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Abstract This paper addresses single and multiobjective
topology optimization of truss-like structures using genetic
algorithms (GA’s). In order to improve the performance
of the GA’s (despite the presence of binary topology vari-
ables) a novel approach based on kinematic stability repair
(KSR) is proposed. The methodology consists of two parts,
namely the creation of a number of kinematically stable
individuals in the initial population (IP) and a chromosome
repair procedure. The proposed method is developed for
both 2D and 3D structures and is shown to produce (in
the single-objective case) results which are better than, or
equal to, those found in the literature, while significantly
increasing the rate of convergence of the algorithm. In the
multiobjective case, the proposed modifications produce
superior results compared to the unmodified GA. Finally
the algorithm is successfully applied to a cantilevered
3D structure.
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1 Introduction

Optimization of discrete structures, such as trusses, grid
shells and frames, is of great importance in structural engi-
neering. While shape and sizing (Gil and Andreu 2001)
optimization have received much attention and are rela-
tively mature areas of research, several challenges still face
researchers in the field of discrete topology optimization:

1. The topology variables considered are discrete, mean-
ing that traditional gradient-based optimization tech-
niques are not directly applicable.

2. In general multiple objectives may be of interest to the
designer (Coello Coello et al. 2002). Multiobjective
topology optimization increases the complexity of the
problem.

3. Optimization techniques developed to deal with dis-
crete variable problems tend to have poor computational
performance as pointed out by Ruiyi et al. (2009).
Large scale structures, with a large number of variables,
such as those typically encountered in civil engineering
problems, further magnify this problem.

4. Practical design and construction constraints further
exacerbate the difficulties.

The presence of discrete or mixed variables in optimiza-
tion problems has led to the successful development of
optimization techniques such as stochastic search methods,
of which genetic algorithms (GA) (Goldberg 1989; Hajela
and Lee 1995; Ohsaki 1995; Kawamura et al. 2002) have
become particularly popular. Population based stochastic
methods, such as GA’s, are also well suited to multiobjec-
tive problems (Papadrakakis et al. 2002), since a number of
individuals may be considered at any given time. This aspect
is consistent with the notion of Pareto optimality in which
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a number of non-dominated (i.e. ‘best compromise’) solu-
tions make up an optimal set (the Pareto optimal set). Much
success has been achieved in the combination of multiob-
jective optimization with GA’s in other fields of structural
optimization (Coello Coello 1999a). However, relatively
few papers (Ruy et al. 2001; Mathakari et al. 2007; Balling
et al. 2006; Su et al. 2011) on multiobjective topology
optimization of truss structures are found in the literature.

The Multiobjective Genetic Algorithm used as a basis
for the proposed method was introduced by Fonseca and
Fleming (Fonseca et al. 1993). The use of a well established
algorithm such as this allow for the effects of modifications
to the algorithm to become clear. Nevertheless, in truss
topology optimization, GA’s tend to have poor compu-
tational performance in terms of CPU time (Ruiyi et al.
2009).

One of the main focuses of current research is improv-
ing the cost and efficiency of the GA in discrete topology
optimization by reducing the large number of unneces-
sary calculations. Two approaches exist in this context,
namely avoiding duplicate calculations (Ruiyi et al.
2009) and avoiding calculation of non-feasible solutions
(Kawamura et al. 2002; Deb and Gulati 2001; Hajela et al.
1993). The feasible solutions make up the feasible solu-
tion set � of the search space S which is defined by the
constraints on the problem. Much research has been con-
ducted on other issues relating to the constraints of the
discrete topology optimization problem (Rozvany 1996,
2001), but the kinematic stability of trusses has been largely
overlooked. In discrete design problems, definition of �

appears to have been almost completely neglected, parti-
cularly in engineering applications (Statnikov et al. 2009).
Several constraints typically characterize � in structural
topology optimization (although this list is by no means
exhaustive):

1. Stress constraints in the structure.
2. Constraints on local stability of structural elements

(such as buckling of elements).
3. Constraints on the stiffness of the structure (or relating

to the overall deflection of the structure).
4. Constraints on the natural frequencies of the structure

(Tong and Liu 2001).
5. The condition of kinematic stability of the structure is

particularly relevant to discrete topology optimization.

The kinematic stability of a discrete structure is intimately
linked to the topology variables. While virtually all other
constraints are present in sizing and shape optimization,
the kinematic stability is exclusively of interest in topology
optimization. In general, academic research focuses on very
simple, small scale structures in which the problem of kine-
matic stability remains manageable. However, most civil

engineering applications deal with large scale problems with
numerous degrees of freedom. The smaller the relative size
of the kinematically stable subset �ks ⊆ S with respect to S,
the less likely the population is to contain a significant num-
ber of kinematically stable structures. Simply identifying
unstable structures does not solve this problem.

The relative number of kinematically stable solutions
evaluated by genetic algorithms have in the past been
increased in three ways. Firstly stable solutions can be
introduced as the seed for the initial population. Hajela
and Lee (1995) propose a strategy composed of two suc-
cessive optimization procedures, first generating a popula-
tion of kinematically stable structures, ignoring structural
response constraints. These least weight stable topologies
form the basis for a topology optimization and member
resizing optimization stage, where a lethalization technique
is used to eliminate unstable topologies. The second method
involves targeting the constraints of the solution by iden-
tifying unstable solutions directly. Approaches to dealing
with constraints in evolutionary algorithms are summarized
in Coello Coello (1999b). In most previous studies a check
on the kinematic stability of the structure is performed,
followed by penalization of the fitness of unstable struc-
tures (Ruiyi et al. 2009). Deb and Gulati (2001) suggest first
penalizing individuals which do not satisfy the Chebyshev–
Grübler–Kutzbach criterion,1 then penalizing individuals
with non-positive definite stiffness matrices.

