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Abstract The purpose of this paper is to apply stress
constraints to structural topology optimization problems
with design-dependent loading. A comparison of mass-
constrained compliance minimization solutions and stress-
constrained mass minimization solutions is also provided.
Although design-dependent loading has been the subject
of previous research, only compliance minimization has
been studied. Stress-constrained mass minimization prob-
lems are solved in this paper, and the results are compared
with those of compliance minimization problems for the
same geometries and loading. A stress-relaxation technique
is used to avoid the singularity in the stress constraints,
and these constraints are aggregated in blocks to reduce
the total number of constraints in the optimization prob-
lem. The results show that these design-dependent loading
problems may converge to a local minimum when the
stress constraints are enforced. The use of a continuation
method where the stress-constraint aggregation parameter
is gradually increased typically leads to better convergence;
however, this may not always be possible. The results also
show that the topologies of compliance-minimization and
stress-constrained solutions are usually vastly different, and
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the sizing optimization of a compliance solution may not
lead to an optimum.
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1 Introduction

Ever since topology optimization was introduced by
Bendsøe and Kikuchi (1988), it has usually been used to
determine the stiffest structure by minimizing the compli-
ance. However, this is not the objective for most practi-
cal structural design problems. A more realistic objective
would be to minimize the mass, while satisfying the stress
constraints.

Enforcing stress constraints in topology optimization
presents some challenges. Topology optimization problems
typically have a large number of elements, so satisfying the
stress constraints at multiple points in each element would
result in a large-scale optimization problem. Furthermore,
convergence problems have been observed in areas of low
density, due to the stress singularity, in which the stress is
undefined as the density approaches zero.

This singularity phenomenon was first observed by Sved
and Ginos (1968) and Kirsch (1990) in the optimization of
truss topology designs subject to stress constraints. They
observed that the optimal topology can be obtained only by
removing one of the trusses completely, thus violating the
stress constraint for that truss. The singularity results from
the appearance of degenerate regions. These are caused by
the discontinuous nature of the stress constraint when the
cross-section area is zero, which is often where the global
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optimum lies. Optimizers are unable to identify these degen-
erate regions and thus converge to a local optimum instead.
These regions can be eliminated by relaxing the stress con-
straints. The ε-relaxation approach proposed by Cheng and
Guo (1997) allows for higher stresses in areas of low den-
sity. However, this approach is not unique, and many other
authors have adopted variations of stress relaxation (Bruggi
and Venini 2008; Duysinx and Sigmund 1998; París et al.
2009; Pereira et al. 2004).

One of the simplest ways to apply stress constraints
in a structural topology optimization problem is to limit
the stress at given points in the elements; this is known
as the local constraint approach. Some authors have used
this method, for example Duysinx and Bendsøe (1998)
and Pereira et al. (2004), with the former choosing to
reduce the computational cost by calculating the sensitiv-
ity of the active constraints only. Another approach is to
transform these constraints into a single global constraint,
using some aggregating function such as the p-norm or the
Kreisselmeier–Steinhauser (KS) function; see Duysinx and
Sigmund (1998); Guilherme and Fonseca (2007), and Yang
and Chen (1996). However, this leads to weaker control
of the local stresses. A third approach is to group the ele-
ments into blocks and use a single aggregated constraint
per block (París et al. 2010); this is known as the block
aggregated constraint approach. This reduces the number
of constraints dramatically compared to the local-constraint
approach while retaining control of the stress behaviour.

This paper investigates the effect of enforcing stress con-
straints in design-dependent loading problems, where the
structural loading changes in magnitude, direction, and
location as the design changes. The most common design-
dependent loads are self-weight and pressure, and these
loads have been previously considered in compliance min-
imization problems. Bruyneel and Duysinx (2005) noted
a few difficulties that arise with self-weight, specifically
the nonmonotonous behaviour of the compliance function
and the appearance of low-density artifacts. Ansola et al.
(2006) applied self-weight to a few structures and solved
the problem using evolutionary structural optimization.

In pressure loading, the most difficult task is to iden-
tify the material boundary location on which the pressure
acts. Many different methods have been proposed, includ-
ing simulating the pressure loading with a fictitious thermal
loading (Chen and Kikuchi 2001) and applying a fictitious
electric field (Zheng et al. 2009). Some authors use a mul-
tiphase approach to identify the material, void, and fluid
regions (Bourdin and Chambolle 2003; Bruggi and Cinquini
2009; Sigmund and Clausen 2007). Other authors identify
the material boundary directly, either by connecting points
of equal density (Du and Olhoff 2004; Zhang et al. 2008) or
with the use of splines (Fuchs and Shemesh 2004; Hammer

and Olhoff 2000); the load can then be directly applied to
the finite elements.

Although stress-constrained topology optimization has
been investigated in previous work (Le et al. 2010; Pereira
et al. 2004; Sigmund and Clausen 2007), the problems
considered involve predefined fixed loads. Likewise, some
research has been done on topology optimization under
design-dependent loading. However, the objective has
always been to obtain the stiffest structure by minimizing
the compliance.

