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Abstract In the reliability analysis, input variables as well
as the metamodel uncertainties are often encountered in
practice. The input uncertainty includes the statistical uncer-
tainty of the distribution parameters due to the lack of
knowledge or insufficient data. Metamodel uncertainty
arises when the response function is approximated by a sur-
rogate function using a finite number of responses to reduce
the costly computations. In this study, a reliability analy-
sis procedure is proposed based on a Bayesian framework
that can incorporate these uncertainties in an integrated
manner into the form of posterior PDF. The PDF, often
expressed by arbitrary functions, is evaluated via Markov
Chain Monte Carlo (MCMC) method, which is an efficient
simulation method to draw random samples that follow the
distribution. In order to avoid the nested computation in the
full Bayesian approach, a posterior predictive approach is
employed, which requires only a single loop of reliabil-
ity analysis. Gaussian process model is employed for the
metamodel. Mathematical and engineering examples are
used to demonstrate the proposed method. In the results,
comparing with the full Bayesian approach, the predic-
tive approach provides much less information, i.e., only
a point estimate of the probability. Nevertheless, the pre-
dictive approach adequately accounts for the uncertainties
with much less computation, which is more advantageous
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in the design practice. The smaller the data are provided,
the higher the statistical uncertainty, leading to the higher
(or lower) failure probability (or reliability).
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1 Introduction

In the modern industrial society, many efforts are directed
to incorporate uncertainties in the engineering design envi-
ronment in a precise and cost-effective way. As part of
such efforts, reliability analysis for dealing with the input
variable uncertainty at the design stage has been actively
studied, which is to evaluate failure probability or safety
levels of mechanical systems. Great number of researches
have been conducted to efficiently handle these problems,
which can be classified into sampling based methods such
as Monte Carlo Simulation (MCS), Most Probable Point
(MPP) based methods including First/ Second Order Reli-
ability Method (FORM/SORM) (Haldar and Mahadevan
2000), and moment based integration methods with the
Dimension Reduction Method (DRM) as being the most
noteworthy (Rahman and Xu 2004; Xu and Rahman 2004,
2005). In the DRM, more recent works include the poly-
nomial dimensional decomposition method (Rahman 2008,
2009), which exploits the smoothness of a stochastic res-
ponse by orthogonal polynomials that are consistent with
arbitrary probability distributions of the random input, and
MPP-based DRM for reliability-based design optimization
(Lee et al. 2008, 2010) in order to overcome inaccuracy of
the MPP-based FORM.
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In the previous developments, the uncertainty has mostly
been considered as aleatory uncertainty which is irreducible
and related with inherent physical randomness that is com-
pletely described by a suitable probability model. Epistemic
uncertainty, however, is prevalent in the real industrial
world, which makes the existing methods less useful since
it results from the lack of data or subjective knowledge (Der
Kiureghian and Ditlevsen 2009). There have been recent
studies to handle this uncertainty by using non-probabilistic
methods, which includes the interval analysis (Qiu et al.
2004), the possibility theory (Du et al. 2006; Zhou and
Mourelatos 2008) and evidence theory (Bae et al. 2006;
Mourelatos and Zhou 2006). The weakness of these meth-
ods, however, is that the uncertainty is modeled more or
less based on the subjective expert opinions. In engineering
design practice, the uncertainty is often given by a small
number of samples from historical data or actual experi-
ment, which is too few to infer the probability distribu-
tions. This is called as statistical uncertainty. The Bayesian
approach can be a useful method in this case due to the
advantages that it easily represents the insufficiency of the
data in terms of the probability, it provides a unified way for
aleatory and epistemic uncertainty in a single framework;
and it can conveniently update the degree of uncertainty by
adding more data to the prior information. Very recently,
Noh et al. (2011) addressed the same issue in the course of
the reliability-based design optimization.

In the Bayesian approach, the probability itself is treated
as a random variable which quantifies our degree of belief
on the probability in light of the observed data. In the recent
literature, two-stage nested or double loop of reliability
analysis based on a full Bayesian procedure was proposed in
order to implement this approach, in which the distribution
parameters are treated as the unknown random variable. In
this procedure, the outer loop determines the CDF of proba-
bility, whereas the inner loop solves conventional reliability
analysis problem given the distribution parameters. Several
methods, e.g., FORM (Gunawan and Papalambros 2006),
Markov Chain Monte Carlo (MCMC) (Cruse and Brown
2007) and the DRM (Youn and Wang 2008; Choi et al. 2010;
Rahman and Wei 2008) were used for this purpose. The full
Bayesian procedure, however, calls for substantial increase
of computations, and is not tractable for the practical design
purpose. In this study, a method of posterior prediction is
employed to resolve this problem, which requires only a
single reliability analysis step.

In the evaluation of structural response function, com-
mon practice is to employ metamodel that approximates the
original response in an effort to save computational cost.
This causes another uncertainty, which we call metamodel
uncertainty, since the model is constructed using only a
finite number of responses and hence is unknown at the
untried points (O’Hagan 2006). In this paper, Gaussian

process model, also known as Kriging, is employed for
the response approximation. Within this model, correla-
tion parameter plays important role which determines the
smoothness of the metamodel. In the previous approaches,
this was given arbitrarily which is cumbersome, or more
likely determined by costly sub-optimization called Max-
imum Likelihood Estimation (MLE) (Sacks et al. 1989).
Furthermore, the parameter, despite given by the MLE,
often failed to provide smooth metamodel in practice as will
be shown in Section 4. In this paper, this parameter is treated
as the uncertain along with the other parameters, of which
the posterior distributions are determined conditional on the
finite number of responses at computer experiment points.
A similar treatment has been addressed in a number of lit-
eratures (e.g., see Kennedy and O’Hagan 2001; Rasmussen
and Williams 2006).

