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Abstract In topology optimization filtering is a popular ap-
proach for preventing numerical instabilities. This short note
shows that the well-known sensitivity filtering technique,
that prevents checkerboards and ensures mesh-independent
designs in density-based topology optimization, is equiva-
lent to minimizing compliance for nonlocal elasticity prob-
lems known from continuum mechanics. Hence, the note
resolves the long-standing quest for finding an explanation
and physical motivation for the sensitivity filter.
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1 Introduction

The numerical topology optimization approach in its most
basic form solves the problem of minimizing compliance by

Grants: The first author appreciates the support from the Villum
Foundation through the grant: “NextTop”. The second author
acknowledges the support of the National Science Foundation under
grant EFRI-1038305. The opinions and conclusions presented in this
paper are those of the authors and do not necessarily reflect the views
of the sponsoring organization. This work was performed during the
first authors sabbatical leave at University of Colorado Boulder.

O. Sigmund (B)
Department of Mechanical Engineering, Solid Mechanics,
Technical University of Denmark, 2800 Kgs.
Lyngby, Denmark
e-mail: sigmund@mek.dtu.dk

K. Maute
Aerospace Engineering Sciences,
University of Colorado, Boulder,
CO 80309-0429, USA
e-mail: maute@colorado.edu

distributing a fixed amount of material in a design domain.
Usually, the problem is solved on a fixed finite element grid
where the densities of each finite element or node consti-
tute the design variables (Bendsøe and Sigmund 2004). The
simple formulation suffers from instabilities like checker-
boarding (Díaz and Sigmund 1995; Jog and Haber 1996)
and mesh-dependencies (Sigmund and Petersson 1998). A
wide range of formulations that ensure mesh independence
and eliminate such instabilities have been proposed and
include: sensitivity filtering (Sigmund 1997; Lazarov and
Sigmund 2011), gradient control (Petersson and Sigmund
1998; Borrvall 2001), density filtering (Bruns and Tortorelli
2001; Bourdin 2001), regularized penalization (Borrvall and
Petersson 2001), perimeter control (Ambrosio and Buttazzo
1993; Haber et al. 1996) and lately projection filtering
(Guest et al. 2004; Sigmund 2007; Xu et al. 2010) and
robust optimization approaches (Sigmund 2009; Wang et al.
2011; Schevenels et al. 2011). Sigmund (2009) provides
an extensive review and comparison of different filtering
approaches. Of the approaches mentioned above, the so far
most popular regularization technique has been the sensitiv-
ity filter which is very simple to implement and has been
extensively used, a.o. in public domain codes (Sigmund
2001; Andreassen et al. 2011; Tcherniak and Sigmund
2001; Aage et al. 2012) as well as commercial codes.

Sensitivity filtering was originally implemented as a
heuristic modification of the strain energy densities inspired
by image processing techniques (Sigmund 1997). Later, it
was interpreted as filtering of sensitivities times the local
density (Sigmund and Petersson 1998). In order to mit-
igate the dependency of the results on the mesh density,
element compliance sensitivity is computed as a weighted
average over elements within a fixed size neighborhood.
Despite its widespread successes in academia and com-
mercial codes, sensitivity filtering has suffered under its
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predicate “heuristic” and “numerically inconsistent” as the
filtered sensitivities cannot be derived directly from the
objective function, i.e. compliance. Many researchers have
tried to find the objective function that corresponds to the
modified sensitivities but without success.

