteria.
There have been many different indicators available to eval-
uate the crush characteristics and energy absorption capa-
bilities of different structures (Sun et al. 2010b; Guler et al.
2010). Of these indicators, specific energy absorption (SEA)
is widely used to estimate the energy absorption capabili-
ties of absorbers with different materials and weights, and
will be used in this study. SEA denotes the specific energy
absorbed per unit mass of the absorber, as formulated below:

SEA = Eabsorbed

M
(1)

where M is the total mass of foam-filler and thin-walled
structure, and Eabsorbed is the total absorbed energy during
crashing, which can be calculated as:

Eabsorbed =
∫ δ

0
F(x)dx (2)

where F is the crushing force in axial direction and δ

the crashing displacement. Obviously, a higher SEA value
indicates a higher capability of energy absorption.
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(a) Typical hollow thin-walled structure (b) Foam-filled tapered thin-walled structure

Fig. 1 Axial impact force vs deformation in thin-walled structure. a Typical hollow thin-walled structure. b Foam-filled tapered thin-walled
structure

Another indictor to energy absorption capacity is mean
crash force Favg which is defined as the total energy absorp-
tion divided by the corresponding crushing displacement,
given as:

Favg = Eabsorbed

δ
(3)

In automotive applications, the peak impact force represents
other critical indicator to the occupant survival rate when
impact occurs. A large peak impact force often leads to a
high deceleration and may cause severe injury or even death
of occupant (Liao et al. 2008b). In typical thin-walled struc-
tures, the initial peak force Fpeak is usually the same as the
global peak force Fglobal (Fig. 1a). However, in a foam-filled
tapered thin-walled structure they can be different (Fig. 1b).
Therefore, both Fpeak and Fglobal can be used as the force
indicators to evaluate the crashworthiness characteristics
of the foam-filled thin-walled structures. In this study, we
constrain Fpeak and Fglobal to the predefined levels.

2.2 Finite element modeling

The structure analyzed herein is a foam-filled tapered thin-
wall column with square cross-section subjected to an axial
impact load, as shown in Fig. 2a. The length of the col-
umn is h = 300 mm, the small end of the tapered tube
remains unchanged as a square of a ×a = 50 mm×50 mm.
The dimension of the big square end of the tapered tube is
obtained by varying taper angle θ . The foam-filled taper col-
umn impacts onto the rigid wall from the smaller end at an
initial velocity of v = 15 m/s. To generate enough kinetic
energy as applied in vehicle crashing, an additional mass
block of 400 kg is attached to the big end (Fig. 2a).

In this study, finite element models were developed
using commercial code LS-DYNA. The Belytschko-Lin-
Tsay reduced integration shell elements were employed to
model the column wall. To model the foam materials, the
eight-node brick elements with one integration point were
adopted. Stiffness-based hourglass control was employed to

avoid spurious zero energy deformation modes and reduced
integration was used to avoid volumetric locking.

Since the foam-filled taper tube involves two materi-
als, different contact algorithms in LS-DYNA can be used.
The interface between the foam and inner wall of column
was modeled as an “automatic surface to surface” contact.
While “automatic single surface” contact was applied to the
column wall itself to avoid interpenetration of folding gen-
erated during axial collapse. To account for contact between
the rigid bodies, foam and tube, “node to surface” and
“automatic surface to surface” contacts were defined with
static and dynamic coefficients of friction of 0.2 and 0.3,
respectively (Seitzberger et al. 1997). These two kinds of
stiffness were defined such that neither interpenetration nor
instability commonly resulted from inappropriate stiffness
is encountered.