The final goal of this study is the integration of all the
uncertainties in a single Bayesian framework. Information
of the posterior distribution, whether they are the model
parameters of the input variables or the parameters of the
metamodel, are obtained by employing MCMC simulation,
which is a modern computational method to draw random
sequence of parameters that samples the given distribution
(Andrieu et al. 2003). Once the posterior samples of the
parameters are available, predictive samples are drawn from
the associated distribution given each value of the param-
eters. The uncertainty of the response information is then
estimated using the drawn data. Mathematical examples
and engineering problems are given to demonstrate that
proposed method is feasible and practical.

2 Reliability analysis under input uncertainty

Reliability analysis is a necessary step in the design under
uncertainty, which is to evaluate failure probability or safety
levels of mechanical systems.

The problem is typically given in the form

pg = P [G < 0]

=
∫

g(X)<0
fX (x) dx or

∫
g<0

fG (g) dg (1)

where X is a vector of random input variables, fx(x) is
the joint PDF of X, g is the response function, g = 0 is
the limit state function, fG(g) is the PDF of g, and G is the
probabilistic representation of g. The event g(X) < 0 can be
a failure or safety depending on the problem. Each of the
random input variable Xi has its own statistical distribution
described by a set of model parameters θ . If all the members
of X are aleatory, i.e. if the values of model parameters θ are
completely known either through an infinite amount of data
or well-established knowledge, then the problem becomes
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Fig. 1 Conventional reliability
analysis procedure

an ordinary reliability prediction, from which a fixed value
of the probability pg is calculated using the existing meth-
ods such as the MCS, FORM or DRM. Figure 1 gives a
schematic picture of the analysis procedure.

Suppose that the input variable X shows statistical un-
certainty, i.e., only a small number of data xe = {

xe
1, xe

2,
..., xe

ne

}
from experiments or past experience are available

for part or all of the input variables. Then the correspond-
ing model parameters θ become uncertain, which leads to
the uncertainty in the reliability prediction. In this case,
the model parameters are assumed to be random and are
depicted as capital letter �, and Bayes’ theorem is used
to estimate the probabilistic behavior of the parameters
(Gelman et al. 2004):

f
(
θ |xe) ∝ f

(
xe|θ)

f (θ) (2)

where f (θ |xe) is the posterior PDF of � conditional on the
observed data xe, f (xe|θ) is the likelihood of the observed
data x given the parameters θ , and f (θ ) is the prior PDF
of �.

Since the model parameters are not constant but follow a
distribution, the probability pg as defined in (1) is no longer

a deterministic value but behaves as a random variable,
denoted by Pg . This is called outer-loop reliability analy-
sis problem, in which the random input variables are �, and
the random output is the probability Pg . During this step,
the inner-loop reliability analysis is conducted to obtain the
individual realization of Pg . This is a nested, double-loop
analysis, which is called the full Bayesian approach. After
all, the probability distribution of Pg can be expressed in
the form

FPg

(
pg

) = P
[
Pg < p

] =
∫

pg≤p
fPg

(
pg

)
dpg (3)

where FPg

(
pg

)
and fPg

(
pg

)
are the CDF and PDF of Pg ,

respectively. The procedure is summarized in Fig. 2. In this
figure, the model parameters � are expressed by the pos-
terior PDF f (θ |xe) conditional on the given samples xe.
Once a set of θ values are drawn from this random distri-
bution, the probability distribution for X is established and
the probability pg is evaluated for each drawn values of �.
Then the PDF of the probability is obtained, which repre-
sents a degree of belief on the probability conditional on the
sample data. Using the full PDF information of Pg , mean

Fig. 2 Bayesian reliability
analysis procedure
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and lower and upper confidence bounds can be estimated
easily.

In the Bayesian procedure, the PDF is often expressed by
arbitrary functions in terms of the Bayes’ theorem, which
makes the conventional methods such as the numerical inte-
gration or inverse CDF less useful. In this study, Markov
Chain Monte Carlo (MCMC) method is employed, which is
an efficient simulation method to draw random samples that
follow the target distribution with any complexity including
no closed form expressions (Andrieu et al. 2003). In the full
Bayesian approach, the MCMC should be implemented in
the nested process, which may increase the computational
cost greatly. In this study, this is avoided by introducing pos-
terior predictive approach, which requires only a single loop
of reliability analysis. The posterior predictive distribution,
defined as Xp, is given in the following form (Gelman et al.
2004)

f
(

xp
∣∣ xe) =

∫
f
(

xp
∣∣ θ)

f
(
θ | xe) dθ (4)

where the superscript p represents the prediction, f (θ |xe)

is the posterior distribution obtained by (2), and f (xp|θ)

is the probability distribution of the prediction conditional
on the parameters θ . The predictive distribution can be
obtained by integrating out the two terms on the right in
terms of θ . In practice, however, predictive samples of
Xp are drawn from the conditional probability distribution
f (xp|θ), given the values of θ obtained via the MCMC
method from the posterior distribution f (θ |xe). Once the
samples of Xp are available, one can proceed to produce
the data of response function by evaluating it at each sample
point. Probability of the event given by (1) is then calculated
from the resulting data.