Though these approaches seem to provide adequate
results for small scale problems, they do not address the
problem of scale inherent to the size of �ks . As the number
of variables increases (for the same boundary conditions),
the relative size of �ks decreases dramatically. For larger
problems, penalization may not be effective at all. This
problem has been demonstrated by Kawamura et al. (2002)
who adopted a third approach whereby only stable topolo-
gies are produced by the GA using a novel genome coding
method. However, this approach can limit the search space
too much in large structures.

Based on these considerations the approach proposed in
this paper, topology optimization with kinematic stability
repair (or KSR), suggests two adaptations of the genetic
algorithm specifically developed for truss topology opti-
mization. Firstly, individuals with guaranteed kinematic
stability are introduced into the initial population. Negligi-
ble computational effort is required for this initial step and
a ‘good’ starting point for the algorithm is produced. Sec-
ondly, a chromosome repair operation is introduced which

1 DO F = dn − m − ns , where d is the dimension, n is the number of
nodes, m the number of bar members and ns the number of degrees of
freedom constrained by the supports. It should be verified that DOF is
not positive.
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modifies a class of kinematically unstable structures pro-
duced by the other genetic operations. Chromosome repair
in this context refers to mechanisms which alter the chro-
mosome after cross-over and mutation in order to attempt
to ensure the integrity of the structure. Repair algorithms
have been used with success on problems with discrete
design variables in other fields of optimization (Filomeno
Coelho and Bouillard 2005), and in continuum multiobjec-
tive topology optimization with GA’s (Madeira et al. 2006).
Some research has been conducted on the possibility of
improving the performance of GA’s in truss topology opti-
mization using a genotype refinement technique (Šešok and
Belevicius 2008), however these studies focus on the stress
constraint.

Starting from these considerations, the paper is orga-
nized as follows: after a description of the KSR approach
(Section 2), a number of examples illustrate single-objective
(Section 3) and multiobjective applications of the method
(Section 4), followed by concluding remarks and future
prospects (Section 5).

2 KSR approach

2.1 Parameterization of the structures

A fixed length vector (or chromosome) is used to represent
the design variables (Fig. 1): separate binary topology vari-
ables are concatenated to sizing variables (where relevant)
in the chromosome representation.

The discrete topology variables are mapped to 2-tuples of
positive integers representing the coordinate numbering of
the end nodes of the bar elements. These tuples are in turn
mapped to tuples of coordinates in Euclidean R

2 or R
3 space

depending on the problem dimension. The ground structure

1

2
3 4

5

1 1 0 1 1 2 1 0 1 3

P

Sizing variables 

Chromosome

Topology variables

Fig. 1 Typical parameter representation

allows for the first mapping, while the problem space (the
nodal positions) allows for the second. The ground struc-
ture approach was chosen as it is the most common in the
literature and allows us to more easily compare our results
to the benchmark problems, taking only the effects of our
modifications into account.

2.2 Hypotheses

The following hypotheses are assumed:

1. The structures are made up of linear bar elements,
subject only to axial forces.

2. The elements and connections of the trusses are devoid
of imperfections such as eccentricities.

3. The materials under consideration are linear elastic.
4. The connections between the bars are perfectly friction-

less, pinned joints.
5. The masses of the joints are neglected.
6. Uncertainties (on the material properties, the loading,

etc.) are not taken into account.

In future investigations several of these assumptions could
be relaxed, however these are enforced here for simplicity.

2.3 Optimization framework

The KSR method employs a genetic algorithm optimization
loop coupled to a finite element analysis which generates
the necessary responses. For this investigation the finite
element code FEAP (Taylor 2008) was used. The design
domain comprises a set of nodes with fixed spatial coor-
dinates, a set of supports and a set of loads. The ground
structure defines the upper bound of the topological search
space (Dorn et al. 1964). Introducing knowledge of the
structures into the GA through a stable initial population
and kinematic stability repair takes the conflicting nature of
the objective functions in multiobjective optimization into
account (see Section 2.3.2).

2.3.1 Initial population

In multiobjective structural optimization most studies avail-
able in the literature consider two conflicting objectives.
Therefore, a strategy is proposed in which two additional
procedures are used to generate the initial population for
the GA search procedure. When the general effect of a
particular type of configuration of elements on the objec-
tive functions is known, procedures may be devised which
tend to generate these types of structures as members of
the initial population. In this investigation, the procedures
are intuitively developed, but a more rigorous approach is
conceivable, (for example) through criterion selection. In
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Fig. 2 Analogy between
VEGA (top) and KSR (bottom)
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the VEGA algorithm (Schaffer 1985) a criterion selection
technique is used to create sub-populations corresponding
to separate objectives performances. These populations are
then combined to create the entire population (Fig. 2).