The materials of the thin wall column used here is alu-
minum alloy AA6061-T4 with density ρ = 2700 kg/m3,
Poisson’s ratio ν = 0.28, Young’s modulus E = 64.75 GPa,
and yielding stress σy = 71 MPa. The post collapse
response of column was defined using the true static stress-
strain curve of the aluminum that was obtained from a
standard tensile test (Kim 2002). As the aluminum is insen-
sitive to the strain rate, the rate-dependent effect is neglected
in the FE modeling (Hou et al. 2009).

b)a)

Fig. 2 a Schematic of the tapered square column with foam-filler.
b finite element model
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The foam was modeled as proposed by Deshpande and
Fleck (2000), in which the yield criterion of foam material
is defined as follows:

� = σ̂ − σy ≤ 0 (4)

where σy is the yield stress and the equivalent stress σ̂ is
given as:

σ̂ 2 = 1[
1 + (α/3)2

] [
σ 2

e + α2σ 2
m

]
(5)

where σe is the von Mises effective stress and σm the mean
stress. Parameter α controlling the shape of the yield surface
is a function of the plastic Poisson’s ratio νp given as:

α2 = 9(1 − 2νp)

2(1 + νp)
(6)

It is easily derived from (6) that α = 2.12 when νp = 0.
The strain hardening rule is implemented in this material

model as:

σy = σp + γ
ε̂

εD
+ α2 ln

[
1

1 − (
ε̂
/
εD

)β

]
(7)

where ε̂ is equivalent strain, σp, α2, γ , β and εD are the
material parameters and can be related to the foam density
as

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
σp, α2, γ,

1

β
, E p

)
= C0 + C1

(
ρ f

ρ f 0

)κ

εD = − ln

(
ρ f

ρ f 0

) (8)

where ρ f is the foam density and ρ f 0 the density of the base
material. C0, C1 and κ are the constants as listed in Table 1.
Note that the Young’s modulus of foam material E p is also
a function of ρ f as shown in (8) (Hanssen et al. 2002).

In order to decide the size of elements, a convergence test
was carried out to minimize the effect of mesh refinement
on the accuracy of the numerical results. It is found that the
optimal mesh sizes for the tube and foam are 5×5 mm2 and

Table 1 Material constants for aluminum foam (Hanssen et al. 2002;
Reyes et al. 2003)

σp (MPa) α2 (MPa) 1/β γ (MPa) E p (MPa)

C0 (MPa) 0 0 0.22 0 0

C1 (MPa) 720 140 320 42 0.33e6

κ 2.33 0.45 4.66 1.42 2.45

Fig. 3 Kinetic, internal, total and hourglass energy of the foam-filled
column

3 × 3 × 3 mm3, respectively, as in Fig. 2b, which was used
throughout the study.

Figure 3 plots the kinetic, internal, total and hourglass
energies during the deformation process of a foam-filled
taper column under dynamic loading. It is easily seen that
the decrease in kinetic energy is almost equal to the increase
of the internal energy, and the total energy remains nearly
unchanged. The hourglass energy is less than 1% of the
system internal energy. Note that the amount of hourglass
energy is also a good indicator to estimate the mesh qual-
ity, which typically should be less than 5% of the internal
energy of the system to overcome the hourglass problem
(Mirfendereski et al. 2008). Therefore, the mesh sizes used
here are considered adequate to capture the crashing details
of the foam filled thin-walled column. Figure 4 plots the
force versus time of the structure (ρ = 0.32 g/cm3, θ =
6.6◦, t = 1.5 mm) as well as its deformation at five different
time frames.

3 Optimization with multiple surrogate models

3.1 Surrogate models

The surrogate models provide an effective alternative to
mathematical formulation of the relation between the design

Fig. 4 Axial crushing behaviour of foam-filled taper tube
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Table 2 Parameters and functions of four surrogate models

Surrogate model Approximate function ŷ(x) Correlation function (Radial basic, kernel)

PRS b0 +
n∑

i=1
bi xi +

n∑
i=1

n∑
j=1

bi j xi x j +
n∑

i=1

n∑
j=1

n∑
k=1

bi jk xi x j xk No

KRG β̂ + rT (x) R−1
(

y − fβ̂
) R(xi , x j ) = exp

(
−

ndv∑
k=1

θk

∣∣∣xi
k − x j

k

∣∣∣2
)