3 Reliability analysis under metamodel uncertainty

Metamodel is commonly exploited in the modern simulation-
based engineering analysis during the design stage. The
purpose is to reduce the computational cost by approxi-
mating the original response to a surrogate function using
a finite set of samples. One of popular choices receiving
greatest attention is the Kriging model. Until recently, how-
ever, the Kriging was studied mostly from deterministic
viewpoint, i.e., used just as a fitting or interpolation while
ignoring the metamodel uncertainty, where the true response
is unknown except at the sample points. Numerous efforts
have been made in the statistical community to quantify
this uncertainty. In one of the most popular approaches,
the Kriging model is viewed as a realization of a Gaussian
process model and Bayesian methods are used to quan-
tify the associated uncertainties by calculating its posterior

distribution of unknown parameters given the finite
response values (Kennedy and O’Hagan 2001).

Let us now consider a case that the response function
is approximately interpolated by a finite number of com-
puted outputs gc = {

gc
1, ..., gc

nc

}
at a set of DOE points

xc = {
xc

1, . . . , xc
nc

}
with number nc. For this purpose,

Gaussian random function is introduced as follows
(Kennedy and O’Hagan 2001).

Ĝ (x) = f (x) β + Z (x) , Z ∼ N
(

0Inc, σ
2R

)
,

R = R
(
xi , x j

)
, i, j = 1, . . . , nc (5)

where ˆ denotes the surrogate representation, f (x)β is the
normal linear model, f = [

f1, . . . , fm
]

and β = [
β1, ...,

βm
]T are m number of the trial functions and associated

parameters, respectively, Z is a Gaussian stochastic process
with zero mean and variance σ 2, Inc is the nc × nc identity
matrix, and R is a correlation function between xi and x j

which is represented by

R
(
xi , x j

) = exp

⎧⎨
⎩−

(∥∥xi − x j
∥∥

h

)2
⎫⎬
⎭ (6)

where h is a correlation parameter that controls the degree
of smoothness of the function. If the h gets higher, the
model becomes smoother, but the singularity is encountered
in the correlation matrix if it is too high. In most studies, h
is determined by the method of maximum likelihood esti-
mate (MLE). According to Etman (1994) and Sasena et al.
(2002), however, MLE method is not only computationally
expensive which requires additional optimization process,
but also the quality of the obtained parameter is question-
able. In this study, h is considered as an unknown parameter
to avoid this.

Based on (5), the computer outputs gc follow multivariate
normal distribution:

f
(

gc
∣∣β, σ, h

) = N
(

Fβ, σ 2R(xc)

)
(7)

where

F =
⎡
⎢⎣

f (x1)
...

f (xnc)

⎤
⎥⎦ (8)

is nc dimensional vector of f at xc, and the subscript (xc)
in (7) denotes the correlation matrix in terms of xc. In this
procedure, the parameters β, σ and h are the unknowns to
be determined. In the Bayesian procedure, the uncertainties
of these parameters are characterized by the joint posterior
distribution conditional on the finite number of computed
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outputs. In view of the Bayes’ rule (2), the distribution of
these parameters is given by multiplying the likelihood to
obtain the computer outputs given the parameters and the
prior distribution of the parameters that represents our prior
knowledge. Assuming non-informative prior in this study,
the prior distribution is defined as

f (β, σ, h) ∝ σ−2 (9)

The likelihood to obtain the computer outputs is given by

f
(

gc
∣∣ β, σ, h

)

∝ σ−nc
∣∣R(xc)

∣∣−1/2

× exp

(
− 1

2σ 2

(
gc − Fβ

)T R−1
(xc)

(
gc − Fβ

))
(10)

Then the posterior PDF of the parameters becomes

f
(
β, σ, h| gc) ∝ f

(
gc

∣∣β, σ, h
)

f (β, σ, h) (11)

As in the previous section, the MCMC method is employed
to draw samples of the parameters that follow this
distribution.

Once we have obtained the distributions of the param-
eters in the form of samples, we can proceed to obtain
the posterior predictive distribution of the surrogate Ĝ p at
untried point xp in terms of (4), in which xp, xe and θ

are replaced by ĝ p, gc and β, σ , h respectively. The two
functions on the right in (4) become the conditional PDF of
ĝ p which is (7), and the posterior PDF of β, σ , h which
is (11), respectively. In this case, following the procedure
by Kennedy and O’Hagan (2001), the predictive distribu-
tion of Ĝ p is exactly expressed by the multivariate normal
distribution, in which the mean is given by

E
(

Ĝ p
∣∣∣ gc, β, σ, h

)

= f
(
xp) β + R(xp,xc)R

−1
(xc)

(
gc − Fβ

)
(12)

and the variance is given by

var
(

Ĝ p
∣∣∣ gc, β, σ, h

)

=
(

R(xp) − R(xp,xc)R
−1
(xc)R(xc,xp)

)
σ 2 (13)

As in the previous section, since the samples of the param-
eters are available at hand, the predictive samples of Ĝ p at
xp are drawn at random from this normal distribution con-
ditional on each samples set of the parameters. The values
such as the mean and 90% predictive bounds of Ĝ p can be
computed from the obtained samples. Note that this is just
a single result at a point xp. Repeating this at a number of
untried points, e.g., grids with equal interval in the inter-
ested range, one gets the mean and predictive bounds of the
metamodel over the whole range.

