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Abstract Characterization of the mechanical properties of
arterial tissues is highly relevant. In this work, we apply an
inverse modelling approach to a model accounting for an
aneurysm and the distal part of the circulation which can be
modified using two independent stiffness parameters. For
given values of these parameters, the position of the arte-
rial wall as a function of time is calculated using a forward
simulation which takes the fluid-structure interaction (FSI)
into account. Using this forward simulation, the correct
values of the stiffness parameters are obtained by mini-
mizing a cost function, which is defined as the difference
between the forward simulation and a measurement. The

J. Degroote (B) · J. Vierendeels
Department of Flow, Heat and Combustion Mechanics,
Ghent University, Sint-Pietersnieuwstraat 41, 9000 Ghent, Belgium
e-mail: Joris.Degroote@UGent.be

J. Vierendeels
e-mail: Jan.Vierendeels@UGent.be

I. Couckuyt · T. Dhaene
Department of Information Technology, Internet Based
Communication Networks and Services (IBCN),
Ghent University—IBBT, Gaston Crommenlaan 8 Bus 201,
9050 Ghent, Belgium

I. Couckuyt
e-mail: Ivo.Couckuyt@UGent.be

T. Dhaene
e-mail: Tom.Dhaene@UGent.be

P. Segers
Department of Civil Engineering, Institute Biomedical Technology,
Ghent University, De Pintelaan 185, 9000 Ghent, Belgium
e-mail: Patrick.Segers@UGent.be

minimization is performed by means of surrogate-based
optimization using a Kriging model combined with the
expected improvement infill criterion. The results show that
the stiffness parameters converge to the correct values, both
for a zero-dimensional and for a three-dimensional model
of the aneurysm.
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1 Introduction

The arterial system is a large and complex three-
dimensional network playing a vital role in human well-
being. Recent advances in the field of numerical analysis
and the increase in computer power enable detailed, three-
dimensional (3D) fluid-structure interaction (FSI) simula-
tions of, for example, heart valves (Astorino et al. 2009) and
aneurysms in large arteries (Gee et al. 2010; Küttler et al.
2010). In these FSI simulations, the interaction between the
blood flow and the surrounding tissue is taken into account.
However, patient-specific data such as the initial shape, ini-
tial stresses, boundary conditions and constitutive data for
the tissue are required as input for these simulations. Non-
invasive imaging techniques can provide geometrical data
but it is difficult to directly determine the stiffness param-
eters of the tissue. This is of particular interest within the
context of (aortic) aneurysms, where modelling simula-
tions are thought to contribute to a better assessment of the
aneurysm’s risk of rupture.

The goal of this work is to test the feasibility of assess-
ing the stiffness parameters of an aneurysm in a large artery
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using inverse modelling. To that end, two stiffness parame-
ters are defined: one for the aneurysm itself and one for the
distal part of the arterial system. For given values of these
parameters, a forward simulation of the arterial system can
be performed, resulting in the position of the arterial wall as
a function of time, information that is easily available from
medical images. A cost function is then defined to quantify
the difference between the wall position in this simulation
and in a measurement. Ideally, this measurement should
originate from non-invasive imaging techniques but in this
work synthetic data from a simulation is used to provide the
proof of principle. Future work will discuss the difficulties
due to the noise in real measurement data. Yet, the parame-
ter identification technique used in this work is expected to
function well in that case (Sakata et al. 2007). The values of
the stiffness parameters that minimize the cost function are
then determined by means of surrogate-based optimization
(Gorissen et al. 2010) (SBO).

Previous parameter identification studies on arteries used
one-dimensional models and adjoint techniques for the opti-
mization (Lagrée 2000; Martin et al. 2005). In this work,
the physics of the 3D aneurysm model are fully nonlin-
ear. The geometry of the model is however simplified and
not patient-specific. The fluid-structure interaction is sim-
ulated by coupling (Degroote et al. 2009, 2010b) a black-
box computational fluid dynamics (CFD) solver with a
black-box computational structural dynamics (CSD) solver.
Consequently, adjoint techniques are not applicable.

The remainder of this work is organized as follows.
Section 2 describes the surrogate-based optimization tech-
nique. In Section 3, the models for the forward simulation
are introduced, followed by the results in Section 4. Finally,
Section 5 presents the conclusions.

