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Abstract In this work, we propose an approach for reduc-
ing radiated noise from ‘light’ fluid-loaded structures, such
as, for example, vibrating structures in air. In this approach,
we optimize the structure so as to minimize the dynamic
compliance (defined as the input power) of the structure.
We show that minimizing the dynamic compliance results
in substantial reductions in the radiated sound power from
the structure. The main advantage of this approach is that
the redesign to minimize the dynamic compliance moves
the natural frequencies of the structure away from the driv-
ing frequency thereby reducing the vibration levels of the
structure, which in turn results in a reduction in the radiated
sound power as an indirect benefit. Thus, the need for an
acoustic and the associated sensitivity analysis is completely
bypassed (although, in this work, we do carry out an acous-
tic analysis to demonstrate the reduction in sound power
levels), making the strategy efficient compared to existing
strategies in the literature which try to minimize some mea-
sure of noise directly. We show the effectiveness of the
proposed approach by means of several examples involv-
ing both topology and stiffener optimization, for vibrating
beam, plate and shell-type structures.
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1 Introduction

Due to its practical importance, the problem of redesign-
ing a structure so as to minimize radiated sound levels has
received a lot of attention in recent times; see, e.g., the book
by Koopman and Fahnline (1997) and the comprehensive
review articles by Christensen et al. (1998) and Marburg
(2002b, 2004). Again, due to their practical importance,
a vast majority of applications, have focused on ‘light’
fluid loading, e.g., a structure vibrating in air. In this case,
the structural-acoustic analysis problem can be treated as a
‘one-way’ coupled one, i.e., the effects of the fluid load-
ing are ignored while carrying out the structural analysis,
and the obtained structural surface velocities are used as
boundary conditions in the acoustic analysis. We shall focus
on this case throughout this work. Indeed, this ‘one-way’
coupling is exploited in the proposed strategy in this work.

Lamancusa (1993) discusses several choices of design
variables and objective functions that have been used, and
concludes that the choice of acoustic power as an objective
function produces the most consistently improved designs;
examples of works where sound power is optimized are
Belegundu et al. (1994), Koopman and Fahnline (1997),
Constans et al. (1998), Milsted et al. (1993) and Du and
Olhoff (2007). In the works of Koopman and Fahnline
(1997) and Du and Olhoff (2007), general (i.e., valid for
arbitrary structures) expressions for the sensitivities of the
sound power with respect to design variables are derived,
and subsequently used in the optimization strategy. How-
ever, such a sensitivity analysis and the associated opti-
mization procedure is not only extremely cumbersome, but,
is computationally intensive as well since both a structural
and acoustic analysis has to be conducted at each iteration
step (Milsted et al. 1993; Du and Olhoff 2007). Hence,
Constans et al. (1998) and Milsted et al. (1993) use
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non-gradient based approaches. However, such non-
gradient approaches are also computationally intensive due
to the large number of function evaluations that are required
in such strategies.

Besides sound power, other objective functions and
choices of design variables have also been used. For exam-
ple, in the work of Marburg (2002a), the sound pressure
level is optimized by directly manipulating the geometry of
the shell finite element mesh, while in the works of Duhring
et al. (2008) and Du and Olhoff (2010) the sound pres-
sure level for interior and exterior problems, respectively,
is optimized by using topology optimization (Eschenauer
and Olhoff 2001; Bendsoe and Sigmund 2003). Note, how-
ever, that using an acoustic objective function different
than sound power still necessitates a structural and acous-
tic analysis, and, thus, does not reduce the computational
complexity of the optimization process.