4 Integrated reliability analysis using Bayesian
approach

The Bayesian procedure holds for both cases of input uncer-
tainty and metamodel uncertainty, which is the reason that
the approach can be generalized to integrate both the uncer-
tainties in a single Bayesian framework. The steps are
summarized in Table 1, and explained as follows.

Step 1: Collect data.

In case of statistical uncertainty, collect ne num-
ber of data xe = {

xe
1, xe

2, ..., xe
ne

}
of input vari-

ables by either previous information or direct
measurements.
In case of costly computation for the response
function, collect nc number of computer outputs
gc = {

gc
1, . . . , gc

nc

}
at a set of DOE points by

repeated simulations, which will be used to build
metamodel.

Step 2: Establish posterior distribution.

Identify unknown model parameters θ in the input
variables distribution and the parameters β, σ , h
of the metamodel, respectively. Upon introduc-
ing suitable priors for each group of the param-
eters, obtain the expressions for the posterior
distributions conditional on the provided data in
each case.

Step 3: Draw samples of the unknown parameters.

Draw random samples of the unknown parame-
ters with sufficient number N ≈ 5 · 103 ∼ 104

that follow their corresponding posterior distribu-
tions. MCMC simulation method is well suited in
this case since the target distribution is given as
complex or implicit in terms of parameters, which
is difficult to integrate in traditional way. The
Metropolis-Hastings (M-H) algorithm is employed
within the variants of the MCMC (Andrieu et al.
2003).

Step 4: Establish posterior predictive distribution.

In both cases, the posterior predictive distributions
of Xp and Ĝ p are obtained by integrating out the
conditional distribution and the posterior distribu-
tion in terms of the parameters, as indicated in (4).
In case of input uncertainty, the conditional distri-
bution f (xp|θ) is just its own probability model.
If for instance, a single variable X follows normal
distribution, the parameters θ are its mean μ and
standard deviation σ . In case of metamodel uncer-
tainty, the surrogate Ĝ p is given by a multivariate
normal distribution with the mean and variance
being (12) and (13) respectively.
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Table 1 Procedure of integrated Bayesian reliability analysis

Statistical uncertainty Metamodel (Kriging) uncertainty

Step 1 Collect data. xe = {
xe

1, xe
2, ..., xe

ne

}
gc = {

gc
1, ..., gc

nc

}
at xe = {

xc
1, ..., xc

nc

}

Step 2 Establish f (θ |xe) ∝ f (xe|θ) f (θ) f (β, σ, h|gc) ∝ f (gc|β, σ, h) f (β, σ, h)

posterior distribution.

Step 3 Draw samples of Draw random samples θ i , i = 1, ..., N Draw random samples β j , σ j , h j , j = 1, ..., N

unknown parameters. by MCMC simulation. by MCMC simulation.

Step 4 f (xp|xe) = ∫
f (xp|θ) f (θ |xe) dθ ĝ p ∼ N (E, var) where

Establish posterior E = f (xp) β + R(xp ,xc)R
−1
(xc) (gc − Fβ)

predictive distribution. var =
(

R(xp) − R(xp ,xc)R
−1
(xc)R(xc,xp)

)
σ 2

Step 5 Draw samples of Draw samples xp = {
xp

i , i = 1, ..., N
}

Draw samples ĝp = {
ĝ p

i , i = 1, ..., N
}

predictive distribution. that follows its own probability that follows N (E , var) from each

model from each θ i , i = 1, ..., N . β j , σ j , h j , j = 1, ..., N .

Step 6 Conduct integrated Draw ĝp = {
ĝ p

i , i = 1, ..., N
}

that follows N (E , var) from each β i , σi , hi at each xp
i ,

reliability analysis. respectively, i = 1, ..., N . From the obtained samples, calculate P[G < 0].

Step 5: Draw samples of posterior predictive distribution.

Although the predictive distribution is given in
the integral form, the integration is not per-
formed in practice. Instead, the predictive sam-
pling is exploited, which is to draw samples
using the posterior samples already obtained at
Step 3. In the input uncertainty, the samples of
Xp = {

x p
i , i = 1, . . . , N

}
are drawn from the

conditional probability using each samples of the
parameters θ . In the case of normal distribution
for instance, xi are drawn from N

(
μi , σ

2
i

)
. In

the metamodel uncertainty, samples of Ĝ p ={
ĝ p

i , i = 1, . . . , N
}

at an untried point is drawn
from the multivariate normal distribution using
each sample set of the parameters β, σ , h. The
obtained random samples of Xp and Ĝ p represent
the distribution of x and ĝ due to the statistical
uncertainty caused by the limited data and meta-
model uncertainty caused by a limited number of
computer outputs, respectively.

Step 6: Conduct integrated reliability analysis.