2 Surrogate-based optimization

Surrogate-based optimization techniques are applied to
expedite the optimization of computationally expensive
problems (Queipo et al. 2005). In these optimization tech-
niques, the surrogate model provides a cheap approximation
to an expensive calculation with the simulation code. Sur-
rogate models have been incorporated in the optimization
process in several ways. They can guide the global search
and/or serve as local model for evolutionary optimization
algorithms (Ong et al. 2003; Zhou et al. 2007). Surro-
gate models can also be applied in a trust region model-
management framework to optimize systems with complex
local behaviour (Alexandrov et al. 1998). Moreover, models
with different levels of accuracy can be combined in multi-
fidelity techniques (Haftka 1991; Goel et al. 2007; Robinson
et al. 2008).

Another approach to surrogate-based optimization is
applying adaptive sampling strategies, also known as infill
criteria, to improve the surrogate models. The infill crite-
rion is a figure of merit that indicates how interesting each
point in the design space is. Additional sample points are
then selected by optimizing this criterion. The Expected
Improvement (EI) infill criterion (Jones et al. 1998; Mockus
et al. 1978; Couckuyt et al. 2010) effectively balances
between enhancing the global accuracy of the surrogate
model (exploration) and improving its accuracy near the
current optimum (exploitation). Surrogate-based optimiza-
tion with the expected improvement as infill criterion is also
known as the Efficient Global Optimization (EGO) algo-
rithm (Jones et al. 1998). This technique requires that the
surrogate model provides a Gaussian probability density
function (PDF) at each point in the design space. For exam-
ple, Gaussian Process (GP) surrogate methods provide a
normal distribution at each point x , determined by the mean
μ(x) and variance σ 2(x).

The expected improvement infill criterion is explained
graphically in Fig. 1. The cost function f (x), which is cal-
culated with the simulation code, has been sampled at 7
points. The value of f at each point x is treated as a random
variable Y (x). Assuming that Y (x) is normally distributed
with mean μ(x) and variance σ 2(x), the probability density
function φ is depicted for x = 1 and x = 3. The value pre-
dicted by the surrogate model is equal to the mean of this
distribution, so ŷ(x) = μ(x). The shaded area corresponds
with the Probability of Improvement (PoI) of Y (x) over the
current minimum fmin, given by

PoI (x) = P(Y (x) ≤ fmin) =
∫ fmin

−∞
φ(Y (x))dY (1)

with φ the normal probability density function. However,
this criterion does not take into account how large the
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Fig. 1 The cost function f (x), which is calculated using the simu-
lation code, together with a Gaussian process surrogate model. The
probability of improvement over the current optimum fmin is shown
for x = 1 and x = 3
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improvement will be. Therefore, the Expected Improvement
(EI) is the first moment of the shaded area, calculated as

E I (x) = E [I (x)] =
∫ fmin

−∞
I (x)φ(Y (x))dY (2a)

for continuous functions with the improvement defined as

I (x) = max( fmin − Y (x), 0). (2b)

Equation (2a) corresponds with every possible improvement
I (x) over fmin, multiplied with the associated likelihood.

In this work, the parameter identification is performed
using the SUrrogate MOdelling (SUMO) toolbox (Gorissen
et al. 2010). The interested reader can certainly find
other packages, e.g. those available at http://www.kernel-
machines.org, the free companion code of Forrester et al.
(2008), the SURROGATES Toolbox (Viana 2010), and
the DiceKriging and DiceOptim packages (Roustant et al.
2010). The complete optimization strategy is summarized
in Fig. 2.

Two parameters (x1 and x2) are identified. They can both
vary from −1 to 1, so the parameter space is given by

{(x1, x2)| − 1 ≤ x1 ≤ 1, −1 ≤ x2 ≤ 1}. (3)

First, an initial set of samples is generated by an optimal
maximin Latin hypercube design (van Dam et al. 2007),
together with the corner points of the parameter space.
Adding the corner points improves the accuracy of the
Kriging model in the vicinity of those points. The cost
function value f at all initial sample points is evaluated
using the simulation code before the first surrogate model
is constructed.