Jog (2002a) proposed a method of reducing the vibra-
tions of a structure by minimizing the dynamic compliance,
which is defined as the average input power over a cycle.
Such a minimization moves the natural frequencies of the
structure away from the driving frequencies resulting in a
reduction in the vibration levels, and hence, indirectly, to
a reduction in the radiated sound power. Thus, as we show
in this work, significant reductions in radiated sound power
for ‘light’ fluid-loaded structures can be obtained simply by
minimizing the dynamic compliance, thereby circumvent-
ing the need to conduct an acoustic analysis.1 The proposed
method works since the vibration of the structure is assumed
not to be affected by the ‘light’ fluid (as is routinely done),
and, obviously, this approach should not be used in cases
where the fluid influences the vibration of the structure
necessitating a fully coupled analysis. Nevertheless, since a
vast majority of applications involve vibrations of structures
in air, the proposed approach is likely to prove useful. Some
preliminary results using this approach were presented by
Jog (2002b, 2003) (where it was shown that minimizing the
dynamic compliance also results in a reduction in the acous-
tic potential energy in interior acoustic problems). However,
as Marburg (2002b) pointed out, this approach has not been
tried for more complex structures. It is the goal of this work
to show that this approach not only works for different types
of plate- and shell-structures, but also that it works with
different types of design variables such as ‘density’ type
variables used in topology optimization, or more traditional
ones such as the thickness of stiffeners. Although, obvi-
ously, topology optimization results in much larger sound
power reductions, the latter type of design variables have

1Although we do conduct an acoustic analysis in this work, it is carried
out merely to demonstrate the significant reduction in sound power
levels that result by using the proposed method.

also been used in this work since rib-stiffened shell struc-
tures may be easier to manufacture. Throughout this work,
we consider only exterior acoustic problems, and both the
structural and acoustic analysis are carried out using a finite
element-based approach.

Similar to the comparison carried out by Jog (2002b),
Du and Olhoff (2007) also compare the topologies obtained
by minimizing the sound power directly, and by minimiz-
ing the dynamic compliance (although their definition of
dynamic compliance is different than the one used by Jog
2002a). They found that for low frequencies the topologies
are virtually indistinguishable, while for higher frequencies,
the topologies are significantly different. However, even at
the higher frequencies, they found (see their Table 1) that
significant reductions in sound power levels (as compared
to the starting-design sound power values) are obtained by
merely minimizing the dynamic compliance, which pro-
vides further motivation for the approach followed in this
work. Thus, even though direct sound power minimization
may yield slightly better results, the indirect approach fol-
lowed here may prove to be far more cost effective and
simpler to use, since only a structural analysis is involved.

The outline of the remainder of this paper is as follows.
In Section 2, we briefly discuss the acoustic analysis and
optimization procedures that have been used. Sections 3
and 4 present the results using topology optimization and
different kinds of stiffeners, respectively. Section 5 presents
the conclusions.

2 Acoustic analysis and optimization formulations

2.1 Acoustic analysis

When the loading, and hence the pressure response is time
harmonic, i.e., when

p = p̃eiωt , (1)

where ω is the angular frequency, the wave equation reduces
to the Helmholtz equation,

∇2 p̃ + k2 p̃ = 0, (2)

where k = ω/c is acoustic wave number, and c is acous-
tic wave speed. In an exterior radiation problem, the normal
velocity vn is specified over part of the boundary Γr , while
over the part of the boundary Γ∞ where the domain is trun-
cated, appropriate absorbing conditions that approximate
the Sommerfeld radiation condition are specified. On Γr ,
the boundary condition is given by

∇ p̃ · n = −ρ f iωvn, (3)

where ρ f denotes the density of the acoustic fluid.
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We take Γ∞ to be a sphere of radius R throughout this
work, and use a spherical damper of the form (Bayliss and
Turkel 1980)

∇ p̃ · n = − p̃

R
− ik p̃. (4)

The finite element formulation is obtained by discretizing
the pressure field as

p̃ = N p p̂, (5)

∇ p̃ = B p p̂, (6)

where N p = [N1 N2 . . . ] is the standard Lagrange shape
function matrix, and

B p =

⎡
⎢⎢⎢⎢⎢⎣

∂ N1

∂x

∂ N2

∂x
. . .

∂ N1

∂y

∂ N2

∂y
. . .

∂ N1

∂z

∂ N2

∂z
. . .