The goal of this paper is to determine the effect of enforc-
ing stress constraints in structural topology optimization
problems with design-dependent loads. A comparison with
the compliance minimization results is also provided. The
solid isotropic material with penalization (SIMP) approach
(Bendsøe 1989; Zhou and Rozvany 1991) is used along
with the block aggregation technique. For pressure loading,
an approach to connecting the points of equal pressure is
proposed. The differences between the results from com-
pliance minimization and stress-constrained problems are
explained, and the relative merits of these two approaches
are discussed.

This paper is organized as follows. Section 2 gives an
overview of the SIMP formulation that is used to solve
the topology optimization problem. The problem statements
for mass-constrained compliance minimization and stress-
constrained mass minimization are presented in Section 3
and Section 4, respectively. The methods for applying
self-weight and pressure loads are described in Section 5.
The numerical examples are given in Section 6, where
the differences between compliance minimization solutions
and stress-constrained solutions are analyzed. Section 7
provides concluding remarks.

2 Problem formulation

The goal of topology optimization is to distribute mate-
rial within a certain region in the most favourable way, for
a given objective function, while satisfying a set of con-
straints. The results show the locations in space where there
should be material and the locations that should be void.
With the design domain � discretized by N finite elements,
each element can be assigned a design variable ρe ∈ (0, 1]
to represent its relative density, with e = 1, . . . , N . These
design variables can be combined into a vector ρ ∈ RN .
The assembled global stiffness matrix K(ρe) ∈ Rd×d

depends on the design variables, where d is the number
of degrees of freedom. With the external load given by the
vector f ∈ Rd , the displacement vector u ∈ Rd can be
determined by the governing equilibrium equations

K(ρe)u = f. (1)
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Assuming linear elasticity, the strain and stress ten-
sors can be related to the displacement vector through the
kinematic and constitutive equations as

εi j = 1

2
(ui, j + u j,i ), (2)

σi j = Di jklεkl , (3)

where D is the constitutive matrix and depends on the
material’s Poisson’s ratio μ and Young’s modulus E0.

The density design variable should attain one of the lim-
iting values, such that the discretized domain results in a
black-and-white solution, giving a rough description of the
continuum structure boundaries. Many methods, includ-
ing the solid isotropic material with penalization (SIMP)
approach (Bendsøe 1989; Zhou and Rozvany 1991), penal-
ize the intermediate densities by expressing the material
properties Ee in each element as

Ee = ρ
p
e E0, (4)

where E0 is the Young’s modulus of the solid material, and
p is the penalization power. For a penalization power greater
than 1, the intermediate values of the densities are penalized,
since the material gives little stiffness when 0 < ρ < 1,
while the cost in volume decreases only linearly with ρ

(Bendsøe 1989; Eschenauer and Olhoff 2001). The result
is a 0–1 solution.

By using a penalized Young’s modulus, the assembled
stiffness matrix has an explicit dependence on each density
design variables, with

K(ρ) =
N∑

e=1

ρ
p
e k0, (5)

where k0 is the element stiffness matrix that uses the solid
material’s Young’s modulus E0.

3 Mass-constrained compliance minimization

The most common formulation for topology optimization is
to find the stiffest structure by minimizing the compliance
subject to a given amount of material. This is equivalent
to minimizing the energy of deformation at the equilibrium
state of the structure. This problem can be stated as

minimize C(u) = uT Ku

w.r.t. ρe

such that Ku = f

m(ρ) =
N∑

e=1

ρe ≤ m0

0 < ρmin ≤ ρe ≤ 1,

where u and K are the global displacement vector and
stiffness matrix respectively, m0 is the maximum mass
constraint, and ρmin is the minimum relative density (typ-
ically set to O(10−3)). The minimum density is nonzero to
avoid singularities in the stiffness matrix, and a value of
ρe = ρmin effectively represents a void element (Bendsøe
and Sigmund 2003; Sigmund 2001).

4 Stress-constrained mass minimization

Despite the well-developed mathematical background of a
compliance minimization topology optimization problem,
the problem statements are usually not representative of the
practical requirements. A more intuitive problem would be
to determine the lightest structure that does not fail. One of
the simplest failure criteria is that the stresses do not exceed
the yield stress of the material. With the stress tensor for-
malized using the constitutive relationship (3), the material
failure function F(σ ) can be defined as a function of the
stress tensor. Thus, the optimization problem can be written

minimize m(ρ) =
N∑

e=1

ρe

w.r.t. ρe

such that Ku = f
F(σe)

σy
≤ 1

0 < ρmin ≤ ρe ≤ 1,

where σy is the material yield strength, and failure occurs
when F(σ ) > σy . For isotropic materials, the von Mises
failure criterion is the most widely used failure function; it
is given by

σ 2
vm =1

2

[
(σ11 − σ22)

2 + (σ22 − σ33)
2 + (σ33 − σ11)

2
]

+ 3
(
σ 2

12 + σ 2
23 + σ 2

31

)
.