The “suffering” of the sensitivity filter from its apparent
lag of mathematical rigor in the field of topology opti-
mization is actually somewhat surprising since many other
engineering, physics and even mathematics disciplines,
use similar concepts, mostly in the form of stabilization
techniques. Examples are pressure stabilization techniques
in fluid mechanics (Brooks and Hughes 1982; Tezduyar
et al. 1992), nonlocal bone-growth rules in bio-mechanics
(Mullender et al. 1994; Huiskes 2000), velocity extension
approaches in level-set methods (Adalsteinsson and Sethian
1995; Allaire et al. 2004; De Gournay 2006), regularization
of shape flow (Charpiat et al. 2007) and parameter estima-
tion (Bukshtynov et al. 2011), nonlocal optical responses
(Boardman 1982) and nonlocal elasticity (Toupin 1962;
Eringen and Edelen 1972) and plasticity (Leblond et al.
1994; Tvergaard and Needleman 1995) as reviewed in
Peerlings et al. (2001). Concerning the continuum mechan-
ics applications, nonlocal processes are introduced to
prevent physically unrealistic localizations of damage,
plasticity, stress singularities and other effects. In prac-
tise the nonlocality is implemented by filtering operators or
Helmholtz approaches just as done for filtering operations in
topology optimization (Allaire 2007; Lazarov and Sigmund
2011; Andreassen et al. 2011).

In this short note we show how an optimization problem
solved by the sensitivity filtering approach for the standard
compliance minimization problem is equal to minimizing
the compliance for a nonlocal elasticity problem as intro-
duced by Eringen (1983), Ru and Aifantis (1993), Gutkin
and Aifantis (1999), Gutkin (2000), Aifantis (2003) and
Askes et al. (2008).

The note is composed as follows: in Section 2 we review
the nonlocal and staggered elasticity approach by Aifantis
and co-workers and extend it to filtering of strain energy
densities; in Section 3 we review the continuum formulation
of the sensitivity filtering approach to topology optimiza-
tion, and in Section 4 we identify the commonalities of the
two approaches and discuss implications of this observation.

2 Nonlocal elasticity theory

As presented by Ru and Aifantis (1993), Gutkin and
Aifantis (1999), Gutkin (2000), Aifantis (2003) and Askes
et al. (2008), a simple constitutive law for nonlocal elasticity
theory can be written as

σi j = Ci jkl

(
εkl − l2εkl,mm

)
(1)

where σ is the Cauchy stress, C the constitutive tensor, ε the
linear engineering strain, l a material length scale parameter,
and indices following a comma denote spatial derivatives.
The parameter l represents the size of microstructural fea-
tures like grain, inclusion sizes or interparticle distances
and removes strain or stress singularities. Ignoring volume
forces the static equilibrium equations are given by

σi j, j = 0 (2)

and the strain-displacement relationships are

εi j = 1

2
(ui, j + u j,i ). (3)

Combining (1)–(3) results in a fourth order equation

Ci jkl

(
uk, jl + ul, jk − l2(uk, jl + ul, jk),mm

)
= 0. (4)

By the Ru–Aifantis theorem (Ru and Aifantis 1993) the
fourth order equation can be simplified to two staggered
second order problems: the standard elasticity problem

Ci jkl

(
uc

k, jl + uc
l, jk

)
= 0 (5)

and the Helmholtz equation

ug
i − l2ug

i, j j = uc
i , (6)

where superscript c indicates classical (local) elasticity and
superscript g indicates gradient enhanced (nonlocal) elastic-
ity. Hence, (5) corresponds to the standard linear elasticity
problem which then is followed by a separate filtering
(smoothing) of the individual components of the displace-
ment vector. Here, the filtered (nonlocal) displacement ug

resulting from the solution of (6) is identical to the solution
u of the fourth order problem in (4). Solution of (5) and (6)
is much simpler than directly solving (4), partly due to the
lower order (i.e. standard elements can be used) and partly
because the solution of (6) is computationally inexpensive
and simple, once the solution of (5) has been computed.