⎤
⎥⎥⎥⎥⎥⎦

. (7)

The conventional finite element matrix formulation is
given by

[
K p − ω2 M p + iωC p

]
p̂ = f̂ p, (8)

where, with R written as |x|,

K p =
∫

Ω

BT
p B p dΩ +

∫
Γ∞

1

|x| NT
p N p dΓ,

M p =
∫

Ω

1

c2
NT

p N p dΩ,

C p =
∫

Γ∞

1

c
NT

p N p dΓ,

f̂ p = −
∫

Γr

ρ f iωvn NT
p dΓ.

Since only outgoing waves are present in exterior acous-
tic problems, we can devise a more efficient finite element
strategy by assuming the pressure to be of the form

p̃ = 1

|x|G(x)e−ik|x| (9)

where |x| = √
x · x, and G(x) is an unknown function

which is to be determined by an approximation strategy
such as the finite element method. Note that the above
form provides a bias towards outgoing waves, and also sat-
isfies the spherical damping condition given by (4). Since
the oscillatory part is separated out, the resulting finite ele-
ment formulation has to capture a relatively gently varying
function, and, thus, a much coarser mesh can be used.

Substituting (9) in (2) and using (4), the governing
differential equation and boundary condition for G(x), and
subsequently the finite element formulation, can be derived.
Discretizing G(x) as

G = N p ĝ, (10)

∇G = B p ĝ, (11)

with B p given by (7), we obtain the finite element equa-
tions as

[
K g + iωCg

]
ĝ = f̂ g, (12)

where

K g =
∫

Ω

[
BT

p B p + 2

|x|2 NT
p xT B p

]
dΩ

−
∫

Γr

x · n

|x|2 NT
p N p dΓ,

Cg =
∫

Ω

2

c |x| NT
p xT B p dΩ −

∫
Γr

x · n
c |x| NT

p N p dΓ,

f̂ g = −
∫

Γr

ρ f iωvn |x| eik|x|NT
p dΓ.

Note that there is no boundary term over the boundary Γ∞.
If the origin is not part of the acoustic domain, then the
above elements can be used directly in the vicinity of the
radiator, while if the origin is part of the acoustic domain,
then we use conventional elements in the vicinity of the
origin, and the proposed elements beyond that.

2.2 Objective function–dynamic compliance

The finite element structural equations under harmonic
loading f 0 cos ω̂t can be written as

[
K − ω̂2 M + iω̂C

]
(xr + i xs) = f 0,

where K , M and C are the stiffness, mass and damping
matrices, respectively. The displacement u is given by the
real part of (xr + i xs)eiω̂t , and the velocity v is given by
u̇. The dynamic compliance, defined as the average input
power over a cycle, is given by Jog (2002a)

Jd = − ω̂

2π

[∫ 2π/ω̂

0
( f 0 cos ω̂t) · v dt

]

= − ω̂

2
f 0 · xs

= 1

2
xs · K̄ xs

= −�(xs),



720 A.K. Nandy, C.S. Jog

where

K̄ =
(

K − ω̂2 M
)

C−1
(

K − ω̂2 M
)

+ ω̂2C,

and the functional � is given by

�( y) = 1

2
y · K̄ y + ω̂ y · f 0.

The optimization problem can be written as:
Find the vector of optimum design variables ρ∗, and the

vector of associated displacement-type variables xs , that
solves

max
ρ

min
y

�(ρ, y),

subject to the volume constraint

V =
N∑

i=1

(
ρi

ρs

)
Vi ≤ V̄ , (13)

where N is the number of elements, ρi , 0 < ρi ≤ 1, is
the density of the i th element, ρs is the value of the design
variables in the starting design; we use a value of ρs which
is equal to the volume fraction. Vi is the element volume
in the starting design, and V̄ is the specified volume. When
stiffeners are being used, ρi can be interpreted as a measure
of the thickness of the stiffeners, i.e.,

Thickness

Starting Thickness
= ρi

ρs
. (14)

With this interpretation, we multiply the Young modulus in
the stiffness matrix by (ρi/ρs)

3, and the density in the mass
matrix by ρi/ρs .