Two procedures are used in the multiobjective examples.
The first produces individuals with large natural frequencies
or greater stiffness (procedure 1); the second individuals
with low masses (procedure 2). Procedure 1 uses a triangu-
lation (for 2D problems) or tetrahedron (for 3D problems)
meshing of a region of the space defined by the nodes. The
loaded nodes and support nodes are given special precedence
and loosely define the area to be meshed. In the 2D, case a
triangle is generated for each support node or loaded node
(Fig. 3). Thereafter, the gaps between these triangles are
bridged by consecutive triangular structures. The procedure
in the 3D case is equivalent, using tetrahedron (Fig. 4).

Procedure 2 employs a similar approach to that found in
Kawamura et al. (2002). A stable triangular or tetrahedral
kernel is produced randomly in the design domain. There-
after, the structure is grown around this kernel by adding two
(in the 2D case) respectively three elements (in the 3D case)
attached to nodes already in the structure, sharing a common
node. This process is continued, encouraging inclusion of
nodes in the direction of unconnected loaded or supported
nodes, until all of these nodes form part of the connected
structure. Figure 5 illustrates this procedure for a very sim-
ple truss problem in two dimensions. The degree to which
these two methods produce different results depends on the
problem configuration (nodal positions, number of bound-
ary constrained nodes, density of the ground structure, etc.).
In addition to the kinematically stable individuals, a certain
proportion of the initial population is randomly seeded to

encourage diversity. In the VEGA approach the various sub-
populations have the same size. Similarly, the kinematically
stable sub-populations have roughly the same size.

Node space 

Step 1

Step 2

Fig. 3 2D procedure 1
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Node space

Step 1

Step 2

Fig. 4 3D procedure 1

In multiobjective optimization, a number of measures,
called ‘metrics’, can be used to quantify the performance
of a set of solutions. For example, the generational dis-
tance metric (IG D) (see Zitzler et al. 2003 for details and
other metrics) measures the normalized distance between
two Pareto fronts. We use IG D here to evaluate the per-
formance of Pareto fronts relative to the Pareto optimal
solution. IG D = 0 signifies a convergence to the refer-
ence Pareto optimal solution. The results of a study of
the size and composition of the initial population for the
54 bar example discussed in Section 4.2.2 can be seen in
Figs. 6 and 7. Note that both the minimum number of
function evaluations required, and the average accuracy of
the calculations coincide with a stable initial population of
50–80%.

2.3.2 Chromosome repair

The first requirement for the repair procedure is the iden-
tification of kinematic instability. Identification of unstable
structures can be done in several of ways:

– Checking the positive definiteness of the structure’s
stiffness matrix K. If K is positive-definite, the truss is

kinematically stable. This requires the assembly of the
stiffness matrix and generally a numerical procedure to
determine the condition of positive definiteness.

– Checking for satisfaction of the Chebyshev–Grübler–
Kutzbach criterion, a necessary, yet not sufficient cri-
terion for the kinematic stability. Instabilities cannot
be identified directly, since the position within the
structure and the nature of the instability is unknown,
making this check unsuitable for repair operations.

– Checks on the connectivity of specific nodes. This
can provide an indication of instabilities, yet is also a

Step 1

Step 2

Step 3

Step 4

Fig. 5 2D procedure 2
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Fig. 6 Average effect of composition of initial population on final
solution for 54-bar multiobjective problem

necessary but not sufficient set of criteria. Not all mech-
anisms can be identified in this way. A check of the
positive-definiteness of K is still necessary.

– The Singular Value Decomposition of the equilibrium
matrix (Pellegrino 1993) provides detailed information
about instabilities within the structure. This procedure
can be computationally very expensive and does not
necessarily indicate how a repair may take place.

The third approach is adopted here, since it provides specific
structural information on how a repair to the structure can
be carried out. The analysis of the stiffness matrix is carried
out by default during the finite element analysis, and so a
check on the instability of the structure is readily available
in the event of instabilities which are not detected using the
proposed approach.
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Fig. 7 Average effect of size of stable initial population on final
solution for 54-bar multiobjective problem

Two types of checks are made and repairs carried out
prior to the stiffness matrix assembly (Fig. 8). These checks
identify several causes of kinematic instability and struc-
turally undesirable configurations directly and allow for
easy rectification of the detected problems:

1. The connectivity check identifies the nodes which are
insufficiently connected to the rest of the structure.2

The following should be checked:

(a) The connection of the loaded and support nodes.
These nodes should be connected to the structure
by at least one element.

(b) Nodes connected to the structure by only one ele-
ment (2D) or either one or two elements (3D).
Isolated elements, connecting two nodes, but dis-
connected from the structure.

2. In the 2D case the linear independence check identifies
all nodes connected to two elements. If the three nodes
concerned are not linearly independent, the common
node is identified for repair. In the 3D case the planar
check identifies nodes which are connected to three ele-
ments only. If the four nodes are planar, the common
node is identified for repair.