(6)

However, it has been recognized that topology optimiza-
tion with stress constraints may encounter singularities; see
Sved and Ginos (1968) and Kirsch (1990). In both cases,
a three-bar truss problem was analyzed, and it was pointed
out that a global optimum can be obtained only if one of
the trusses is removed completely, which would in effect
violate that member’s stress constraint. This phenomenon
is caused by the discontinuous nature of the stress func-
tion: as ρ → 0, the stress approaches infinity, and when
ρ = 0, the stress is undefined. As the truss area approaches
zero, the stress approaches a large value and the constraint
may be violated. However, this stress constraint is removed
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when the area is exactly zero. A stress-constrained struc-
tural topology optimization approach that does not treat this
singularity appropriately would prevent material from being
removed completely.

4.1 Stress-constraint relaxation

To generate a smooth feasible design space in the truss opti-
mization problem, Rozvany et al. (1995) used a smooth KS
function, while Cheng and Guo (1997) presented a relax-
ation approach to allow for higher stresses in elements of
low density. In a typical optimization problem, the design
domain may include a degenerate region, and the global
minimum may be located in that region. To ensure that the
stress constraint is always satisfied when the area (or the
density in a topology optimization) is zero, this constraint
can be stated as

(σvm − σy)ρe ≤ 0. (7)

However, as the density approaches zero, the stress remains
finite and the constraint is violated. The relaxation approach
perturbs the stress constraint and the variable lower bounds
by a small parameter ε > 0 to remove the degenerate region.
This relaxation modifies (7) to

(σvm − σy)ρe ≤ ε, (8)

which allows the constraint to be satisfied when ρe is
sufficiently small, thus removing the degenerate region.
However, Stolpe and Svanberg (2001) showed that although
the global optimum can be obtained, there is no guaran-
tee that the solution will in general converge to the global
optimum of the original problem.

Many relaxation approaches have been proposed for
element-based topology optimization, based on the ε-
relaxation (Bruggi and Venini 2008; Guilherme and Fonseca
2007; Pereira et al. 2004). The stress constraint definition
needed to resolve the singularity was revisited by Le et al.
(2010) who proposed a more general approach that could
give a number of viable stress, stiffness, and mass inter-
polation schemes. The stress constraint is first rewritten as
η(ρe)σvm ≤ σy , where η(ρe) is a weighting factor1 on the
stress (the SIMP approach similarly weights the stiffness
using ρ p). A smooth design space is generated provided
η(ρe) is continuous and η(0) = 0. For the other restrictions
that η(ρe) must satisfy, see Le et al. (2010).

1The ε-relaxed stress constraint in (8) would be written as η(ρe) =
ρe

ε+ρe
.

In the following stress-constrained topology optimization
problems, a simple weighting factor of η(ρe) = ρ

1/2
e is

used, and thus the material failure function is

F(σ ) = ρ
1/2
e σvm . (9)

This weighting factor was also used by Le et al., and it was
shown to give acceptable results.

4.2 Stress constraint aggregation

Ideally, the stress constraint at each finite element should
be enforced individually. However, this leads to a large
number of constraints. Combined with the large number of
design variables, this would result in a large-scale optimiza-
tion problem. Since a gradient-based topology optimization
requires the sensitivities of each constraint function with
respect to all the design variables, this would also create
a prohibitively costly sensitivity analysis. To address this
problem, the stress constraints can be aggregated into a
single function. This drastically reduces the computational
effort of the sensitivity analysis and also reduces the amount
of data that must be stored. However, this approach provides
poor control over the stress distribution within the domain
and typically yields overly conservative results.

A compromise between these two extremes is to use
the block aggregation approach (París et al. 2010), where
the elements are grouped into a number of blocks, each
with n elements, and a single aggregated stress constraint
is enforced in each block. Each constraint can be written as
the maximum stress ratio in the block,

σmax = max

(
F(σe)

σy

)
. (10)

Since this is not differentiable, the aggregating p-norm
function

σP N =
[

n∑

e=1

(
F(σe)

σy

)p
]1/p

(11)

or the KS function (Kreisselmeier and Steinhauser 1979;
Poon and Martins 2007)

σK S = 1

p
ln

[
n∑

e=1

exp

(
p

F(σe)

σy

)]
(12)

is preferable. Both functions are smooth and differentiable.
The aggregation parameter p controls the level of smooth-
ness, with p → ∞ yielding the original max function. In
the examples that follow, p-norm is used as the aggregating
function.
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4.3 Optimization problem statement

To further penalize the intermediate densities that might
occur, the mass function is redefined to become

m(ρ) =
N∑

e=1

ρe + αρe(1 − ρe), (13)

where α is a penalty coefficient. This results in a nonzero
second term when the density is at an intermediate value.
Other versions of the penalized mass function exist, and
they are used widely by various authors (Guilherme and
Fonseca 2007; París et al. 2009; Pereira et al. 2004).

Combining the above, the problem statement for a stress-
constrained, mass minimization optimization becomes

minimize m(ρ) =
N∑

e=1

ρe + αρe(1 − ρe)

w.r.t. ρe

such that Ku = f

gi

(
ρ

1/2
e σvm

σy

)
≤ 1

0 < ρmin ≤ ρ ≤ 1,

where gi (ρe, σy) is the aggregating function used to com-
bine the relaxed stresses within a block.