When both uncertainties co-exist, predictive distri-
bution of surrogate response should be obtained at
the random input variable Xp which shows statisti-
cal uncertainty. In this case, predictive samples of
Ĝ p are drawn from the multivariate normal distri-
bution, conditional on the two sets of the samples
β i , σi , hi and xp

i , i = 1, . . . , N , where the former
are the posterior samples of metamodel parameters
from Step 3 and the latter are predictive samples of

input variables from Step 5. Consequently, P[G <

0] is calculated from the drawn N number of ĝ p

values.

5 Mathematical examples

In this section, two mathematical examples are studied
to examine the effects of input and metamodel uncertain-
ties. In each example, the proposed method based on the
Bayesian framework will be addressed, which includes
input uncertainty, metamodel uncertainty and integrated
reliability analysis.

5.1 Single variable example

First is a function of single variable as follows (O’Hagan
2006):

g (X) = X + 3 sin (X/2) (14)

The variable X is assumed as aleatory following the nor-
mal distribution with the mean μ being 3.5 and the standard
deviation σ being 1.2. The PDF distribution of g(X) due
to the randomness of X is obtained by using the classical
MCS with N = 106, which is plotted in Fig. 3. Assuming
g(X) < 3.5 as a failure event, the probability P[G < 3.5]
is calculated as 0.0462.

Now the input variable is changed to the statistical uncer-
tainty due to the limited amount of data with number ne.
Model parameters θ , which are the mean μ and standard
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Fig. 3 PDF of response function g(X) of example 1

deviation σ , become unknown accordingly. Let us assume
that still the same values for the sample mean and standard
deviation are observed from the data, i.e., x̄ = 3.5 and
s = 1.2. Using the Bayes’ theorem under a non-informative
prior, the joint posterior PDF of the model parameters is
given by (Gelman et al. 2004):

p
(
μ, σ 2

∣∣xe
)

∝ σ−n−2 exp

(
− 1

2σ 2

[
(n − 1) s2 + n (x̄ − μ)2

])
(15)

where the prior for μ and σ is based on the non-informative
assumption and is given by (Martz and Waller 1982)

p
(
μ, σ 2

)
∝

(
σ 2

)−1
(16)

If there exists a specific prior for � from the previous expe-
rience, non-conjugate prior should be employed, which is
one of the key feature of Bayesian approach. In that case,

as the posterior PDF takes an arbitrary form, the MCMC is
better suited than the other conventional methods.

In the nested reliability analysis, outer loop is imple-
mented to determine posterior PDF of � and the inner loop
to determine the probability P[G < 3.5] respectively. Num-
ber of samples is 104 in each simulation, total of which
amounts to 108. In Fig. 4, the sampling results of θ in
the case ne = 5 are presented, in which (a) is the trace
of MCMC sampling, and (b) is the scatter plot of drawn
samples from MCMC. As a result of Bayesian reliability
analysis, the full PDF of probability is given in Fig. 5a,
which represents the degree of belief on the probability
conditional on the provided data. As the number of data
increases, the PDF gets narrower, and converges to a sin-
gle value that was obtained with aleatory uncertainty. In
Table 2, the 90% confidence bounds are listed at each num-
ber ne. In the design practice, natural choice is the upper
bound values of the probability for the sake of safety.

In the predictive reliability analysis, predictive samples
of X p are drawn from the following conditional probability
distribution at each values of θ obtained from the outer loop:

X p|μ, σ 2 ∼ N
(
μ, σ 2

)
(17)

In this case, analytic form of the posterior predictive distri-
bution for X p is available, which is t-distribution with the
mean x̄ , standard deviation s

√
1 + 1/n and ne-1 degrees

of freedom. Predictive samples following this distribution
are drawn with N = 104 numbers. Finally, response func-
tions are obtained at each sample of X p, from which the
probability P[G < 3.5] is calculated. The results are listed
in Table 2, and are also plotted in Fig. 5b. The probability
converges to the aleatory value as in the nested case.

Comparing with the upper bound values of nested
approach, the predictive values are much lower, hence, are
less conservative. Recall here that (4) represents a marginal
distribution of X p conditional on xe, i.e., average of the con-
ditional prediction over the posterior distribution of �. This

Fig. 4 Posterior distribution of
μ, σ obtained by MCMC
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Fig. 5 Bayesian reliability
analysis results under statistical
uncertainty
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means that the predictive values of the probability agree
with the mean values of the full PDF of the probability in
the nested approach. This can be evidenced by comparing
the predictive values to the mean values in the Table 2.

In this example, though the function is pretty simple to
calculate, it is approximated by a Kriging model in order
to illustrate the metamodel uncertainty, using a finite set of
responses at the equally spaced points. Two cases with the
number of points nc = 4 and 6 are considered in the range
from 0 to 15. The trial functions and associated parameters
are f = [1, x] and β = [β1, β2] respectively. As was noted
previously, conventional method to determine the correla-
tion parameter h is to use MLE. The obtained h, however,
often fails to provide the best Kriging model. In order to
illustrate this, h is determined by minimizing equivalent
likelihood function for the first example (Sacks et al. 1989).