The connectivity check (Fig. 9a)3 examines the connectivity
vector of tuples. If, for node i , (i = 1...ne), 0 ≤ ni ≤ d
a repair is carried out. Here ne is the total number of
nodes and d is the number of dimension in the problem.
The linear/planar independence check (Fig. 9b) analyses the
connectivity of the structure and the geometric relationships
between the nodes connected to common elements. Two
types of operations are performed on the chromosomes in
order to potentially move the structure into �ks :

1. Addition of elements.
2. Elimination of unnecessary elements.

Combinations of these operations are carried out until the
structure is suitably stable from the point of view of this con-
straint check. The number of elements added or removed is
chosen with a probability decided by the user.4 The repair
algorithm is shown in Fig. 10. Experience shows the type of
kinematic instabilities identified by these checks are by far
the most common, given the stable initial population genera-
tion and the use of crossover and mutation genetic operators

2This does not include unconnected nodes.
3Note that the structures conform to the Chebyshev–Grübler–Kutzbach
criterion.
4During collinear/planar repair, it is ensured that the number of ele-
ments removed does not lead to the node connected to one or two
elements, respectively in 2D and 3D problems. This is to avoid con-
nectivity violations, while technically satisfying the collinear/planar
check.
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Fig. 8 Modified genetic
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preceding the repair operation. In fact, when repeating the
trials carried out by Kawamura et al. (2002), we found
(Fig. 11) that all instabilities (for this type of structure)
could be repaired using the repair procedure described
above. The repair algorithm, in a sense, decreases the size
of the search space and therefore the size of the prob-
lem. The use of both addition and elimination of elements
aids in preservation of diversity and preventing convergence
towards a single solution (Coello Coello et al. 2002), some-
times called genetic drift (Cheng and Li 1997). Further-
more, local repair operations do not significantly alter the
chromosomes of the individuals. Large scale repairing could
negate the stochastic nature of the genetic algorithm through
systematic repair of large swathes of the chromosome.

3 Single-objective topology optimization

The KSR approach suggested in the preceding sections is
implemented in a number of test problems. The method-
ology has been developed for multiobjective problems,
however we use a number of well-known single-objective
problems to test the efficacy of the proposed modifications
to the GA.

3.1 Problem formulation

A review of the literature reveals the minimization of the
mass of a structure (1) to be one of the most commonly
studied objective functions. Four constraints are considered,
namely the maximum stress in the elements (2), local
stability of the individual elements (3), the maximum
deflection of the structure (4) and kinematic stability. Since
we cannot be certain that all possible types of instability can
be detected and repaired structures still deemed to be kine-
matically unstable (after repair operations are carried out
if any) are penalized, similarly to the method suggested in
Deb and Gulati (2001). The problem is explicitly formulated
as follows:

f = min
ti ,Ai

{
W =

M∑
i=1

ρi ti Ai li

}
(1)

subject to:

1. Stress constraints:5

ti |σi |
σmax

i
≤ 1 (2)

5Note that the problem of singular topologies is eliminated through the
presence of the topology variable.
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(a) 2D stability repair check 1 (b) 2D stability repair check 2

Fig. 9 Chromosome repair checks a and b

2. Buckling constraints:

tiσi

−σ cr
i

≤ 1 (3)

where σ cr
i = −π2 Ei Ii

Ai l2
i

and all cross-sections are circular.

3. Vertical deflection constraint:

δz

δmax
z

≤ 1 (4)

where δz = max (dz) = max
((

K−1f
)

z

)

where M is the number of bar elements, i = 1...M , W
is the mass of the structure, ρi the density of material for
element i , ti ∈ {0, 1} the topological variable for element
i , Ai the cross-section area of element i , li the length of

the bar element i , σi the stress in element i , Ei the elastic
modulus of material i , and Ii the area moment of inertia of
element i .

3.2 Examples

Three benchmark problems commonly found in the litera-
ture are discussed in this section. For these calculations the
DAKOTA (Eldred et al. 2007) platform was used, with the
single-objective method as the basis for the optimization
scheme. For all single objective problems, the iterative pro-
cedure is stopped when the best (feasible) fitness values of
the population do not improve significantly over ten gener-
ations, or the limit value of the number of function evalua-
tion or iterations has been reached. The built-in DAKOTA
‘multi-point binary crossover’ and ‘merit function fitness
type’, with a ‘favor feasible’ replacement scheme were
used. Furthermore, constraint penalization and an ‘offset
normal’ mutation type were used. Further information on
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Fig. 10 Repair procedure algorithm

these genetic operators can be found in the reference above.
In all examples the number of function evaluations refers
to the number of calls to the FE model. In practice the
computational effort required to produce the initial popula-
tion is negligible compared to the total computational cost.
In the examples discrete sizing variables were considered.
Ten runs of each problem were made, each with a different
initial population.

(Kawamura et al. 2002)
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Fig. 11 Proportion of stable structures in the search space

3.2.1 10 bar 2D truss: sizing and topology optimization

A comparison is made between a single-objective GA with
kinematically stable initial population (here referred to sim-
ply as SOGA) and the results obtained by Deb and Gulati
(2001), as well as the results of Hajela et al. (1993). Next
these results are compared to the results of the single-
objective KSR algorithm. In this example, the sizing and
the topology of the structure are optimized concurrently.

The constraints on the problem do not include the buck-
ling constraint (3), in order to conform to the same problem
statement as the reference works.

Parameters The ground structure is shown in Fig. 12. The
geometric and material parameters used are found in Table 1,

P

l

P

ll

Fig. 12 10 bar truss ground structure
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Table 1 Geometric and material parameters

Parameter Value

l 9.144 m

P 448.2 kN

A {6.4516E−4, 1.935E−2} m2 in increments of

6.4516E−4 m2

E 6.895 × 1010 Pa

ρ 2,768 kg.m−3

σmax
i 1.724 × 108 Pa

δmax
z 0.0508 m

Table 2 10-bar 2D single objective problem: GA parameters

Parameter Value

Population_size 220

Stable_proportion of IP 60%

Cross-over_rate 0.9

Mutation_rate 0.1

P

1 2

4

0

3 5

P

Fig. 13 10 bar problem: optimized truss structure

while the genetic algorithm parameters are summarized in
Table 2.