0.05 ≤ θk ≤ 100

RBF
ns∑

i=1
λi ϕ (r(xi , x))

ϕ(r(xi , x)) =
√

‖x − xi ‖2 + c2

c = 1.0

SVR
ns∑

i=1
(ai − a∗

i )k(xi · x) + b
k(x, x′) = exp

(
−‖x−x′‖2

2σ 2

)

σ = 2.0

variables and sophisticated responses, which facilitate
design optimization with relatively low computational cost.
In this study, four different surrogate models, namely, cubic
polynomial response surface method (PRS) (Myers and
Montgomery 1995), Kriging (KRG) (Sacks et al. 1989),
support vector regression (SVR) (Smola and Scholkopf
2004), and radial basis function (RBF) (Gutmann 2001; Sun
et al. 2010c, 2011; Regis and Shoemaker 2005; Mullur and
Messac 2006; Zhao and Xue 2010) are considered herein
to approximate functional responses. There have been sub-
stantial studies on the key characteristics of these individual
surrogate models (Hussain et al. 2002), and a brief list about
the parameters and functions used in this study is provided
in Table 2.

3.2 Optimization formulation

As aforementioned, a high SEA is expected for crash-
worthiness design because it indicates high capacity of
energy absorption for the same weight of materials. There-
fore, maximizing SEA is considered as the design objective
herein. Different constraints have been prescribed in liter-
ature. In this study characteristic forces in terms of Favg,
Fpeak and Fglobal are constrained to avoid severe damage.

Wall thickness t , taper angle θ and the foam density ρ

(Fig. 2a) are taken as the design variables herein, which
range from 0.5 mm to 2 mm for t , from 0◦ to 12◦ for θ ,
and from 0.2 g/cm3 to 0.6 g/cm3 for ρ, respectively.

As a result, the optimization problem can be formulated
mathematically as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Maximize SEA = f (t, θ, ρ)

s.t.

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Fglobal(t, θ, ρ) ≤ 240 kN
Fpeak(t, θ, ρ) ≤ 80 kN
Favg(t, θ, ρ) ≥ 120 kN
0.5 mm ≤ t ≤ 2 mm
0◦ ≤ θ ≤ 12◦
0.2 g/cm3 ≤ ρ ≤ 0.6 g/cm3

(9)

3.3 Design of Experiments (DOE)

To formulate the objective and constraint functions, sample
points are needed to explore the design space. A typical way
to generate sample points is to adopt design of experiments
(DOE). Of many different DOE methods available, Latin
hypercube sampling (LHS) is considered rather effective on
reducing computational cost (Olsson et al. 2003). In this
study, totally 30 sample points are generated using LHS
approach, which are considered adequate to evaluate 20
coefficients of a cubic PRS involving the three design vari-
ables. Figure 5 exhibits the sample points and validation
points (for the following sections) in the 3D design domain.

3.4 Error analysis of the surrogate models

To assess the modeling accuracy of these four different
surrogate schemes, use of the sampling points themselves
may not be appropriate. Especially, KRG and RBF can go
through the sample point themselves, making the tested val-
ues at the sampling points meaningless. For this reason,
new validation points are needed to evaluate the mod-
els against the performance metrics. In this study, addi-
tional 20 validation points (see Fig. 5) are generated to
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Fig. 5 Sampling points (30) and validation points (20)
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verify the accuracy of surrogate models. Three numeri-
cal estimators, namely R-square (R2), Root-Mean-Square-
Error (RMSE) and Maximum-Absolute-Percentage-Error
(MAPE) are used to validate the accuracy of these surrogate
models, as given in (10)–(12), respectively.