5 Design-dependent loading

This section presents detailed formulations for the appli-
cation of design-dependent loads, self-weight and pres-
sure, in the finite-element framework. The difficulties with
these design-dependent loads are also discussed, includ-
ing the determination of the material surface boundary for
the pressure load and the numerical problems that can
be encountered when applying self-weight with an SIMP
formulation.

5.1 Pressure loading

To allow pressure to act on the structure, a method to deter-
mine the material surface boundary is needed, and this
surface must be tracked as the design changes. The method
used is based on an iso-density line that iteratively connects
points of equal relative density; it is described in detail in
Lee and Martins (2012). A predefined voided area, where
ρe = ρmin for all iterations, is used to ensure that an inter-
mediate density will exist in the first iteration, and it also
forms a starting point for the line search.

By a linear interpolation from the corner densities, the
line segment, on which the pressure load acts, intersects the

element boundary at (s1, t1) and (s2, t2), s, t ∈ [−1, 1]. The
equivalent and consistent nodal load fe through the element
nodes can be determined using the element shape function
N, with

fe = P

{−�y/L
�x/L

} ∫

L
NT dl, (14)

which, with Gaussian quadrature and a change in the
interval of integration, becomes

fe = 1

2
P

{−�y
�x

}∑

i

wi N(g′
i)

T
, (15)

where L =
√

(x2 − x1)
2 + (y2 − y1)

2 = √
�x2 + �y2 is

the physical length of the segment within the element, and
P is the magnitude of the pressure. Letting �s = s2 − s1,
s̄ = 1

2 (s2 + s1), and likewise for t , the physical distances are
�x = �x(�s) and �y = �y(�t). With Gaussian quadra-
ture, wi is the weight of the i th node, and g′

i is the modified
Gauss point, taking into account the change of integration
bounds

g′
i =

⎧
⎪⎪⎨

⎪⎪⎩

1

2
gi�s + s̄

1

2
gi�t + t̄

⎫
⎪⎪⎬

⎪⎪⎭
.

The magnitude of the pressure is equal to P L , and
the direction of loading is always 90◦ clockwise from the
direction of the isoline segment. Using equivalent loading
ensures that the original load and fe are statically equiva-
lent, with the same resultant force and moment about any
point (Cook et al. 1989).

5.2 Self-weight

The gravity load is simply a linear function of the element
relative density ρe and the area of the element A, which
is assumed to be constant for a rectangular mesh, applied
along the x2 direction. The equivalent nodal load vector fe

can be determined from the element shape functions

fe =
∫ 1

−1

∫ 1

−1
NT

{
0
fg

}
dξdη, (16)

where fg = g Aρe, and the matrix of shape functions is

N =
[

N1 0 N2 0 · · · Ni 0
0 N1 0 N2 · · · 0 Ni

]
. (17)

For the four-node quadrilateral element that is commonly
used (Ansola et al. 2006; Bruyneel and Duysinx 2005),
this simplifies to 1

4 fg for each node. For the nine-node
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(a) Standard SIMP law

(b) Modified SIMP law

Fig. 1 Comparison of optimized topology for arch problem, with and
without SIMP modification

biquadratic quadrilateral element used here, it simplifies
to 1

36 fg for the four corner nodes, 1
9 fg for the four edge-

centered nodes, and 4
9 fg for the cell-centered node.

With this approach, intermediate densities often appear in
locations where the densities are close to zero, as shown in
Fig. 1a. Bruyneel and Duysinx (2005) attributed this to the
ratio between the force and the stiffness becoming infinite
as the density approaches zero, since f ∝ ρ and K ∝ ρ p,
which causes the displacement to be unbounded. Therefore,
the optimizer allows some material to be present to reduce
the displacements to finite values. An approach proposed
by Bruyneel and Duysinx to address this was to modify the
SIMP formulation such that the stiffness is linearly depen-
dent on the design variables, for elements with densities
below a certain cutoff, ρC , such that

Ee =
{

ρ
p
e E0 ρC < ρe ≤ 1

ρe

(
ρ

p−1
c E0

)
0 < ρmin ≤ ρe ≤ ρC

. (18)

Using this modified SIMP formulation, the intermediate
density artifacts can be removed, as shown in Fig. 1b.

6 Numerical examples

This section present several examples to compare the solu-
tions obtained for a mass-constrained compliance minimiza-
tion problem and a stress-constrained mass minimization
problem, with the structural loading changing in magnitude,
direction, and location as the design changes. Structural
analysis is performed using the in-house solver, Toolkit for
the Analysis of Composite Structures (TACS) by Kennedy

and Martins (2010). Optimization problems are solved using
SNOPT (Gill et al. 2005), a sequential quadratic program-
ming optimizer, which is used within pyOpt, an object-
oriented framework for nonlinear optimization (Perez et al.
2011).