Minimize σ 2 |R|1/nc

Subject to h > 0
(18)

Then the other parameters β1, β2 are determined by the
equation using the obtained h and the Kriging model is
constructed using the parameters. The equivalent likelihood
functions in terms of h are plotted in Fig. 6a and c for the
cases with nc = 4 and 6, respectively. Minimum h are
determined using the function ‘fmincon’ in the Matlab opti-
mization toolbox. In the case nc = 4, it is found that the

function is minimum over the range of 0 to 1.5. Kriging
curves are made using several optimum h values at 0.5, 1,
1.5 and another value at 5 for comparison. The results are
plotted in Fig. 6b. In the case nc = 6, the optimum is found
at 5.1 although the function appears to be almost flat below
that point. Kriging curves are drawn using optimum h at
5.1 along with the other values at 0.5, 2, and 12, which are
shown in Fig. 6d. As seen in the two cases, the optimum h
are not easy to obtain, nor do they provide the best model.
In case nc = 4, the best curve with sufficient smoothness is
found at h = 5. In case nc = 6, all the curves with h from 5
to 12 are close to the true model. From this study, it is found
that the larger the h value, the smoother the Kriging model
and gets closer to the true model. Too large h, however,
induces singularity in the correlation matrix, which makes
assigning h still difficult.

In order to avoid this problem, h is included as the uncer-
tain parameter. The unknown parameters are then β1, β2, σ ,
and h which were given in (5) and (6). The posterior dis-
tributions of these parameters are obtained in the form of
samples with N = 30,000 using MCMC technique. Note
that h is implicitly expressed within the correlation matrix
R in the posterior distribution (11), which justifies the use
of the MCMC. The results for the cases nc = 4 and 6 are
shown in Fig. 7. The distributions represent the uncertainty
of the parameters due to the employment of metamodel.
From the histograms of h, the medians are computed as 2.77

Table 2 Bayesian reliability
analysis results of example 1 Nested approach Predictive approach Error (%)

5% Mean 95% p
|p − mean|

mean
× 100

ne = 5 0.0024 0.0997 0.3364 0.1016 1.88

ne = 10 0.0068 0.0722 0.2081 0.0712 1.34

ne = 20 0.0114 0.0576 0.1374 0.0566 1.71

ne = 50 0.0207 0.0509 0.0932 0.0519 1.95

ne = 100 0.0260 0.0483 0.0769 0.0470 2.69

aleatory p = 0.0462
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Fig. 6 Equivalent likelihood
function and Kriging model

0 1 2 3 4 5
4

4.5

5

5.5

6

6.5

7

7.5

8

h
Li

ke
lih

oo
d 

fu
nc

tio
n

0 5 10 15
-5

0

5

10

15

20

25

x

g(
x)

DOE points
actual model
Kriging model with h=0.5
Kriging model with h=1.0
Kriging model with h=1.5
Kriging model with h=5.0

(a) equivalent likelihood function with nc=4 (b) Kriging model with nc=4  

0 2 4 6 8 10 12
0

10

20

30

40

50

60

h

L
ik

e
lih

o
o

d
 fu

n
ct

io
n

optimum h=5.1

0 5 10 15
-5

0

5

10

15

20

25

x

g(
x)

DOE points
actual model
Kriging model with h=0.5
Kriging model with h=2.0
Kriging model with h=5.1
Kriging model with h=12

(c) equivalent likelihood function with nc=6 (d) Kriging model with nc=6  

and 5.18 for nc = 4 and 6, respectively. After obtaining
the posterior distribution of the parameters as given by (11),
the predictive distribution is obtained by drawing samples
from the multivariate normal distribution with the mean and
variance being (12) and (13) respectively at each sample of
the parameters. The 90% prediction intervals are shown in
Fig. 8 for the various cases. In the figures, upper and lower
row represent the results with the number of DOE points

nc = 4 and 6 respectively. The first, second and third col-
umn represent the results of two constant h’s with the value
0.5 and 5, and the uncertain h, respectively. The solid curve
is the actual model, the dashed curve is the estimated mean
of the metamodel, and the dotted curve is its 90% predic-
tion interval, respectively. From the figures, it is observed
that overall, the prediction interval is narrowed down as nc
is increased. In terms of h, the uncertainty is reduced as
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Fig. 7 Posterior distribution of metamodel parameters of example 1
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Fig. 8 90% prediction intervals due to metamodel uncertainty for example 1

the value becomes higher which makes the function more
smooth. In particular, in the Fig. 8e of nc = 6 and h = 5,
the metamodel is very close to the actual model. The results
of uncertain h indicate that their intervals are a little wider
than those of h = 5. In fact, this can be interpreted as the
average of the predicted samples in terms of the posterior
distribution of h. In the Fig. 8, it is recalled that the bet-
ter curves with smaller intervals obtained by h = 5 are
just a result of an arbitrary trial, not the result of optimiza-

tion. As found previously in Fig. 6, determination of h by
optimization is not always likely to provide ‘true’ optimum.
Instead, it was found by increasing the value arbitrarily until
the singularity is encountered. By adopting h as uncertain,
this arbitrary procedure can be avoided although a wider
interval is encountered as an expense. From these observa-
tions, it is concluded that the Bayesian approach efficiently
quantifies the uncertainty of the Kriging metamodel in the
form of prediction interval. The effect of uncertain h is also
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Table 3 Bayesian reliability
analysis results of example 2 Nested approach Predictive approach Error (%)

5% Mean 95% p
|p − mean|

mean
× 100

ne = 5 0.5404 0.7968 0.9561 0.7916 0.65

ne = 10 0.6541 0.8179 0.9314 0.8217 0.46

ne = 20 0.7219 0.8309 0.9135 0.8266 0.52

ne = 50 0.7740 0.8383 0.8931 0.8360 0.28

ne = 100 0.7925 0.8380 0.8777 0.8408 0.33

aleatory p = 0.8412

incorporated during the procedure, which is another advan-
tage since it does not suffer from the arbitrary assignment
of constant h.