The displacement-based filtering in (6) can be translated
to the same type of expression in terms of strains (Gutkin
and Aifantis 1999; Gutkin 2000) by differentiation

ε
g
i j − l2ε

g
i j,mm = εc

i j , (7)

which relates the nonlocal strains εg to the local strains εc.
Next, Askes et al. (2008) assume that both nonlocal and

local stresses follow Hooke’s law and hence they get

σ
g
i j = Ci jklε

g
kl and σ c

i j = Ci jklε
c
kl (8)
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which entails that (7) can, by premultiplication with the con-
stitutive tensor C (Gutkin and Aifantis 1999; Gutkin 2000;
Aifantis 2003), be rewritten to

σ
g
i j − l2σ

g
i j,mm = σ c

i j (9)

At this stage, we extend the theory by Aifantis and co-
workers and multiply the stress smoothing expression (9)
with the local strains εc on both sides of the equality sign to
get

εc
i jσ

g
i j − l2εc

i jσ
g
i j,mm = εc

i jσ
c
i j , (10)

which can be written in a simpler form as

w̃ − l2w̃,mm = wc, (11)

where wc = Ci jklε
c
i jε

c
kl is the local (classical) strain energy

density and w̃ is a nonlocal (filtered) strain energy density.
Hence, a smoothed strain energy density distribution can,
by use of nonlocal elasticity theory, be obtained as a post-
processing step (11) to the standard linear elasticity problem
(5). We remark here that the multiplication with the local
strains in (10) is chosen as opposed to a multiplication with
its non-local counterpart since the latter would entail a com-
plex, non-linear (double) filtering operation on the left hand
side of the equation.

3 Sensitivity filtering

For the simple compliance minimization problem the objec-
tive function can be written in continuous form as

� =
∫

�

Ci jklεi jεkldV =
∫

�

wdV, (12)

where the strain energy density is defined as w =
Ci jklεi jεkl . Assuming that the constitutive tensor depends
on the density as Ci jkl = ρ pC0

i jkl (according to the SIMP
interpolation scheme (Bendsøe 1989; Zhou and Rozvany
1991)) and making use of the standard adjoint analy-
sis technique, we can find the gradients of the objective
function as

�,ρ = −
∫

�

Ci jkl,ρεi jεkldV

= −p
∫

�

Ci jkl

ρ
εi jεkldV = −p

∫

�

w

ρ
dV . (13)

The sensitivity filter works by modifying the gradients as

̂�(x),ρ =
∫
�

H(y, x)ρ(y)�(y),ρdV

ρ(x)
∫
�

H(y, x)dV

=
∫
�

H(y, x)w(y)dV

ρ
∫
�

H(y, x)dV
, (14)

where H(y, x) is a weighting function usually defined
as an inverse linear distance function with H(y, x) =
max[0, dist(y, x)], where dist(y, x) is the distance between
points x and y.

As suggested in Lazarov and Sigmund (2011) (and many
other places) the sensitivity filtering operation (14) can be
substituted with a PDE or Helmholtz filtering approach

ŵ − r2ŵ,mm = w, (15)

where w = ρ�,ρ = −pw. The filtered sensitivities are
subsequently found from �̂,ρ = ŵ/ρ. Among other advan-
tages the Helmholtz approach can be implemented very
efficiently for use in parallel computing and makes it sim-
pler and more stringent to filter complex domains with small
void details like cracks and sharp corners (Lazarov and
Sigmund 2011).

4 Discussion

Since the right hand sides of the filtering operations for
nonlocal elasticity (11) and sensitivity filtering (15) are
the same (except for a negative constant −p), the filtered
strain energy densities are equal as well (−pw̃ = ŵ).
Furthermore, since the constitutive tensor C inside w̃ is a
local property according to (8), the derivative of the non-
local strain energy measure w̃ is simply w̃,rho = −pw̃

ρ
.

This means that one can define a compliance minimization
problem based on nonlocal elasticity theory and by mathe-
matically stringent differentiation obtain the sensitivities as
provided by the sensitivity filter! Hence, we conclude that
the sensitivity filtering technique in topology optimization
can be interpreted as an optimization problem based on a
nonlocal elasticity approach.