The surrogate model of the relation between the stiffness
parameters and the cost function is a Kriging model. Kriging
is part of the broader class of Gaussian process meth-
ods. For a description of Kriging, the reader is referred
to the extensive literature on this topic (Sacks et al. 1989;
Cressie 1990). The model has a constant regression term
and uses the Matérn covariance function with ν = 3/2 and
isotropic distance measure (Minasny and McBratney 2005).
The Matérn covariance function has been chosen because it
yields a smooth surrogate model, whereas surrogate models

using several other functions displayed unphysical wiggles.
The Kriging model’s hyperparameters are determined by
Maximum Likelihood Estimation (MLE) using a Sequen-
tial Quadratic Programming (SQPLab) method which takes
into account derivative information (Bonnans et al. 2006).

Once the Kriging surrogate model has been constructed,
the maximum of the expected improvement is calcu-
lated using the DIviding RECTangles (DIRECT) algorithm
(Jones et al. 1993). At the point in the parameter space
where the expected improvement is maximal, a new sample
point is added. Subsequently, the value of the cost function
f at this new sample point is evaluated with the simulation
code. When this new sample has been calculated, a new
Kriging surrogate model is constructed and the process is
repeated. The Kriging surrogate model is thus only used to
calculate the expected improvement and thus to determine
the location of the following sample point in the parameter
space.

As the cost function has been defined as the difference
between the forward simulation and a measurement, the val-
ues of the parameters for which f is close to zero have to
be determined. The optimization is halted when a sample
point with a cost function value f lower than the optimiza-
tion tolerance ε has been calculated by the simulation code
(or when 100 samples have been calculated).

3 Simulation code

In this section, the physical models used by the simula-
tion code are described. The boundary conditions for the
artery with the aneurysm are provided by an inlet model
(Section 3.1) and an outlet model (Section 3.2). The artery
itself is first modelled using a lumped parameter zero-
dimensional model (Section 3.3), resulting in fast forward
simulations to allow for extensive validation of the param-
eter identification strategy and analysis of the influence of
its parameters. The complete model is depicted in Fig. 3.
In a second step, this zero-dimensional model is replaced
by a detailled three-dimensional model (Section 3.4). The
parameter identification studies with the zero-dimensional
model and with the three-dimensional model are thus com-
pletely independent.

Fig. 2 Schematic of the
complete surrogate-based
optimization strategy
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Evaluate initial
samples using
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Fig. 3 Schematic of the inlet
model, the zero-dimensional
model of the artery with the
aneurysm and the outlet model.
In a second step, the
zero-dimensional model of the
artery with the aneurysm is
replaced by a three-dimensional
model

Ra 

Ca 
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Pa(t) 

Qp(t) 
Pd(t) 

L R 

Cp Cd Pv 

Pp(t) 
Qpd(t) Qd(t) 

Inlet model Outlet model Aneurysm model 

Heart Distal part of the circulation Artery with aneurysm 

3.1 Inlet model

At the inlet of the artery, the blood flow rate Qh coming
from the heart is prescribed as a periodic function of the time
t (Parlikar et al. 2006). Therefore, the time since the begin-
ning of the current heartbeat is defined as t̃ = mod(t, Tb),
with mod indicating the modulo operation and Tb the period
of one heartbeat. With this definition, the blood flow rate is
given by

Qh(t) =
{

At̃2 + Bt̃ : t̃ < Ts

0 : t̃ ≥ Ts .
(4)

The parameters A and B are calculated from the stroke
volume SV and the duration of the systole Ts , which is
approximated as

√
Tb/3.

A = −6SV

T 3
s

and B = 6SV

T 2
s

. (5)

An example of this function for two periods is displayed in
Fig. 4.
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Fig. 4 The blood flow rate Qh coming from the inlet model as a
function of time t for SV=8·10−5 m3 and Tb = 1 s

3.2 Outlet model

At the outlet of the artery, a modified windkessel model
(Fig. 3) determines the relation between the pressure and
the blood flow rate. This model divides the arterial tree into
a proximal region (subscript p) with the arteries close to
the heart and a distal region (subscript d) with the arteries
further away as the arterial properties differ between those
regions. The compliance of the large proximal arteries is
referred to as C p, while the compliance of the distal arteries
is named Cd . The inductor L represents the inertia of the
blood flow. Finally, R and Pv are the peripheral resistance
and the mean venous pressure, respectively (Rietzschel et
al. 2001; Parlikar et al. 2006).