R2 = 1 −

m∑
i=1

(yi − ŷi )
2

m∑
i=1

(yi − yi )
2

(10)

RMSE =
√√√√ 1

m

m∑
i=1

(
y�i − yi

)
(11)

MAPE = max

(∣∣ŷi − yi
∣∣

yi

)
(12)

where m = 20 is the number of newly created validation
points, yi is the true FEA values on the validation points, y�i
the corresponding approximate surrogate values, and yi the
mean of function over these m validation points. The values
of these performance metrics show the prediction accuracy

and capability of the surrogate models at the new points.
In general, the R2 and RMSE metrics indicate the overall
accuracy of an approximation model, while the MAPE met-
rics indicate a local metrics, which describes the error in a
sub-region of the design space. Overall, the closer the value
of R2 to unity and/or the smaller the values of RMSE and
MAPE, the better the accuracy.

4 Results

4.1 Error analysis of surrogate models

To compare the performance of these surrogate models
explicitly, multiple bar-charts are provided in Fig. 6 together
with Table 3. It can be seen clearly that in general these four
models approximate four different responses rather well.
Specifically, the SVR model performs best in the approx-
imation of SEA and Favg, while the RBF model presents the
best for Fpeak, and the PRS model the best for Fglobal.

In Fig. 7, the 3D contours of SEA are plotted to gain more
insights into these four models. In each plot the density is
set to be in between 0.4 g/cm3 and 0.5 g/cm3 only. It can be
seen that the contours with PRS, KRG and RBF models are
rather similar and change almost monotonically, while that
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Table 3 Error assessment of the four surrogate models

PRS KRG RBF SVR

SEA MAPE 0.10 0.16 0.10 0.07

RSME 0.34 0.62 0.34 0.28

R2 0.99 0.96 0.99 0.99

Favg MAPE 0.17 0.40 0.24 0.26

RSME 9.06 10.40 8.99 8.67

R2 0.96 0.95 0.96 0.96

Fpeak MAPE 0.17 0.28 0.17 0.22

RSME 1.87 2.59 1.51 1.77

R2 0.99 0.98 0.99 0.99

Fglobal MAPE 0.39 0.79 0.88 1.31

RSME 15.23 16.37 16.43 16.73

R2 0.96 0.95 0.95 0.95

from SVR differs somewhat and appears more complicated.
The overall consistency indicates the minimum errors given
in Table 3 and Fig. 6.

The comparison actually shows that each of these four
models is sufficiently accurate for the prediction of SEA,
Favg, Fpeak and Fglobal (e.g. all the R2 values are fairly close

to 1.0). Nevertheless, there is no clear best yet of these
four surrogate models for this particular goal. Each surro-
gate model has its cons and pros in practical applications.
Besides, a best or satisfactory error estimate and surface
contour may not necessarily imply a best surrogate for the
design process because optimization typically relies on the
gradient information to search an optimum. Thus we will
use all of them for solving the optimization problem defined
in (9), respectively, and then compare which might provide
the best solution to this case.

4.2 Optimization and validation

To obtain the optimal design of the foam-filled tapered
square column, both the Sequential Quadratic Program
(SQP) and Particle Swarm Optimization (PSO) (Sun et al.
2010a) are used herein. Since SQP is a gradient-based
approach and searching for the global optimum may rely
on the initial point, the optimization was solved through 40
random initial design points and the best solution will be
chosen as a quasi-global optimum. On contrary, PSO is a
derivative-free global optimum algorithm and one run could
lead to a global optimum.