Results The optimal topology for this problem is well
known (Fig. 13).

The SOGA with a randomly seeded initial population did
not converge within a reasonable time (270 iterations). The
SOGA with a kinematically stable initial population did,
however, converge after an average of 215 generations. The
results of the best solutions of the ten runs are shown in
Table 3. The SOGA with kinematically stable initial popu-
lation outperforms the results found in Hajela et al. (1993),
having a marginally smaller mass by about 0.3%. However,
it fails to match or surpass the results in Deb and Gulati
(2001) who used a real-coded GA in which individuals are
penalized after the kinematic stability has been evaluated.

The KSR algorithm converges on average after only 89
generations, and finds (in the majority of cases) the same
solution as that found by Deb and Gulati. In Fig. 14,
the maximum, minimum and average values (including non-
feasible solutions) of the objective functions are shown
for successive generations of the best performing solution
which converges after 70 generations. In Fig. 15, the aver-
age function values of the best performing SOGA and KSR
runs are shown for the first 70 generations. During the ini-
tial generations many non-feasible solutions with low mass
are retained, leading to lower average masses. A process
of penalization gradually increases the number of feasible
solutions in the SOGA population until a peak is reached
at which time the average masses decrease once more.
This is far less pronounced in the KSR population, with
the peak being reached very early on. Theoretically, the
two algorithms have very similar initial populations. The
repair procedure greatly reduces the amount of structures
penalized for being unfeasible. This example demonstrates
the advantages of the KSR approach over the traditional
penalization approach.

Table 3 10 bar 2D truss:
comparison of results Element Deb and Gulati (2001) Hajela et al. (1993) SOGA KSR

A
[
m2

]
A

[
m2

]
A

[
m2

]
A

[
m2

]
0 0.019355 0.01806 0.019355 0.019355

1 0.01548 0.01548 0.01548 0.01548

2 0.0103 0.0103 0.009677 0.0103

3 0.00387 0.00387 0.00387 0.00387

4 0.0129 0.01355 0.012258 0.0129

5 0.01355 0.0142 0.01484 0.01355

Best mass [kg] 2,228.44 2,241.97 2,235.2 2,228.44
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Fig. 16 14 bar truss ground structure

Fig. 17 Solution to the 14 bar sizing and topology optimization

3.2.2 14 bar 2D truss: sizing and topology optimization

In this example a 2D 14 bar truss with the same parame-
ters as the previous example is investigated. The ground
structure is shown6 in Fig. 16.

Results For this problem the same topology found in the
previous problem (Fig. 13) has been found using a mul-
tistage algorithm (Hajela and Lee 1995) in the literature.
However using the KSR algorithm (and even the SOGA
with stable initial population) a different topology is found
(Fig. 17). A comparison of the (stress and displacement con-
strained) problem solutions is shown in Table 4. Note that
the mass objective function of this truss optimization (in all
cases) is smaller than in the previous example. This is due to
the larger search space made possible by a greater number
of variables. The KSR algorithm finds a smaller mass than
found by Hajela and Lee, by about 4%. The KSR algorithm
also finds a lower mass than the SOGA with stable initial
population.

3.2.3 25 bar 3D truss: sizing and topology optimization

In this example a benchmark 3D structure is optimized
(Fig. 18). Both sizing and topology variables are considered.
The results are compared to Kaveh and Kalatjari (2003), in
which an initial population of good candidates is produced,
followed by the systematic reduction of the search space.

Parameters The member cross-section areas are selected
from the discrete set {1.255, 2.142, 3.348, 4.065, 4.632,
6.542, 7.742, 9.032, 10.839, 12.671, 14.581, 21.483,
34.839, 44.516, 52.903, 60.258, 65.226}. The Young’s mod-
ulus for the material used is E = 68.97 × 109 N.m−2

and density of the material is ρ = 27126.4 N.m−3. Two
load cases are considered (Table 5). The buckling data and

6In the figures one of the two overlapping members is drawn below or
above the other to avoid confusion. These members are connected to
the nodes above or below them at the end points only.
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Table 4 14 bar 2D truss: comparison of results

Hajela and Lee (1995) SOGA KSR

Average generations 14 8 2

for stable topology

Mass [kg] 2,241.97 2,190.18 2,153.56

variable definition can be found in Kaveh and Kalatjari
(2003). The maximum deflection of the structure is set at
δmax = 8.89 mm. In this case only chromosome repair is
implemented in the modified GA. A population size of 50
was chosen, however no stable initial population is created
to show the improvement achieved by KSR only.

Results The solution obtained is shown in Fig. 19 and
the cross-section areas in Table 6. This solutions are both
identical to that found in the reference work, finding the
same mass, however with slightly improved performance
(Table 7).

In this example it can be seen that kinematic stability
repair has a positive effect on the efficiency of the algorithm.
81.25% of the possible topologies are found to be unstable.
This structure only has eight independent topology vari-
ables. In practice, one topology variable can be eliminated
since it is always necessary for the stability of the structure.
Problems such as this are of little interest as they present
few challenges to current topology optimization algorithms.