Using Kirchhoff’s voltage and current laws, this
modified windkessel model is characterized as

C p
dPp(t)

dt
= Q p(t) − Q pd(t) (6a)

Cd
dPd(t)

dt
= Q pd(t) − Pd(t) − Pv

R
(6b)

L
dQ pd(t)

dt
= Pp(t) − Pd(t). (6c)

These equations are discretized in time with the first-order
backward Euler scheme. The resulting linear equations

C p

�t
Pn+1

p + Qn+1
pd = C p

�t
Pn

p + Qn+1
p (7a)

(
Cd

�t
+ 1

R

)
Pn+1

d − Qn+1
pd = Cd

�t
Pn

d + Pv

R
(7b)

−Pn+1
p + Pn+1

d + L

�t
Qn+1

pd = L

�t
Qn

pd (7c)

can be solved in every time step, yielding Pn+1
p if Qn+1

p is
known. The superscript n indicates the time t = n�t with
�t the time step size. The variables Pp, Pd and Q pd are all
initialized to zero.
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The distention of the artery with the aneurysm is sig-
nificantly influenced by the pressure at its outlet. In turn,
this pressure depends on the compliance of the proximal
and distal arteries. Therefore, the compliance C p is deter-
mined by the first stiffness parameter x1. As x1 increases
from −1 to 1, the value of C p decreases from 2 to 1/2 times
its nominal value of 1.45 ml/mmHg according to

C p = 1.45
5
4 + 3

4 x1
. (8)

All other parameters of the inlet and outlet models are
listed in Table 1. The mean venous pressure Pv is manually
adjusted so that Pp(t) is positive throughout the simulation
but with a minimal value close to zero since a linear elastic
constitutive equation is applied. Consequently, all pressures
in the simulation are relative to the minimal pressure in a
heartbeat. It is thus also assumed that the initial, stress-
less geometry corresponds with this minimal pressure. In
this case, the manual adjustment of Pv results in a negative
value.

3.3 Zero-dimensional aneurysm model

The zero-dimensional model of the artery with the aneurysm
consists of a compliance Ca in combination with a resis-
tance Ra (see Fig. 3). It is characterized by

Ca
dPa(t)

dt
= Qh(t) − Pa(t) − Pp(t)

Ra
, (9)

which becomes

(
Ca

�t
+ 1

Ra

)
Pn+1

a = Ca

�t
Pn

a + Qn+1
h + Pn+1

p

Ra
(10)

after time discretization. This lumped parameter model is
coupled with the inlet model through Qh and to the outlet
model through Pp. In a forward simulation with this zero-
dimensional aneurysm model, (7) and (10) are combined
into a linear system in the unknowns Pn+1

a , Pn+1
p , Pn+1

d

and Qn+1
pd . As Qn+1

h can simply be calculated from (4), it is
not treated as an unknown.

Table 1 Parameters of the inlet and outlet models (Parlikar et al. 2006)

Cd 1.125·10−9 m3/Pa 0.15 ml/mmHg

L 3.333·106 Pa/(m3·s) 0.025 mmHg/(ml·s)

R 1.333·108 Pa·s/m3 1 mmHg·s/ml

Pv −8·103 Pa −60 mmHg

SV 8·10−5 m3 80 ml

Tb 1 s

The nominal values of Ra and Ca are calculated by
assuming the artery is a straight tube with a length � and
a uniform circular cross section a = πr2

o with ro the initial
radius. The resistance Ra is then obtained from Poiseuille’s
equation

Ra = 8μ f �

πr4
o

(11)

with μ f the dynamic viscosity of blood. The compliance Ca

is defined as

Ca = V

ρ f c2
, (12)

with V the volume of the artery, ρ f the density of blood and
c the wave speed. Using the Moens-Korteweg approxima-
tion, the pulse wave speed is given by

c =
√

Eh

2ρ f ro
, (13)

with E the Young’s modulus of the arterial wall and h its
thickness. Using the values listed in Table 2, the nom-
inal values of Ra and Ca are respectively 4.125·10−11

Pa·s/m3 = 0.0055 mmHg·s/ml and 3.733·105 m3/Pa =
0.0028 ml/mmHg. The wave speed c is approximately
15 m/s, which is rather high.

The distention of the artery depends on its compliance,
so Ca is modified using the second stiffness parameter x2.
This is achieved by multiplying the nominal value of E with
a factor containing x2

E = 750000

(
1 + 1

3
x2

)
. (14)

As x2 increases from −1 to 1, the value of Ca thus decreases
from 3/2 to 3/4 times its nominal value.