The design domain is discretized with nine-node
biquadratic rectangular plane-stress elements. Node-based
design variables are used, located at the four corner nodes of
the element, and the stiffness of the element is interpolated
from the four corner nodes using the bilinear element shape
function N. Therefore, all the element relative densities in
the formulation can be replaced by

ρe = NT ρ, (19)

where ρ = [ ρ1 ρ2 ρ3 ρ4 ]T is a vector of the relative
densities at the four corners.

By using this Q9/Q4 (9-node quadratic displacement
interpolation with 4-node linear density interpolation)
implementation, the design variables are guaranteed to be
C0 continuous, thus preventing the checkerboarding phe-
nomenon that often occurs with element-based design vari-
ables (Rahmatalla and Swan 2004; Sigmund and Petersson
1998). Also, in the extensive study done by Jog and Haber
(1996), the Q9/Q4 implementation was found to be stable,
whereas for a lower-order displacement interpolation, such
as Q4/Q4, the analysis was found to be unstable. Therefore,
although gray regions may appear in the following exam-
ples, this is due to the density interpolation and all the results
have been fully converged.

To compare the mass-minimization solutions with those
of compliance-minimization, the stress-constrained prob-
lem was first solved to determine the optimal mass. This
mass was then used as the maximum mass constraint for
the compliance minimization problem. Thus, although the
two problems might result in very different topologies, the
results have the same mass, thereby giving a fair compari-
son.

The penalization value p for the material properties is
set to 3, and the minimum density is set to ρmin = 10−3

to avoid singularities in the global stiffness matrix. For the
block aggregation of the stress constraints, p-norm with a
parameter of p = 10 is used. The mass function (13) uses
α = 0.9 for the penalization of intermediate densities.

6.1 Self-weight arch

The following example is a self-weight problem with no
fixed loading imposed. A rectangular domain of 2 m × 1 m
is discretized by 2,048 elements, as shown in Fig. 2. Bound-
ary conditions are applied at the bottom two corners. Other
than the self-weight due to the material density ρ0 and
gravitational constant g, no external loads are applied. The
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Fig. 2 Self-weight arch: geometry

material properties are ρ0 = 2780.0 kg/m3, E = 73.1 GPa,
ν = 0.3, and σy = 75.8 MPa. Since a self-weight prob-
lem is subject to the intermediate-density artifact observed
by Bruyneel and Duysinx (2005), a linear density switch
limit of ρC = 0.25 was imposed in the Young’s modulus
redefinition (18).

Since decreasing the load would decrease the compli-
ance, C = fT u, and the stress, the optimizer would choose
to remove material. Hence, in the minimization of com-
pliance, unless a very low volume fraction is given, the
problem becomes unconstrained. For the solution in Fig. 3a,
the volume constraint was set to 40%; however, the final
solution has a volume fraction of 8.144%, with a final com-
pliance of C = 0.054. Rozvany analytically derived the 2D
solution through the optimization of trusses. This degen-
erates into a single layer of arches, commonly known as
a Prager structure (Rozvany and Prager 1979). The solu-
tion shown in Fig. 3a is in excellent agreement with the
analytical solution obtained by Rozvany (1989, p. 339).

(a) Compliance minimization (C = 0.054)

(a) Mass minimization (m = 73.856)

Fig. 3 Self-weight arch: optimized topologies

For the stress-constrained problem, there is a tradeoff
between reducing the nodal densities, thus reducing the self-
weight load, and increasing the densities, thus decreasing
the resultant stresses. Since this is a mass minimization
problem, it is preferable to decrease the densities in order to
reduce the load, which also decreases the stress. However,
with a nonzero lower bound on the densities, some mate-
rial is still required to support the structure. Therefore, the
final solution is not a true black-and-white solution. Instead,
it is another arch-shaped solution, as shown in Fig. 3b,
with a maximum relative density of 0.13 and a mass of
m = 73.856 kg.

6.2 Self-weight column

The next example is a self-weight problem with a fixed
load. In this case, a rectangular domain of 1.0 m by 0.6 m
is meshed with 6,000 elements. The entire bottom edge is
constrained, and a total load of F = 100 kN is distributed
over 0.08 m at the center of the top edge, in addition to
the self-weight, shown in Fig. 4. The material properties
are ρ0 = 7800 kg/m3, E = 210 GPa, ν = 0.3, and
σy = 6.5 MPa.

Again, the stress-constrained problem is optimized first,
which results in a final mass of m = 420.92 kg (9.0%
volume) and the geometry shown in Fig. 4. This mass is
then used as the constraint for the compliance minimiza-
tion problem. The topologies of the two solutions are vastly
different, with the compliance minization resulting in a sin-
gle column, whereas the mass minimization solution yields
a two-column geometry joined at the top, with a horizontal
truss midway (Fig. 5).

Figure 6 shows the stress distributions. Although the von
Mises stresses are within the yield stress limit in the com-
pliance solution, once again the stress-constrained result

Fig. 4 Self-weight column: geometry and loading
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(a) Compliance minimization (C = 1.689)

(b) Mass minimization (m = 420.92)

Fig. 5 Self-weight column: optimized topologies

exhibits a more fully stressed design, even though the two
solutions have the same mass.