(a) PRS model (b) KRG model

(d) SVR model(c) RBF model

Fig. 7 Surface plots of SEA responses for the four different surrogate models. a PRS model. b KRG model. c RBF model. d SVR model
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(a) Optimization based on the PRS model   

(c) Optimization based on the RBF model  (d) Optimization based on the SRV model 
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Fig. 8 Optimum design with different surrogate models (ρ = 0.6 g/cm3). a Optimization based on the PRS model. b Optimization based on the
KRG model. c Optimization based on the RBF model. d Optimization based on the SRV model

The final optimization results are plotted in Fig. 8 for
these four different surrogate models, respectively, in which
the contours show the distribution of SEA. Note that the
three color lines in each plot represent these three con-
straints, respectively. In each plot, the small triangular
region enclosed by these three constrains defines the feasi-
ble domain for the optimization. The red dot is the minimum
point obtained from the SQP and PSO procedures for each
surrogate model, which implies that these two optimum
search algorithms result in the same global optimum.

In addition to the difference of the SEA contours approx-
imated by these four surrogate models, it can be seen that
the constraint functions Favg and Fglobal play an active role
in the optimization when using the PRS model. Specifically,
the optimum point is found at their intersection. While
constraints Favg and Fpeak play predominant role in the opti-
mization when using other three surrogate models and the
optimum points appear at the intersection of Favg and Fpeak.

Table 4 summarizes the optimized design variables
together with the values of objective function. For design
variables t and θ , it shows that the RBF model and SVR
model lead to the fairly close results, while the PRS and

KRG models result in different values. Interestingly, the
optimal value of density ρ (0.6 g/cm3) is confirmed no mat-
ter what kind of surrogate model is used. This is to say that
a higher density of foam will absorb more crashing energy
under the same condition, which is due to the higher foam
resistance to the inward buckle of the thin wall during plastic
deformation and densification. Note that the optimal density
of 0.6 g/cm3 is just the best within the given range, which
may not be the best for the foam within a lower (e.g. Hou
et al. 2009 from 0.027 to 0.27 g/cm3) or a higher range
(e.g. Bi et al. 2010 from 0.34 g/cm3 to 0.82 g/cm3). The

Table 4 Results of constrained optimization for the four surrogate
models

t (mm) θ (deg) ρ (g/cm3) SEA Constraints

PRS 0.63 4.2 0.6 13.94 Satisfied

KRG 1.06 4.4 0.6 14.87 Satisfied

RBF 0.95 3.5 0.6 15.23 Satisfied

SVR 0.96 3.3 0.6 15.55 Satisfied
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Table 5 Comparison of predicted optimum design and validation
FEAs

PRS KRG RBF SVR

SEA Predict 13.94 14.87 15.23 15.55

FEA 15.94 15.04 15.63 15.69

Error % 6.71 7.31 2.56 0.89

Favg Predict 120.00 120.00 120.00 120.00

FEA 130.15 135.32 117.24 121.11

Error % 7.80 11.32 −2.36 0.92

Fpeak Predict 73.90 80.00 80.00 80.00

FEA 73.35 83.37 79.72 79.44

Error % 0.75 −4.04 0.35 0.71

Fglobal Predict 240.00 185.16 178.78 169.86

FEA 196.50 204.98 174.40 167.78

Error % 22.14 9.67 2.51 1.24

previous studies have exhibited that the SEA dependency
on density may not necessarily be monotonic (Hou et al.
2009). An overly high foam density may sacrifice SEA and
significantly increase the peak force (Hou et al. 2011).

Obviously, from the perspective of predicting optimum
results, SVR is the best model that leads to the greatest SEA
value, while PRS appears the worst. Note that the difference
in the optimized SEA is over 10% between the best and
worst surrogate models.

In addition, the optimum results without these three con-
straints (i.e. Fglobal ≤ 240 kN, Fpeak ≤ 80 kN, and Favg ≥
120 kN) are also shown in Fig. 8 for comparison. The blue
dots in Fig. 8 represent the optimum subject to the uncon-
strained optimization, where the optimal density is equal to
the maximum value of 0.6 g/cm3. Interestingly, the opti-
mum wall thickness t varies significantly with the different
surrogate models, and taper angle θ of 0◦ is found to be the
optimum in the other models than SVR. The unconstrained
results indicate that SEA can be improved by adjusting

the wall thickness appropriately, and decreasing the taper
angle to 0◦. In other words, the wall of column should
be neither too thin nor too thick, and straight foam-filled
structures have higher energy absorption capability per
unit mass than tapered structures under the same crushing
conditions.