The initial value of the artery’s inner radius is listed in
Table 2. After each time step, this radius is calculated from
the artery’s volume

rn+1 =
√

V n+1

π�
(15)

Table 2 Parameters of the zero-dimensional and three-dimensional
model of the artery with the aneurysm

ro 0.005 m h 0.003 m

� 0.06 m E 7.5·105 Pa

μ f 0.003 Pa·s ν 0.45

ρ f 103 kg/m3 ρs 1.2·103 kg/m3
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which is in turn obtained by integrating the net blood inflow

V n+1 = V n +
(

Qn+1
h − Qn+1

p

)
�t. (16)

For given inputs x1 and x2, the output of this aneurysm
model combined with the inlet and outlet models is the value
of r in all time steps. Each forward simulation continues
for 10 heartbeats with a time step �t = 0.01 s. This time
step size has been selected based on a time step convergence
study.

To mimic the measurement from an imaging technique, a
reference simulation is performed with x∗

1 and x∗
2 , yielding

r∗ in all time steps. Of course, the values of x∗
1 and x∗

2 are
further assumed unknown as they have to be determined by
the inverse modelling. The cost function is finally defined
as

f0D(x1, x2) = �t

Tb

∑
n |rn(x1, x2) − rn∗|

maxn(rn∗) − minn(rn∗)
. (17)

In the above equation, the index n is limited to the last
heartbeat of the simulation.

3.4 Three-dimensional aneurysm model

In the three-dimensional model, the artery with the
aneurysm is divided into a fluid domain 
 f and a structure
domain 
s (Fig. 5). Initially, the radius at the inlet and out-
let is ro, the radius at the aneurysm is 2ro. This simplified
geometry is axisymmetric around the x-axis and symmetric
around a plane through the origin with the x-axis as nor-
mal. The boundaries of the fluid and structure domain are
indicated as � f and �s , respectively. The fluid-structure
interface �i = � f ∩ �s is the common boundary of these
domains.

The unsteady blood flow is governed by the conservation
of mass and the Navier-Stokes equations, given by

∂ρ f

∂t
+ ∇ · (

ρ f v
) = 0 (18a)

∂ρ f v
∂t

+ ∇ · (
ρ f vv

) − ∇ · σ̄ f = 0 (18b)

for each point in 
 f . In these equations, ρ f is the blood
density and v the flow velocity. Blood is modelled as an
incompressible, Newtonian fluid with dynamic viscosity
μ f , so the stress tensor σ̄ f is defined as

σ̄ f = −p Ī + 2μ f ε̄ f (19a)

with p the pressure and Ī the unit tensor. The rate of strain
tensor ε̄ f is given by

ε̄ f = 1

2

[∇v + (∇v)T]
. (19b)

The deformation u of the arterial wall is determined by
the conservation of momentum

ρs
d2u
dt2

− ∇ · σ̄s = 0 (20)

for each point in 
s with ρs the density of the arterial
wall and σ̄s the Cauchy stress tensor. In these large dis-
placement calculations, the relation between the second
Piola-Kirchhoff stress tensor S̄s and the Green-Lagrange
strain tensor Ēs is imposed by the constitutive equation of
the material. The second Piola-Kirchhoff stress tensor com-
bines forces in the reference configuration with areas in the
reference configuration, whereas the Cauchy stress tensor
combines forces in the deformed configuration with areas
in the deformed configuration. The relation between these
tensors is given by

S̄ = J F̄−1σ̄s F̄−T (21)

ro

2ro

 /2
x

y

h
1.32ro

 f

Ω 

Ω 

s

Fig. 5 Schematic of the geometry (left), together with the grid in the fluid (middle) and structure (right) domain in the three-dimensional model
of the artery with the aneurysm. The geometry is axisymmetric around the x-axis and symmetric around a plane through the origin with the x-axis
as normal
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with F̄ the deformation gradient tensor and J = det(F̄).
The Green-Lagrange strain tensor for large displacements is
given by

Ēs = 1

2

[∇u + (∇u)T + (∇u)T ∇u
]
. (22)

All displacements are relative to the initial (reference)
geometry.