1 2
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y
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6

7

10

8
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Fig. 18 25 bar 3D problem

Table 5 25 bar 3D truss: loading

Loading case Node Fx (kN) Fy (kN) Fz (kN)

1 1 4.45 44.5 −22.25

1 2 0 44.5 −22.25

1 3 2.225 0 0

1 6 2.225 0 0

2 1 0 89 −22.25

2 2 0 −89 −22.25

1 2
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6

4 z

x

y

Fig. 19 25 bar 3D problem topology after optimization

Table 6 25 bar 3D truss: topology and cross-section areas obtained

Cross section 1 2 3 4 5 6 7 8

Area (cm2) – 10.839 21.483 – – 6.542 12.671 14.581

Table 7 25 bar 3D truss: comparison of results

Kaveh and Kalatjari (2003) SOGA KSR

Generations 100 82 64

Weight [N] 2,517.24 2,517.24 2,517.24
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However this problem illustrates the efficacy of the method
even on small scale 3D problems, where symmetry has been
taken into account. The key to implementing the repair pro-
cedure is the appropriate parameterization of the structure
so that stability and instability can be identified correctly.

3.2.4 Conclusions

In the above examples—using the KSR algorithm—the
optimal topology is found, and begins to dominate the popu-
lation, after only a few generations. The remaining iterations
are necessary mainly to refine the sizing of the bars. The
sizing optimization is not the focus of this investigation,
however to be able to compare results it has been intro-
duced. The algorithm remains valid and advantageous with
this adjustment. It is clear that the multistage approach is
not always beneficial. Unmodified, randomly seeded GA’s
may require particularly large convergence times compared
to the modified KSR GA. The stable initial population
improves the performance of the GA significantly. The
advantages of the algorithm are expected to be greater in
larger problems. The repair approach outperforms the penal-
ization techniques used in the reference works which do not
explicitly take structural knowledge into account. If, as in
most studies, the kinematic stability is taken to be a binary
condition, it is not possible to meaningfully penalize kine-
matically unstable solutions as a function of the degree to
which the constraint has been violated.

4 Multiobjective topology optimization

4.1 Problem formulation

The multiobjective problems in this section make use of the
objective function and constraints in Section 3.1. In addi-
tion the dynamical objective function and the maximum
deflection objective function are introduced:

f2 = min
ti ,Ai

{
−(ωn,0)

2
}

(5)

f3 = min
ti ,Ai

{
δz = max (dz) = max

((
K−1f

)
z

)}
(6)

where ωn,0 is the smallest (first) natural frequency of the
structure. The response of a structure to excitation depends
largely on the first few natural frequencies (Xie and Steven
1996). In the literature dynamic aspects of the structure have
been handled as constraints for discrete structures (Tong and
Liu 2001; Jin and De-yu 2006; Gomes 2011), or explicitly
as an objective function for continuum topology optimiza-
tion (Pedersen 2000; Huang et al. 2010). Here we wish

to maximize the smallest (first) natural frequency of the
structure.

4.2 Examples

Three problems are discussed in this section. For these cal-
culations the DAKOTA Multiobjective Genetic Algorithm
(MOGA) was used. This method performs Pareto optimiza-
tion using a metric tracker to evaluate the convergence of
the algorithm. This tracker evaluates three metrics associ-
ated with consecutive Pareto fronts and is described in detail
in Eldred et al. (2007). This method has much in common
with the aforementioned SOGA method implemented by
DAKOTA. Therefore, the modifications to the SOGA and
the MOGA algorithms were not significantly different. The
algorithm is judged to have converged once the value of the
metric tracker does not change significantly for ten genera-
tions. The built-in DAKOTA multi-point binary crossover
and domination count fitness type, with a ‘below limit’
(with a value of 6) replacement scheme were used. Fur-
thermore, constraint penalization and an ‘offset normal’
mutation type were used.

4.2.1 14 bar 2D truss: topology optimization

The 14 bar truss example with only topology variables is
used to demonstrate the effectiveness of this algorithm on
small-scale examples. The ground structure and geometry
(with the exception of the cross-section which is constant in
this problem) are identical to that in Fig. 16. The KSR algo-
rithm is tested against the MOGA algorithm with a stable
initial population.

Parameters The objective functions considered are the
total mass (1) of the structure and the maximum vertical
nodal displacement (6). The structure is subject to con-
straints on the stresses in the elements (2) only, while only
topology variables are considered. The genetic algorithm
parameters for both algorithms are summarized in Table 8.

Results A comparison of the two algorithms perfor-
mances is shown in Table 9. The Pareto optimal set can be
seen in Fig. 20. Clearly there are advantages in terms of

Table 8 14 bar 2D truss multiobjective problem: GA parameters

Parameter Value

Population_size 100

Stable_proportion of IP 60%

Crossover_rate 0.8

mutation_rate 0.2

Cross-section 0.01419352 m2
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Table 9 14 bar 2D truss: comparison of algorithm performance

Algorithm: MOGA KSR

Average generations for convergence 126 47

Average IG D 0.0173 0.0036

Average Pareto set size 14.4 15.6

computational performance to the modified algorithm. The
KSR algorithm converges on average several times faster
than the MOGA. In Fig. 21 the generational distance metric,
relative to the Pareto optimal solution, for successive gener-
ations of the best solutions out of the 10 MOGA and KSR
runs is shown. Clearly the KSR algorithm is advantageous
in terms of convergence. It is worth noting that on average,
for this problem 3 of the solutions in the Pareto optimal set
were found in the initial population using procedures 1 and
2. While this is a relatively large proportion, it is expected
that the likelihood of finding these optimal solutions sim-
ply by generating an initial population will decrease as the
problem becomes larger.