The final goal is to implement reliability analysis under
the integrated input variable and metamodel uncertainty. As
was noted in the general procedure, the predictive distri-
bution of surrogate response Ĝ p at x = 3.5 are obtained
by drawing samples from multivariate normal distribution
at each sample of the two sets—posterior distribution of
β, σ 2, h and predictive distribution of X p. Probability of
an event for g is then calculated from the drawn samples.
The predicted probabilities P[G < 3.5] under various cases
are shown in Fig. 9a with the parameter h being uncertain.
At each number of DOE points nc, probability converges
from above to a value as the number of data ne increases.
As nc increases, the probability also converges, but much
more rapidly. After all, the probability converges to the
aleatory value 0.0462. In Fig. 9b, the results under a con-
stant h = 5 are also given for comparison, of which the
values incidentally are lower than the case with uncertain
h. With different h, however, the results may vary arbitrar-
ily, i.e., can be higher or lower depending on the value of
h. This arbitrariness is avoided by employing uncertain h in
the procedure.

5.2 Two variables example

Consider next a function of two variables as follows (Youn
and Wang 2008):

g (X) = 1 − X2
1 X2/20 (19)

where both variables are assumed aleatory with normal dis-
tributions X1 ∼ N (2.9, 0.2) and X2 ∼ N (2.8, 0.2). Then,
the probability P[G < 0] is calculated as 0.8412 using the
classical MCS. In this example, statistical uncertainty is
introduced to X1, i.e., only a small number of data are avail-
able for X1 with x̄1 = 2.9 and s1 = 0.2, while X2 is still
aleatory. The results are listed in Table 3. Same feature is
observed as the previous example. The confidence bounds
of nested approach as well as the predictive values converge

in common toward the aleatory value. The predictive values
are close to the mean values of the PDF as was found pre-
viously. The probability in this example can be expected
to be reliability, in which the lower bound in the nested
approached may be favored.

In comparison of the nested and predictive approaches,
it can be concluded that the nested approach provides much
more information, i.e., the full PDF of probability at the
expense of increased computation. On the other hand, the
predictive approach provides just a point estimated value
which is the mean of the PDF. Nevertheless, the predic-
tive approach also accounts for the statistical uncertainty
in a single loop analysis, which is more advantageous in
the design practice. The smaller the data are provided, the
higher the statistical uncertainty, which means that higher
(or lower) failure probability (or reliability) are assigned.

In the metamodel uncertainty, the trial functions and
associated parameters are f = [1, x1, x2] and β = [β1,
β2, β3] respectively. Then total of five parameters are con-
sidered including σ and h. In the two variables problem,
Latin Hypercube Sampling (LHS) (Iman 1999) is used to
generate 10 DOE points in the range of x = [1,5]. Finite
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number of responses are calculated at these points to con-
struct metamodel. Given the response values, the posterior
distributions of the unknown parameters are obtained via
MCMC technique in Fig. 10. The upper and lower bounds
of the predictive interval of the metamodel incorporating the
uncertain h are also given by surface plot in Fig. 11. In this
figure, the dots at the bottom plane denote the LHS points.

As in the previous example, the probabilities under the
integrated uncertainty are computed in various cases. The
results are given in Fig. 12a in terms of nc and ne. Over-
all, similar pattern is observed. In this case, the probability,
representing the reliability, converges from below to 0.8412
as opposed to the 1D results where the probability of small
value, possibly representing the failure probability, con-
verges from higher side. Nevertheless, the difference either
from the lower or higher side represents the safety margin
due to the uncertainties arising from the lack of data, which
may be reduced as the both numbers increase. Of notewor-
thy is that a significant jump of the probability is observed
from nc = 6 to 8 in Fig. 12a and c, which indicates that
there may be a least necessary number of DOE points to

Fig. 12 Integrated reliability
analysis results of example 2
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Fig. 13 Suspension coil spring illustration

obtain plausible result, and advises that the metamodel be
constructed in adaptive manner. In the case of nc = 8 in
Fig. 12a, some of the probabilities are higher than the value
by aleatory uncertainty even under the epistemic uncertain-
ties, which contradicts our expectation. The reason can be
attributed to the poor quality of DOE points around the point
of reliability analysis as shown in Fig. 12b, in which the dots
and × denote the DOE points and the analysis point, respec-
tively. As a remedy to this problem, LHS with a proper
normal distribution is employed, in order to arrange more
DOE points near the reliability analysis point. The result by
applying this method is given in Fig. 12c using the DOE
points given by Fig. 12d.