The equilibrium conditions on the fluid-structure inter-
face are the kinematic condition

v = du
dt

(23a)

and the dynamic condition

σ̄ f · n f = −σ̄s · ns, (23b)

which stipulate that the velocity and the stress have to be
the same on both sides of the interface. The vector n f,s is
the unit normal that points outwards from the domain 
 f,s .
A Dirichlet-Neumann decomposition of the fluid-structure
interaction problem is applied, so the flow equations are
solved with a given displacement of the fluid-structure inter-
face and the structural equations are solved with a given
stress on the interface.

The flow equations (18) and the structural equations (20)
are solved by coupling a flow solver (Fluent 12.1, Ansys
Inc.) with a structural solver (Abaqus 6.7, Dassault Sys-
tèmes). This is the so-called partitioned approach to the
simulation of fluid-structure interaction. In every time step,
coupling iterations are performed between these solvers to
enforce the equilibrium conditions (23). A simple scheme
for these coupling iterations would be to solve the flow
equations for a given interface displacement, followed by
solving the structural equations using the resulting stress on
the interface and finally giving the resulting interface dis-
placement back to the flow solver. However, this so-called
Gauss-Seidel scheme does not converge for this case, which
is well understood (Causin et al. 2005; Degroote et al. 2008,
2010a). Instead, the Interface Quasi-Newton algorithm with
an approximation for the Inverse of the Jacobian from a
Least-Squares model (IQN-ILS) has been applied (Degroote
et al. 2009, 2010b). This coupling scheme uses the displace-
ment and stress on the fluid-structure interface during the
coupling iterations to accelerate the convergence of these
iterations. Moreover, it treats both solvers as black boxes.

At the inlet of the fluid domain, the blood flow rate
Qh from the inlet model is imposed. The pressure level in
the incompressible fluid is only known up to an arbitrary
constant which is fixed by applying a zero-pressure bound-
ary condition at the outlet. After each flow calculation, the
blood flow rate Q p at the outlet is calculated and given to
the outlet model which then determines Pp. The physically

correct pressure level is then obtained by adding Pp to the
pressure in the entire fluid domain. The structure is clamped
at both ends in the axial and circumferential direction. Both
the fluid and the structure domain are initially at rest and
stressless.

The finite volume flow solver solves the Navier-Stokes
equations in Arbitrary Lagrangian-Eulerian (ALE) formula-
tion using the Pressure-Implicit with Splitting of Operators
(PISO) pressure-velocity coupling. The time discretization
is first-order backward Euler. The momentum equations are
discretized in space using the second-order upwind scheme,
while the pressure is interpolated from the cells to the faces
using momentum equation coefficients. The grid through-
out the fluid domain is adapted to the displacement of the
fluid-structure interface by replacing the cell edges with
springs. The finite element structural solver uses implicit
Hilber-Hughes-Taylor time integration with a numerical dis-
sipation factor of αs = −0.15. It takes into account the
geometric nonlinearities due to the large deformation of the
structure. However, the deformations are in the order of
5%, so small deformation stress-strain measures would have
been sufficient. The constitutive equation for the structure
is a linear elastic material law with Young’s modulus E and
Poisson’s coefficient ν.

All parameters have the same value as for the zero-
dimensional model (Table 2). The fluid grid consists of 4160
triangular prisms and the structural grid contains 240 brick
elements with 8 nodes. The time step is �t = 0.005 s,
which is divided into smaller increments in the structural
solver.

As in (14) for the zero-dimensional model, the stiffness
of the aneurysm is modified by multiplying the nominal
value of E with the same factor containing x2. However,
the stiffness is only modified in the light grey part of the
structure as depicted in Fig. 5. The cost function is also iden-
tical to the one for the zero-dimensional model in (17). The
radius r is measured at the intersection between the y-axis
and the fluid-structure interface.

4 Results

4.1 Zero-dimensional aneurysm model

The inlet and outlet models are first coupled to the zero-
dimensional aneurysm model. The radius r and blood flow
rate Q pd as a function of time t for nominal parameter val-
ues (x1 = x2 = 0) are depicted in Fig. 6. It can be observed
that the distention and flow rate become periodic after a few
heartbeats; the same is true for the other variables.