The inner subproblem in the above optimization prob-
lem solves the problem of finding the displacement-type
variables xs , for a given set of design variables, ρ, while
the outer subproblem solves the problem of minimizing the
power input. The sensitivity of the objective function with
respect to the design variables is given by

d�

dρi
= ω̂2

2

[
xs · ∂C

∂ρi
xs − xr · ∂C

∂ρi
xr

]

− ω̂xr ·
(

∂ K
∂ρi

− ω̂2 ∂ M
∂ρi

)
xs . (15)

Note that once the finite element analysis has been con-
ducted, the sensitivity computation is quite trivial due to the
explicit expression given above.

Since we consider only one constraint in this work, we
use the optimality criteria method. The design variables are

updated using the following modified optimality criterion
method (Ma et al. 1995):

(ρi )
new = (ρi )

old

[
ρs

dπ
dρi

+ μvi

(	 + μ) vi

]η

, i = 1 to N. (16)

The Lagrange multiplier 	 associated with the volume con-
straint is initially chosen arbitrarily. The parameter μ which
ensures that the numerator is positive is found using

μ =
⎧⎨
⎩

0 if all dπ
dρi

≥ 0,

−min

(
d�

dρi

)
ρs

vi
for

dπ

dρi
≤ 0.

(17)

The parameter η, which lies between 0 and 1, controls the
rate of convergence–a value of 0.5 is used in this work.
If the update process leads to density values greater than
1 or less than a minimum specified value (we have used
a value of 0.01), then it is assigned a value of 1 or 0.01.
Using the updated values of the design variables, V is cal-
culated using (13). The Lagrange multiplier 	 is modified
using a bisection method until the updated design satisfies
the volume constraint given by (13) within a specified tol-
erance. We compare these updated density variables with
the ones from the previous optimization cycle, and if the
maximum difference is less than a specified tolerance, the
process is considered to have converged, while otherwise,
the next analysis and optimization update is carried out. In
some cases, the μ value found using (17) leads to a very low
value of 	. In such a case, the value of μ is increased grad-
ually (say, by a factor of 1.5) until a reasonable value of 	

results.

3 Topology optimization

Because of the ease of meshing with tetrahedral elements,
both the structural and acoustic domains are meshed using
10 node tetrahedral elements. We use the Rayleigh (or
proportional) damping model whereby

C = αM + β K .

The constants α and β are given by

α = 2ω1ω2 (ξ1ω2 − ξ2ω1)

ω2
2 − ω2

1

,

β = 2 (ξ2ω2 − ξ1ω1)

ω2
2 − ω2

1

,

where ξ1 and ξ2 are modal damping parameters correspond-
ing to two distinct modes with natural frequencies ω1 and
ω2. ω1 is usually chosen to be the lowest natural frequency,
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Fig. 1 Geometry and loading for the plate topology optimization
problem

and ω2 is chosen to be the smallest natural frequency greater
than the highest loading frequency. Throughout the opti-
mization procedure, the damping parameters ξ1 and ξ2 are
assumed to be constant.

Since degenerate structures can result with topology opti-
mization (e.g., see the optimal topology shown in Fig. 2 in
Jog (2002a) in the case when the driving frequency is higher
than the first natural frequency), we optimize the topology
in a layer over a solid base plate or shell (alternatively, one
could choose a high value of ρmin). The thickness and mate-
rial properties of this layer are assumed to be the same as
that of the base structure.

3.1 Topology optimization of a square plate

The geometry and loading for the square plate are shown
in Fig. 1. The thickness of the base plate and top layer is
1 cm each. The Young modulus, Poisson ratio and den-
sity are E = 210 GPa, ν = 0.25, and ρ = 7800 kg/m3.
The loading at the center of the plate structure (point A) is
80 cos ω̂t N. All the four boundaries are simply supported.
The specified volume fraction is 40%. The optimal topology

Fig. 2 Optimal topology for plate structure

Fig. 3 Geometry and loading for shell topology optimization problem

is shown in Fig. 2. The input power reduces from 1.013 mW
to 0.379 mW, while the acoustic sound power reduces from
17.28 μW to 5.388 μW.