6 Engineering application

Consider a helical coil spring assembled in a McPher-
son strut suspension as given in Fig. 13. In this problem,
maximum shear stress τmax is calculated under the pre-
scribed displacement load. To obtain τmax, nonlinear FEA
is carried out, which includes large deformation and con-
tact between the coil and upper/lower seats as well as the

adjacent wires. Using the FEA model with 1664 number of
elements as depicted in Fig. 13, the computational cost is
about 30 sec with the CPU operating at 2.52 GHz. In this
problem, the wire diameter denoted by X1 in Fig. 13 and
Young’s modulus denoted by X2 are treated as uncertain
input parameters. Reliability analysis is conducted to evalu-
ate the probabilistic behavior τmax due to these uncertainties
using the proposed integrated method. At the risk of costly
computation, classical MCS with 104 samples is employed
for the purpose of accuracy verification of the method.

In the case of aleatory uncertainty, the variables X1 and
X2 are assumed as normally distributed with N (14,
0.14)mm and N (206, 6.18)GPa, respectively. In the case
of statistical uncertainty, it is assumed that only 10 num-
ber of data are available for X2 of which the sample mean
and standard deviation are the same as the above values.
As opposed to the simple math example, huge number
of FEA are needed in this example to implement MCMC
sampling procedure. To avoid this, metamodel is intro-
duced, in which the DOE points are made by LHS in the
domain of μ ± 6σ , that is, 13.16 ≤ x1 ≤ 14.84 and
168.92 ≤ x2 ≤ 243.08. Metamodel for τmax is then con-
structed based on the computed responses at DOE ponts.
The unknown parameters are the model parameters (μ, σ )
for the input variable X2 and the metamodel parameters
β, σ , h. MCMC is implemented to obtain 104 samples of
the posterior distribution of these parameters. In Table 4,
the reliability P [τmax < 1,000 MPa] is calculated for the
three cases which are the results of the input uncertainties
only, and input plus metamodel uncertainties with nc = 10
and nc = 5, respectively. Predictive samples of τ̂max are
obtained from the metamodel using each sample set of the
parameters, which would be prohibitive using the actual
FEA model. As shown in Table 4, the reliability increases
as the associated uncertainties are reduced, with the high-
est reliability being 0.8525 which is the value under the
aleatory assumption. Comparing with the result by MCS,
there is tremendous difference in the computational cost but
the reliability results are similar between the two methods,
which are metamodel method and MCS using actual model.
The more complex problem the more difference in the com-
putational cost will occur. The integrated reliability method
therefore, can be used effectively.

Table 4 Integrated reliability analysis results of suspension coil spring example

Uncertainty classification Epistemic with ne = 10 Aleatory Computational cost (min.)

Input + Metamodel (nc = 5) 0.6175 0.7977 3

Input + Metamodel (nc = 10) 0.6433 0.8242 7

Input variable only (MCS with 104 samples) 0.6797 0.8525 9000
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7 Summary and conclusions

In this paper, an integrated reliability analysis procedure
is developed based on a Bayesian framework, which can
address both the statistical uncertainties arising from the
limited data of input variables and construction of the meta-
model. In the input uncertainty, a method of posterior
prediction is proposed to efficiently evaluate the failure
probability or reliability. From the study, it is found that the
probability by the predictive approach corresponds to the
mean of PDF of probability by the full Bayesian approach.
Though the information of full PDF is lost in the predic-
tive approach, it is indeed a more cost-effective method
since it catches the influence of the input uncertainties using
only a single pass of reliability analysis. In the metamodel
uncertainty, the uncertainty due to the metamodel construc-
tion at a finite number of DOE points is quantified in the
form of predictive interval by employing Gaussian process
model. During the procedure, the uncertainty of the correla-
tion parameter is also incorporated, which has been taken as
a constant value in most of the previous engineering litera-
tures. A general procedure to integrate these uncertainties is
presented based on a Bayesian framework. For an efficient
evaluation of the posterior distribution in the procedure,
Markov Chain Monte Carlo (MCMC) method is employed.
The feasibility of the proposed method is validated by the
mathematical and engineering problems.
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Nomenclature

f (x) Joint PDF of input variables x
f = [ f1, . . . , fm] trial (or basis) functions for the

regression in the Kriging model
g Response function
G Response function with random

behavior
Ĝ p Posterior predictive distribution of

surrogate response function
ĝ p Realization of the random function

Ĝ p

gc = {
gc

1, ..., gc
nc

}
Finite number of computed outputs
of g at a set of DOE points

h Correlation parameter that controls
the degree of smoothness of Krig-
ing model: h can be a deterministic
value or treated as random variable
depending on the cases.

N Number of samples in MCMC sim-
ulation

pg Probability of an event P[G < 0]
Pg Probability as a random variable
R(xi , x j ) Correlation function between two

points xi and x j

x Input variables
X Random input variables
xc = {

xc
1, ..., xc

nc

}
DOE points for computer experi-
ments to make metamodel

xe = {
xe

1, xe
2, ..., xe

ne

}
Experimentally observed data of X
that follow a certain probability dis-
tribution

xp Point at which the posterior predic-
tive distribution of Ĝ p is computed.

Xp Posterior predictive distribution of X
β = [β1, ..., βm]T Regression coefficients in the Krig-

ing model: β can be a set of deter-
ministic values or treated as random
variables depending on the cases.

θ Model parameters of X
� Model parameters of X with random

behavior
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