4.2.2 54 bar 2D truss: topology optimization

The KSR algorithm is specifically aimed at large scale prob-
lems with binary topology variables. The 54 bar cantilever

problem discussed in this section is of this type. The objec-
tive functions in this problem are the mass and first natural
frequency of the structure ωn,0, expressed in (5) and the con-
straints include the stress constraint on the members (2), the
buckling of the members (3) and the deflection constraint
(4).

Parameters The ground structure is shown in Fig. 22.
The two nodes on the left of the structure are restrained in
both vertical and horizontal direction. Four cases are con-
sidered. In the first three cases symmetry considerations are
not implemented to reduce the size of the problem, which
consists of a length 54 vector of discrete binary design vari-
ables. A study of the 29 variable symmetric problem was
also made to show the the effects of forcing symmetry.
The geometric and material parameters characterizing the
problem can be found in Table 10 and the GA parameters
in Table 11. The nominal cross-section area is chosen as
Anom = 2 × 10−3 m2.

Results The Pareto fronts of the best performing MOGA
with stable initial population, the symmetric problem and
the multiobjective KSR algorithm can be seen in Fig. 23.
Solution of the symmetric problem relied on the MOGA
with a stable initial population. The generational distance
between the MOGA and KSR Pareto fronts is found to be
IG D = 0.0707. The MOGA algorithm, for all all but one of
the runs, reached the maximum number of iterations (500)

Fig. 20 14 bar 2D truss: Pareto
optimal topologies
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Fig. 21 14 bar 2D truss: best solution convergence relative to refer-
ence solution

before satisfying the convergence criterion. The topolo-
gies in the Pareto optimal sets are also shown in Fig. 23.
Note the asymmetry in the topologies where no symmetry
was forced, and their superiority to the symmetric solu-
tions. While the problem is geometrically symmetrical, the
presence of the buckling constraint introduces asymmetry,
namely the absence of the constraint in tension elements.
It is also noted that the buckling constraint is active in all
of the above topologies. Furthermore, the use of discrete
design variables can have the effect of producing asymmet-
ric topologies even in symmetrical problems (Achtziger and
Stolpe 2007). The generational distance between the KSR
and symmetric Pareto fronts is 0.1563.

The different methods on average produce varying num-
bers of Pareto optimal solutions (Table 12). The objective
function values of the feasible individuals in the initial pop-
ulation are shown in Fig. 24. 30% of the initial population
was generated randomly (in region C), while 35% of the
population was generated using procedure 1 (in region B)
and the remainder using procedure 2 (in region A). Further-
more the two procedures tend to produce individuals with

l

P

l

ll ll

Fig. 22 54 bar cantilever truss ground structure

Table 10 54 bar 2D truss: geometric and material parameters

Parameter Value

l 1 m

P 100 kN

E 6.9 × 1010 Pa

ρ 2768 kg.m−3

σmax
i 1.724 × 108 Pa

objective function values favoring one or the other objective
function, as hypothesized. The combination of procedures
allows for a greater range in the Pareto front and therefore
reduced drift. Table 13 shows the results of trials carried
out with various initial population compositions and demon-
strates advantages of using both procedures 1 and 2. This
strategy allows for more accurate solutions on average, and
slightly faster convergence to these solutions.

The optimization algorithm with chromosome repair is
shown to be highly advantageous in terms of average con-
vergence time and finds a wider range of solutions in the
Pareto optimal set. It is also clear that the multiobjec-
tive KSR algorithm finds significantly better performing
solutions than the MOGA.

4.3 Cantilevered 3D structure: topology
and sizing optimization

A cantilevered structure, consisting of a steel spacial truss
combined with a reinforced concrete deck, is optimized
using the KSR algorithm. The truss elements are connected
at nodes in the deck, so that the two portions work together
to ensure the strength, stiffness and stability of the structure.
The algorithm was used in an initial design stage to find a
‘good’ configuration for the truss elements. For architec-
tural reasons the distribution of the nodes is asymmetrical
and irregular (Fig. 25). The reinforced concrete deck is
taken into account in the FEM analysis.

Parameters The loading on the structure can be seen in
Fig. 26. Nodes 1 and 2 are loaded in the y-direction with
344,228 N and are unrestrained. Edge A-B of the plate is

Table 11 54 bar 2D truss: GA parameters

Parameter Value

Population_size 400

Cross-over_rate 0.8

Mutation_rate 0.5

Stable_proportion 0.7



528 J.N. Richardson et al.

Fig. 23 54 bar MOGA: Pareto
fronts

Symmetric Pareto front

Table 12 54 bar 2D truss: comparison of performance of algorithms

MOGA stable IP KSR

Average iterations for convergence 500+ 294

Pareto optimal solutions 13.6 16.2

loaded with a line load of 237,922 N.m−1 in the y-direction,
and 50,491 N.m−1 vertically, and is unrestrained. The deck
A-B-C-D is loaded with an evenly distributed vertical load-
ing of 10,200 N.m−2. This loading is a combination of live
loads and the self-weight of the deck. The self weight of the
truss is neglected in the initial design stage. Edge C-D is
restrained in all degrees of freedom (including rotationally),

Fig. 24 54 bar MOGA initial
population: procedure 1,
procedure 2 and randomly
seeded individuals
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Table 13 54 bar 2D truss:
effect of composition of initial
population