Since the two topologies are dissimilar, the solution from
the stress-constrained problem was used to initialize another
compliance minimization problem, and the compliance
minimization solution was used to initialize another stress-
constrained problem. The mass constraint is left unchanged
for the compliance minimization problem, and therefore it
also equals the mass from the initial solution. The results
are shown in Fig. 7. The single-column solution retains its
topology until close to the top, where it forks out to sup-
port the applied load, when stress constrains are applied.
This results in a lower mass of m = 386.37 kg, indi-
cating that the earlier solution is a local minimum. For
compliance minimization, the optimizer merely refined the

(a) Compliance minimization (b) Mass minimization

Fig. 6 Self-weight column: relaxed stress distributions

(a) Compliance minimization from
stress solution (C = 1.928)

(b) Mass minimization from comp-
liance solution (m = 386.37)

Fig. 7 Self-weight column: initialized from converged solutions

stress-constrained solution, which gives a higher compli-
ance of C = 1.928, compared to C = 1.689 corresponding
to Fig. 5a.

One approach for avoiding local minima is a continua-
tion method. The concept of continuation methods was first
introduced by Allaire and Francfort (1993). The idea is to
begin the optimization with no penalization of the interme-
diate densities (i.e., p = 1) and then to gradually increase
the SIMP penalization parameter until an acceptable black-
and-white solution is obtained. This works because the
penalization of the intermediate densities greatly increases
the number of local minima present in the design space.
Therefore, delaying the penalization prevents the optimizer
from prematurely converging to a suboptimal solution.

More recently, James et al. (2009) demonstrated that a
similar strategy could be used to avoid local minima in
problems involving constraint aggregation. In that study,
the authors sought to minimize the maximum compliance
of structures subject to multiple load cases by treating the
compliance due to each load case as a constraint using the
bound formulation (Olhoff 1989). The resulting constraint
functions were aggregated using the KS function, and it
was shown that if the aggregation parameter was gradually
increased, the process converged to better optima.

The same principle applies to the case of stress con-
straints, where the local von Mises stress values within a
designated block are aggregated to form a single constraint.
By starting with a low aggregation parameter, it avoids the
situation where the sensitivity contributions from the lower
stress regions are overwhelmed and the optimization is dom-
inated by the stress values in a small number of elements.
This has the effect of stabilizing the optimization process
and avoiding premature convergence to an undesirable local
minimum.

In this approach, the p-norm parameter was initially set
to p = 1.0 and the problem was optimized using a relaxed
tolerance of 10−3. The p-norm parameter was then doubled
and the problem was optimized again. This was repeated
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Fig. 8 Self-weight column: solution obtained with continuation
method (m = 315.78)

until p = 16.0, at which point the convergence tolerance
was set to 10−6 to obtain the final solution. Since decreas-
ing the aggregation parameter also overstates the maximum
stress, the yield stress must be gradually decreased to the
final value in order to obtain a feasible solution at every
stage. The solution obtained using this continuation method
is shown in Fig. 8; it has a mass lower than that of the pre-
vious two results: m = 315.78 kg. However, the topology
also differs, with two angular trusses supporting the load, as
opposed to a single truss or a pair of vertical trusses.

The relatively strong performance of the minimum-
weight, stress-constrained design shown in Fig. 7b is con-
sistent with this result. Because both the compliance and
the von Mises stress are directly proportional to the strain
in the element, the compliance objective initially used for
the result in Fig. 7b behaves similarly to a constraint on the
aggregated von Mises stress with the p-norm parameter set
to p = 1. Therefore, the procedure of minimizing compli-
ance and then switching to weight minimization with stress
constraints is analogous to a two-stage continuation method.

0 50 100 150 200 250 300
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Fig. 9 Self-weight column: convergence history of continuation
method result

Figure 9 shows the convergence history of the optimality
and feasibility for the continuation method, with the dotted
vertical lines indicating restarts in the optimization with a
increased aggregation parameter. This optimized result indi-
cates that although an optimal stress-constrained solution
may be harder to obtain without a continuation method, the
optimal topology can be vastly different from that obtained
by minimizing compliance.

6.3 Pressurized arch

The next two examples present cases where the structure
to be optimized is subjected to pressure loading. Because
of the need to determine an isoline at every iteration, an
optimizer with smooth convergence behaviour is prefer-
able to one with fast convergence. Therefore, instead of
using SNOPT, the method of moving asymptotes (Svanberg
1987), MMA, is used. Since MMA can exhibit slow conver-
gence behaviour near the solution (Zuo et al. 2007), once a
reasonable solution is found, SNOPT is then used to fully
optimize the problem.

Pressure loading proves to be more difficult in a stress-
constrained mass-minimization problem than in a compli-
ance minimization problem. This is because in a mass-
minimization problem, the optimizer tends to remove mate-
rial, and therefore a smooth boundary on which to apply the
pressure can be more difficult to find. Thus, it is preferable
to use a low threshold, such as 0.2 or even lower, to deter-
mine the material boundary. As the optimizer converges to
the solution, this threshold can be increased.