The dependence of the total number of samples to reach
the optimum on the location of the optimum in the design
space is depicted in Fig. 7. The optimization has been
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Fig. 6 The radius r (left) and blood flow rate Q pd (right) as a function of time t in a simulation with the zero-dimensional aneurysm model and
nominal parameter values (x1 = x2 = 0)

performed for 121 positions of the optimum, uniformly
distributed in the design space. Therefore, x∗

1 and x∗
2 are

increased independently from −1 to 1 in steps of 0.2. For
each position of the optimum, a parameter identification
has been performed and the number of samples has been
counted. Each of these calculations has been performed with
the same 11 initial samples. If x∗

1 and x∗
2 are equal to ±1,

then the criterion f0D < ε is satisfied immediately once all
initial samples have been calculated as the corners of the
design space are included in the set of initial samples. The
maximal difference in total number of samples throughout
the design space is 11 for ε = 1% and 43 for ε = 0.1%, so
decreasing the optimization tolerance increases the depen-
dence of the total number of samples on the location of the
optimum. Decreasing the optimization tolerance ε from 1%
(Fig. 7a) to 0.1% (Fig. 7b) approximately causes an increase
in the number of samples (averaged over all values of x∗

1 and
x∗

2 ) from 14.5 to 19.6.
Figure 8 shows the influence of the number initial sam-

ples on the total number of samples before the criterion

f0D < ε is reached. For each combination of ε and the num-
ber of initial samples, the optimization has been performed
for 121 positions of the optimum, uniformly distributed in
the design space. Therefore, x∗

1 and x∗
2 are again increased

independently from −1 to 1 in steps of 0.2. If at least 11
initial samples are generated, the optimizer finds the mini-
mum of f0D after about 2 or 3 samples once the evaluation
of the initial samples is complete if ε = 1% and after about
10 samples if ε = 0.1%. If fewer than 11 initial samples are
used, the total number of samples remains more or less con-
stant. The standard deviation increases significantly as the
optimization tolerance ε is reduced from 1% to 0.1%, which
means that the total number of samples becomes more sen-
sitive to the location of the optimum. This confirms the
information obtained from Fig. 7.

As mentioned before, the initial set of samples is gener-
ated by a Latin hypercube design, together with the corner
points of the parameter space. Because the Latin hypercube
design can contain one of the corners of the design space
and duplicate samples are removed, not every number of

Fig. 7 The total number of
samples to reach the optimum as
a function of the location of the
optimum for tolerance ε = 1%
(left) and 0.1% (right). All
these optimizations have been
performed with 11 initial
samples and the
zero-dimensional model
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Fig. 8 The total number of samples to reach the optimum as a func-
tion of the number of initial samples for tolerance ε = 1% (left) and
0.1% (right). For each combination of ε and the number of initial

samples, the optimization has been performed for a range of x∗
1 and

x∗
2 . The mean±standard deviation from all these optimizations with

the zero-dimensional model is depicted

initial samples in the range 4 to 24 can be realized. Conse-
quently, the total number of samples cannot be shown for
each number of initial samples in that range.

The difference between x∗
i and xi (i = 1, 2) during a

representative optimization is shown in Fig. 9a. In this opti-
mization, there were 11 initial samples, ε = 1%, x∗

1 = −0.2
and x∗

2 = −0.4. The evolution of f0D during the same
optimization is depicted in Fig. 9b. It can be observed that
the convergence is not monotonic as the surrogate-based
optimization balances between exploration and exploitation.
Nevertheless, the difference between x∗

i and xi is small
when f0D is small, which gives confidence for situations
where x∗

i is really unknown.

Figure 9a shows that the error on the parameters is
smaller than 10−2 at convergence. To identify the param-
eters with a similar accuracy using uniform sampling of
the parameter space, a step size no larger than 10−2

should be applied. If the parameter space (3) were uni-
formly sampled with this step size, then 40000 calculations
with the simulation code would have to be performed.
By contrast, the surrogate model only requires approxi-
mately 50 calculations. Moreover, the computational cost
of the surrogate model itself is low compared to the sim-
ulation code. As a result, the surrogate model drasti-
cally reduces the computational cost compared to uniform
sampling.
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Fig. 9 The evolution of |x∗
i − xi | (left) and f0D (right) in an optimization with the zero-dimensional model using 11 initial samples, ε = 1%,
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1 = −0.2 and x∗

2 = −0.4
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Fig. 10 The location of the additional samples (left) and the final Kriging surrogate model (right) in an optimization with the zero-dimensional
model using 11 initial samples, ε = 1%, x∗