In continuum mechanics the concept of nonlocal elastic-
ity was introduced to include size-effects for microstruc-
tured media, e.g. to provide strain or stress smoothing
effects when small features are present. For example, nonlo-
cal elasticity causes smaller eigenfrequencies and buckling
loads and larger deflections for carbon nanotubes (Reddy
and Pang 2008). Likewise, sensitivity filtering can be inter-
preted as having a softening effect on small structural details
hence making them uneconomical in the optimization pro-
cess. For compliance minimization, the smoothing of strain
energies for small structural details results in soft elements
which then are eliminated during the optimization process.

Furthermore, the Helmholtz filtering process is “vol-
ume preserving” (at least inside the modeling domain),
which means that the integral of the strain energy den-
sity remains the same before and after the filtering pro-
cess, i.e.

∫
�

wdV = ∫
�

ŵdV . This entails that from a
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continuum mechanics perspective, the filtering operation
does not change the objective function (12).

It is also interesting to note that the present “strain energy
density interpretation” of the sensitivity filter is a return
to the original thoughts of the first author as discussed in
Sigmund (1997). Here, the filter was defined in terms of
the strain energy density for a compliant mechanism design
problem. This also indicates that the filtering concept is
more general and holds beyond the simple compliance prob-
lem. For example, the strain used for premultiplication of
the stress filter in (10) to yield the strain energy density
filter (11), can be substituted with the strain field associated
with the adjoint problem for the output port (c.f. Sigmund
1997). Hence, the concept given here also holds for com-
pliant mechanism design problems and probably others as
well.

The discussions sofar were based on mechanical princi-
ples. However, if one is just interested in descend directions
the explanation of sensitivity filtering may also be viewed
from another perspective. That the filtering of the sensi-
tivities does not change the objective function but only the
descend direction is well-known and much used in mathe-
matics and image processing communities (Charpiat et al.
2007; De Gournay 2006; Allaire 2007; Bukshtynov et al.
2011). With certain assumptions on the filter operator which
for example are satisfied by the so-called Laplace-Beltrami
operator L(w) = v − l2�w (which corresponds to the left
hand side of (15)), e.g. Charpiat et al. (2007) proves that
the filtered sensitivities still provide a descend direction for
the original objective function. In general, a gradient can
be altered considerably without compromising the conver-
gence (although the optimization path is altered). As stated
in this literature, filtering of gradients may promote conver-
gence of some length scales over others and thereby speed
up convergence.

With the derivations given in this paper, we have shown
that sensitivity filtering can be rigorously derived from
continuum mechanics and nonlocal elasticity concepts.
We have shown that for the minimum compliance prob-
lem the sensitivity filtering concept corresponds to the
minimization of strain energy using a nonlocal elastic-
ity formulation, which is generally accepted in continuum
mechanics. From this perspective sensitivity filtering is nei-
ther “heuristic” nor “inconsistent”. Our arguments hold
for simple compliance minimization problems, however,
nothing prevents us in substituting the strain multiplier
used in extending (10) to (11) with a strain associated
with adjoint displacements (for e.g. mechanism design),
hence adapting the arguments to other mechanical objec-
tives than simple compliance. The arguments should also
hold for other physical problems involving multiple length
scales and localization phenomena. The latter statement is
further supported if sensitivity filtering is seen in the light

of simple algebraic gradient modifications that maintain
descend properties as discussed above.

Finally, we add a remark on the comparison of sensitiv-
ity and density filtering methods. With the findings of this
paper we have provided a continuum mechanics motivation
for the sensitivity filter. Interestingly, the same motivation
is not available for the density filter (Bruns and Tortorelli
2001; Bourdin 2001). Although mathematically rigorous,
we can at present, from a continuum mechanics perspec-
tive, not provide a physical justification for letting the local
material properties be a function of the neighboring material
properties as is the case for the density filter. This aspect,
however, is still open for discussions and we hope that our
paper will spur further interest and developments in this
area.
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