The following example is a common benchmarking prob-
lem for topology optimization with pressure loading (Bruggi
and Cinquini 2009; Chen and Kikuchi 2001; Sigmund and
Clausen 2007). A rectangular domain of 2.0 m × 1.4 m is
meshed with 1120 elements and fixed at the bottom two
corners. The pressure originates from the middle of the bot-
tom edge, where the design variables contained within a
1.6 m × 0.28 m region are set to void, with the geometry
shown in Fig. 10. The pressure is P = 2 MPa, and the

Fig. 10 Pressurized arch: geometry
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material parameters are ρ = 2780 kg/m3, E = 73.1 GPa,
ν = 0.3, and σy = 75.8 MPa.

The compliance minimization problem converged to an
arch shape as shown in Fig. 11a, which is expected. How-
ever, the stress-constrained problem converged to a different
geometry, where smaller secondary arches are introduced to
reinforce the top part of the arch, as seen in Fig. 11b.

The stress contour plots in Fig. 12 show that the stress
constraints are violated at the points where the structure
intersects the corners of the rectangular void. Although the
stress-constrained solution resulted in a different topology,
all the stresses are within the yield stress limit.

Note that if the area of the initial void were reduced by
lowering the height, the corner stresses for the compliance-
minimization solution would be reduced, and the resultant
stress-constrained solution would more closely resemble a
simple arch. However, this particular size for the initial void
was chosen to illustrate that with stress constraints, sharp
corners can be rounded to reduce the stress concentration;
this would not be possible for a compliance-minimization
problem. This particular initial void also demonstrates again
that stress-constrained problems can converge to unex-
pected local optima.

The minimum compliance problem was used as a starting
point to optimize the stress-constrained problem again, in an
attempt to obtain the arched solution. The result is shown in

(a) Compliance minimization (C = 4266.25)

(b) Compliance minimization (m = 4266.25)

Fig. 11 Pressurized arch: optimized topologies

(a) Compliance minimization

(b) Mass minimization

Fig. 12 Pressurized arch: relaxed stress distributions

Fig. 13b, and in contrast to the other stress-constrained solu-
tion (Fig. 11b) the arch shape was recovered. This result
is also a “better” optimum, with a mass of 1217.7 kg,
compared to 1469.0 kg in Fig. 11b, a 17% decrease in mass.

When the compliance is minimized with the stress-
constrained solution (Fig. 11a), the secondary structures
remain. This is partly because when transforming a convex
structure to a concave structure, the optimizer must pro-
duce some intermediate solutions that are highly inefficient
for supporting a pressure load. These intermediate solutions

(a) Compliance minimization from
stress solution (C = 6185.43)

(b) Mass minimization from comp-
liance solution (m = 1217.7)

Fig. 13 Pressurized arch: initialized from converged solutions
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(b) Relaxed Stress, violated when greater than 1

Fig. 14 Pressurized arch: contour slice between local minima, with optimum located at (κ1, κ2) = (0, 1). The thick contour in stress plot indicates
boundary where constraint is active, where it is satisfied on outside

can be skipped if faster convergence behaviour is observed,
but islands and nonconnecting structures will likely appear,
making the formation of the surface boundary difficult. The
resulting compliance, C = 6185.43, shows that this is
indeed a local minimum: it is 45% higher than the value
for the original arch structure (C = 4266.25).

To investigate this local-optimum convergence behaviour,
a slice in the valid2 design space was analyzed. Three valid
solutions were used to define the plane, with two solutions
being the stress-constrained solutions obtained previously,
Figs. 11b and 13b, and the third being the initial setup
with the rectangular void and a relative density of 0.9. Two
parameters, κ1 and κ2, were used to choose among the three
solutions: (κ1, κ2) = {(0, 0), (1, 0), (0, 1)}. The solution of
Fig. 13b, the best local optimum found, is located at (0, 1).

Both the mass and the relaxed stress were determined
along the plane defined by the three points, and their con-
tour is plotted in Fig. 14. For the relaxed stress contour plot,
the feasibility contour of 1 is also plotted, to differentiate
between feasible and infeasible points in the domain. This
contour plot shows that the optimum is surrounded by a
discontinuity. Two points are taken on either side of this
“cliff” (indicated in the detailed plot), and the density dis-
tribution and stress contours corresponding to these two
designs are plotted in Figs. 15 and 16. Although the den-
sity distributions are almost identical, the stress contours are
vastly different. This is due to the method used to deter-
mine the boundary to apply the pressure. The difference
in the density between the two points causes two different

2Valid in the sense that all relative densities satisfy the constraint 0 <

ρmin ≤ ρ ≤ 1. The stress constraint may still be violated.

boundaries to be used, leading to the difference in the stress
distribution.