1 = −0.2 and x∗
2 = −0.4. The samples are indicated by black dots

The convergence path for this optimization can be seen
in Fig. 10a. Only the additional samples (i.e. the sam-
ples added after the initial samples) are indicated. It can
be observed that the optimization algorithm has not only
added a cluster of samples in the neighbourhoud of the opti-
mum but also individual samples in other parts of the design
space. Figure 10b shows the final Kriging model that is con-
structed with all samples. The coloured surface in this figure
is the surrogate model. Despite the non-uniform distribu-
tion of the samples, this surrogate model does not display
wiggles or peaks in between the samples. This figure also
shows that the maximal cost function value is approximately
0.3, which means that the difference between the simulation
and the measurement is up to 30%. This percentage is an
average over all time steps and with respect to the maximal
displacement in the measurement.

4.2 Three-dimensional aneurysm model

As the results in the previous section became periodic
quickly, only 3 heartbeats are simulated with the three-
dimensional model. Also, 11 initial samples are used as this
resulted in a low total number of samples with the zero-
dimensional model. The optimum that needs to be found
is located at x∗

1 = −0.2 and x∗
2 = −0.4. The radius r and

blood flow rate Q pd as a function of time t at the optimum
are depicted in Fig. 11.

Each forward simulation takes approximately 6 hours on
3 cores of an Intel Xeon X5355 2.66GHz processor. In each
time step, on average 5.13 coupling iterations per time step
are required to reach the convergence criterion of the fluid-
structure interaction coupling iterations. Figure 12 depicts
velocity vectors in the fluid and contours of the von Mises
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Fig. 11 The radius r (left) and blood flow rate Q pd (right) as a function of time t in a simulation with the three-dimensional aneurysm model and
parameter values x∗

1 = −0.2 and x∗
2 = −0.4
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Fig. 12 Velocity vectors in the
fluid and contours of the von
Mises stress in the structure
at 2.00 s, 2.25 s and 2.50 s
in a simulation with the
three-dimensional model and
parameter values x∗

1 = −0.2
and x∗

2 = −0.4. The velocity
range is 0 (blue) to 5 m/s (red)
and the stress range is 5·102 Pa
(blue) to 25·103 Pa (red)
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Fig. 14 The location of the additional samples (left) and the Kriging surrogate model after 42 samples (right) in the optimization with the
three-dimensional model using 11 initial samples, x∗

1 = −0.2 and x∗
2 = −0.4. The samples are indicated by black dots

stress in the structure at three different instants in the last
period for x∗

1 = −0.2 and x∗
2 = −0.4.

The difference between x∗
i and xi (i = 1, 2) is shown

in Fig. 13, together with the evolution of f3D during the
optimization. It can again be observed that the convergence
is not monotonic but that |x∗

i − xi | is small when f3D is
small. The convergence tolerance ε = 1% is reached after
15 samples, while 42 samples are required to reach the tol-
erance ε = 0.1%. The minimum of f3D over all samples is
8.92·10−4.

The convergence path for this optimization can be seen
in Fig. 14a, with only the additional samples indicated. The
optimization algorithm has positioned most additional sam-
ples near the optimum and the distance between the samples
increases further away from the optimum. Figure 14b shows
the final Kriging model that is constructed with all samples.
Again, this Kriging surrogate model is smooth in between
the samples, despite the non-uniform distribution of the
samples. For the 3D model, the maximal cost function value
is approximately 0.2, which signifies a difference of up to
20% between the simulation and the measurement. Despite
the nonlinearities in the physics, the relation between the
parameters and the cost function has a cone shape, which is
straightforward to optimize.

5 Conclusions

The increase in computer power and the use of surrogate-
based optimization make it feasible to identify an
aneurysm’s stiffness using a three-dimensional FSI simula-
tion. Both the coupling algorithm for the three-dimensional
partitioned fluid-structure interaction simulations and the
algorithm for the surrogate-based optimization treat the flow
solver and structural solver as black boxes. The influence of

the parameters in the surrogate-based optimization has first
been analyzed using a zero-dimensional model.

However, the geometry and models in this work are
simplified. It would also be very expensive to identify a
large number of parameters. Future work will be to use
patient-specific data for the geometry, input model and
output model. Subsequently, real measurements instead of
synthetic measurement data from a simulation will be incor-
porated, as the applied surrogate-based optimization can
cope with noisy data if a suitable surrogate model is used
(Sakata et al. 2007).
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