70% Procedure 1 70% Procedure 1 35% Procedure 1,

35% Procedure 2

Average function evaluations for convergence 11,596 10,034 9,861

Average IG D 0.0415 0.06725 0.024375

x

y

z

4.5 m

1.5 m

1.65 m

0.
9 

m

3 m

A

1
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4
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D

Fig. 25 3D cantilevered structure: nodal positions

Fig. 26 3D cantilevered structure: loading

Table 14 3D cantilevered structure: truss nodal positions (m)

Node number x y z

1 0.825 0 0

2 2.475 0 0

3 0.825 4.5 0

4 2.475 4.5 0

5 1.05 1.05 0.9

6 2.55 0.75 0.9

7 2.55 2.25 0.9

8 0.75 2.85 0.9

9 0.75 4.05 0.9

10 2.55 4.05 0.9

11 0.825 1.5 0

12 0.825 3 0

13 2.475 1.5 0

14 2.475 3 0
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Fig. 27 3D cantilevered structure: ground structure

Table 15 Material parameters and maximum deflection

Parameter Value

Esteel 2.1 × 1011 Pa

Edeck 3 × 1010 Pa

ρsteel 7.8 × 103 kg.m−3

ρdeck 2.5 × 103 kg.m−3

σmax
i,steel 3.55 × 108 Pa

σmax
i,deck 5 × 107 Pa

δmax
z 0.015 m

Thicknessdeck 0.15 m

Table 16 3D Cantilevered structure: GA parameters

Parameter Value

Population_size 400

Cross-over_rate 0.6

Mutation_rate 0.05
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Fig. 28 3D cantilevered structure: Pareto front
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with the exception of vertical translation. Nodes 3 and 4 are
translationally restrained in the three spatial directions, but
are free to rotate. The nodal positions are given in Table 14.
The ground structure, with 41 topology variables (dark solid
lines) is shown in Fig. 27. For the generation of the stable
initial population and the KSR procedure the effect of the
deck is represented by a number of (non-variable) connec-
tivities (dashed lines) lying in the plane of the deck. An ini-
tial population consisting of 60% stable structures (using an
equal number of individuals produced by the 3D variations
of procedures 1 and 2) was created. The objectives and con-
straints considered were the same as in the previous exam-
ple. The solid circular cross sections (all bar elements with
the same section area) were selected from the following set:
{12.5, 15.9, 19.6, 23.8, 28.3, 33.2, 38.5, 44.2, 50.3, 56.7,

63.6, 70.9, 78.5, 86.6, 95.0} × 10−4 m2. The material
parameters and maximum allowed deflection are found in
Table 15 and the GA parameters in Table 16.

Results Of the ten runs carried out for this problem, the
best performing Pareto optimal front is shown in Fig. 28.
The average number of generations required for conver-
gence was 276. The front, containing 285 solutions,is shown
along with roughly every 20th solution. The cross-section
increases constantly as we move from low to high mass
solutions. The average generational distance was IG D =
0.0024. In fact the Pareto front can be broken up into sub-
fronts according to the cross-section size (denoted by vary-
ing shades of grey), without any overlapping. This explains
the corrugated appearance of the front: each corrugation is a
topology-only Pareto front for a given cross-section. In our
approach all but the lowest cross-section are presented in the
Pareto front. The spread of solutions along the front and for
the various cross sections, is relatively uniform.

5 Conclusions and future prospects

A novel approach to improve the performance of genetic
algorithms in structural optimization with discrete topol-
ogy variables has been proposed. The procedure makes use
of multiple methods of stable initial population generation
and chromosome repair of a class of kinematically unstable
structures. By implementing these adaptations, knowledge
of structural behavior is added to the GA. These additions
allow for a compromise between the explorative character of
the GA, and the reduction of the search space through addi-
tion of information. The procedure has been demonstrated
on single-objective academic examples and compares well
to the results in the literature. Furthermore, the method
has been demonstrated on multiobjective problems and the
advantages over unmodified methods shown.

Possible future prospects are listed hereafter:

– It would appear that a thorough study of the effects of
the kinematic stability constraint on the feasible solu-
tion set � in discrete structural problems would be
of great interest, given the lack of attention in the
literature. The use of more advanced methods of detect-
ing instability could be investigated, taking inspiration
from graph theory and computer science, for example,
are a possible future avenue of research. The method
using the Singular Value Decomposition of the equi-
librium matrix also appears to hold much promise for
the improvement of the method since all kinematic
instabilities can be detected in this way.

– Three or more objectives, and, to a lesser extent, mul-
tiple loading cases, present challenges to the approach.
Adaptation of the method in this way, possibly with an
automated scheme for initial population generation by
criterion selection, can produce a more general method.

– The integration of shape optimization into the proce-
dure, which could lead to a complete multiobjective
layout optimization method. Layout optimization of
large scale discrete structures, such as grid shells, could
benefit greatly from the KSR repair procedure, since
kinematic instability is frequently encountered in this
type of problem.

– There is much scope for investigations into decision
making and user preferences (Filomeno Coelho and
Bouillard 2005) as well as the handling of uncertainties
(Filomeno Coelho et al. 2010) .

– Global elastic stability of the truss structure has not
been discussed here. Some research has been done in
this area using nonlinear programming (Ben-Tal et al.
2000). This is an important constraint in practice, which
would make the method more relevant for practical
application.

– For large scale problems, the ground structure approach
may not be the most efficient. Making use of other
methods of representing the design domain, for exam-
ple using a variable chromosome length, may be fruitful
as an adaptation of the KSR method.
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