In an attempt to obtain an optimal stress-constrained
solution without using a compliance solution as a starting
point, the continuation method of the self-weight column
problem shown in Fig. 8 is applied. However, this resulted

(a) Feasible point, density

(b) Infeasible point, density

Fig. 15 Pressurized arch: densities of the two points shown in detailed
plot of Fig. 14b
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(a) Feasible point, stress (b) Infeasible point, stress

Fig. 16 Pressurized arch: stress distributions of the two points shown
in detailed plot of Fig. 14b

in a final mass of m = 1449.42 kg, which is lower than
that obtained without the continuation method, but higher
than that obtained with the compliance solution as a start-
ing point. This result is shown in Fig. 17; it has the same
topology as the case without the continuation method but a
slightly different shape. Although the continuation method
may result in a better optimum, there is no guarantee that
the stress-constrained optimization with the continuation
method will yield the global optimum.

6.4 Piston

The last example has a piston structure and is similar to the
problem solved by Sigmund and Clausen (2007) and Bruggi
and Cinquini (2009), with the design domain illustrated in
Fig. 18. A pressure of P = 1 MPa originates from the top
surface, and the domain is extended vertically to create the
void along the top. The left and right sides of the domain
are constrained in the x-direction, and the center of the bot-
tom edge is fully constrained, representing the piston rod.
Because of symmetry, only the right half of the domain is
modelled, and it is discretized by 2,400 elements.

With the given pressure load and boundary conditions, it
is easy to imagine that the ideal solution would be a dense
ball of structure around the constrained node, with a max-
imum volume under compliance minimization, or a point
at the constrained node with a finite volume under stress
constraints, with the pressure acting from the outside. To

Fig. 17 Pressurized arch: solution obtained with continuation method
(m = 1449.42)

Fig. 18 Piston: geometry and loading

prevent the structure from collapsing onto itself, a small,
fixed load of 10 kN is applied at the top right corner, also
shown in Fig. 18. At 0.3%, the fixed load can be considered
to be negligible compared to a minimum pressure force of
F = P Lx = 3 × 106 N per unit depth, but it is just large
enough to prevent the structure from disappearing.

The material properties are ρ0 = 2780 kg/m3, E =
32.0 GPa, ν = 0.3, and σy = 75.8 MPa. The mass mini-
mization, stress-constrained solution resulted in a final mass
of m = 2577.8 kg, shown in Fig. 19b. Minimizing the
compliance, using the value above for the maximum mass
constraint, resulted in a final compliance of C = 27592.9
as shown in Fig. 19a.

Although the topology of the two solutions is compa-
rable, the stress contour plots show that the compliance
solution has an infeasible structure with regard to permissi-
ble stress: the stress constraints are violated near the bottom
support. In the stress-constrained solution, all the von Mises
stress values satisfy the constraints (Fig. 20).

The compliance minimization solutions obtained by
Sigmund and Clausen (2007) and Bruggi and Cinquini
(2009) are similar to the compliance solution obtained

(a) Compliance minimization (C = 27592.9)

(b) Mass minimization (m = 2577.8)

Fig. 19 Piston: optimized topologies
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(a) Compliance minimization

(b) Mass minimization

Fig. 20 Piston: relaxed stress distributions

herein, but with thicker members due to the higher volume
fraction of 30%. Furthermore, their methods did not require
the additional fixed load, since the pressure boundaries were
forced to terminate at one of the sides of the domain. How-
ever, their approach required an additional volume fraction
of the fluid region to be enforced, whereas the current
examples specified only the magnitude of the pressure.

7 Conclusion

A comparison of mass-constrained compliance minimiza-
tion solutions and stress-constrained mass minimization
solutions have been provided, with both fixed loading and
design-dependent loading. In general, optimizations subject
to material failure constraints are difficult to solve because
of the large number of nonlinear constraints that form highly
nonlinear and discontinuous feasible regions. However, it is
important to investigate these problems, since minimizing
mass subject to failure constraints is the objective of many
structural design problems.

The structural topology optimization problems were
solved using the SIMP approach, together with node-based
density design variables to avoid the need for a filtering
algorithm. Because of the stress singularities, a stress-
relaxation approach was adopted. Instead of enforcing stress
constraints at every point of each element, a block aggre-
gation method was used to group the local constraints. In
each group, a p-norm function was used to approximate the
maximum stress with a smooth function. This reduced the
number of constraints in the optimization, thus reducing the
computational time required.

The numerical examples presented herein showed that
mass minimization subject to stress constraints generally
resulted in a more fully stressed design, when compared to a
compliance minimization with the same mass, where stress
constraints are violated. However, problems with stress con-
straints were likely to converge to local minima, especially
for problems with design-dependent loading. For the self-
weight column problem, the convergence to local minima
was avoided through the use of a continuation method, in
which the aggregation parameter was gradually increased.
However, the use of a continuation method does not guar-
antee that a global optimum can be found; the pressurized
arch problem demonstrates this. Moreover, the results of
the piston example show that the compliance minimization
and mass minimization problems can result in considerably
different topologies. Thus, a compliance minimization fol-
lowed by a sizing optimization with failure constraints may
not result in an optimum. Therefore, the stress-constrained
approach is important in topology optimization.
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