Table 5 and Fig. 9 compare the predicted optimum
designs and the real FEA results based on the optimal design
variables obtained in Table 3. The errors of the PRS model
for SEA, Favg, Fpeak and Fglobal are 6.71%, 7.8%, 0.75%
and 22.14%, respectively. The errors of the KRG model are
7.31%, 11.32%, −4.04% and 9.67%, respectively, the nega-
tive value −4.04% herein implies the violation of constraint
Fpeak. The errors of the RBF model are 2.56%, −2.36%,
0.35% and 2.51%, respectively, again the negative value of
−2.36% implies the violation of constraint Favg. The errors
of the SVR model are 0.89%, 0.92%, 0.71% and 1.24%,
respectively.

As far as the design error is concerned, the RBF model
and SVR model perform better than the other two models,
which is consistent with the results in the previous pri-
mary error analysis (Section 4.1). Note that from the FE
re-analysis of optimized variables, the PRS model gener-
ates the highest SEA value of 15.94 kJ/kg with all satisfied
constraints even the error is slightly higher than those of
the SVR and RBF models. Following this, the SVR model
yields the second best SEA of 15.69 kJ/kg with all sat-
isfied constraints. It is found that the KRG and RBF models
predict infeasible solutions due to the violation of con-
straints. The results once again prove that the surrogate
model with the best primary fitness (e.g. SVR was the best
for SEA in this case from Table 3) may not necessarily be
the best model for the design optimization (Table 5). There-
fore, simultaneous tests of multiple surrogate models are
important to find the real optimum design, especially for
computationally expensive simulation such as the design of
foam-filled tapered thin-walled structure.

Fig. 9 Errors between
optimized results and
re-calculated FEA results
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It should be noticed that many factors, such as the sam-
pling scheme, the number of sample points and the response
itself as well as many parameters used in each surrogate
model, contribute on the accuracy of the constructed sur-
rogate model. However, a generalized comparison of these
four surrogate models for complex engineering problems
appears to be difficult and depends on the nature of prob-
lems. In other words, the effort made in this study was
not aimed to verify which surrogate model is best for any
crashworthiness optimization problem of foam-filled thin-
walled structure in terms of the error analysis. On contrary,
it attempted to reveal how these different surrogate models
could lead to different optimal designs, thereby demonstrat-
ing how to improve the accuracy of design optimization by
using different surrogate models simultaneously instead of
optimizing a single model. The comparative study indicated
that use of multiple surrogate models should be advocated
for more precise design optimization, which may avoid the
possibility that an overall accurate surrogate model may
lead to the non best optimum.

5 Conclusions

In this paper, the comparative study on these four surrogate
models, namely polynomial response surface (PRS), Krig-
ing (KRG), radial basis function (RBF) models and support
vector regression (SVR) was conducted for the design opti-
mization of foam-filled taper structure. To understand the
performance of different surrogate models a comparative
study was conducted to assess the primary modeling accu-
racy of objective and constraint functions as well as their
performance in design optimization. Firstly, it is confirmed
that all these four models can yield good primary fitness
of the real functions based on the error analysis with the
validation FEAs, though there is no single best available
to approximate all functions consistently in this problem.
Secondly, the optimization was conducted by means of a
gradient approach of sequential quadratic program (SQP)
method and a non-gradient approach of Particle Swarm
Optimization (PSO) method for each surrogate model. In
the SQP method, the multiple initial points could lead to a
quasi-global optimum that is consistent with PSO approach.
It is found that the optimal results are affected by the charac-
teristics of specific surrogate functions and the difference of
optimal objective can be over 10% in this design problem.
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