3.2 Topology optimization of a shell structure

The geometry and loading are as shown in Fig. 3. The inner
radius and thickness of the shell structure are 76.2 mm and
2 mm, respectively. The thickness of the base shell and
top layer is 2 mm each. The material properties are E =
71.1 GPa, ν = 0.31, and ρ = 2790 kg/m3. The loading at
the center of the shell structure is 0.8 cos ω̂t N. The specified
volume fraction is 40%. The two faces which are in con-
tact with the base are assumed to be clamped. The optimal
topology is shown in Fig. 4. The input power reduces from
0.229 μW to 0.091 μW, while the acoustic sound power
reduces from 0.727 × 10−4 μW to 0.2392 × 10−4 μW.

Since optimal topologies, such as the ones shown in
Figs. 2 and 4, may be difficult to manufacture, we now
consider the optimization of stiffeners (or liners) that are
attached to a base structure that is kept unchanged. The
thickness of the stiffeners, which, due to manufacturabil-
ity considerations is assumed to be constant over a given
stiffener, is taken to be the design variable.

Fig. 4 Optimal topology of shell structure
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4 Optimization with thickness of stiffeners as design
variables

Since the thickness of a given stiffener is assumed to be
constant, the number of design variables is equal to the
number of stiffeners. In order to meet this constraint of con-
stant thickness for a given stiffener, ‘linking’ of the design
variables associated with each stiffener is carried out, i.e.,
the sensitivity with respect to the thickness for a stiffener
is equal to the sum of the sensitivities with respect to the
thickness for each finite element in the stiffener.

With the aforementioned formulation, each ρi can have
any value between 0.01 and 1. However, since stiffeners
are typically manufactured with standard thicknesses, each
ρi value is rounded off to the nearest value in the set
(0, 0.2, 0.4, 0.6, 0.8, 1) (we have verified that this round-
ing procedure results in very small changes in the input
and acoustic powers as compared to the continuous case).
The corresponding thickness is obtained using (14). This
discrete model is then meshed, and a structural-acoustic
analysis is conducted to verify that the acoustic power has
reduced.

4.1 Cantilever beam problem

The dimension and boundary conditions are as shown in
Fig. 5. The material properties are E = 2.1 × 1011 N/m2,
ν = 0.25 and ρ = 7800 kg/m3. The loading at the free edge
is 1.5 cos ωt N/cm. The thickness of the base structure is 1
mm.

Stiffeners can be arranged either along the transverse or
longitudinal directions. In order to allow a comparison of
results, the dimension and number of liners have been cho-
sen in such a way that the total volume (i.e.,volume of the
base beam + volume of liners) is the same in both the trans-
verse and longitudinal cases (see Figs. 6a and b). In the
transverse case, the first liner is placed at a distance 0.004
m from the fixed end, and the inter-liner spacing is also the
same. Each liner has a dimension (width × length × thick-
ness) of 0.012 m × 0.006 m × 0.001 m. Thus, there are a
total of 10 liners.

w=0
θ  =0x

10 cm

2 cm

z

x

y

Fig. 5 Cantilever beam problem geometry

(a) Transverse Liner Model

(b) Longitudinal Stiffener Model

Fig. 6 Stiffener arrangements in the starting designs of the beam
(dimensions are in mm)

In the longitudinal case, the stiffeners are also assumed
to be fixed into the wall. The first stiffener is at a distance
of 0.0006 m from the symmetry plane. Each stiffener has a
dimension of 0.0018 m × 0.1 m × 0.001 m. In this way
4 stiffeners can be placed with an inter-liner spacing of
0.0012 m. The first three natural frequencies of the start-
ing transverse-stiffener model are 561, 3518 and 9871 rad/s,
while those for the starting longitudinal-stiffener model are
1033, 6461 and 18055 rad/s. The two loading frequencies
under which we carry out the optimization are 500 and 5000
rad/s. Note that the first driving frequency is less, while the
second one is greater, than the first natural frequency of both
the starting designs.

Table 1 shows the input and acoustic powers of the start-
ing and optimal designs for both geometries and for both
loading frequencies.

The results can be summarized as follows:

1. ω̂ = 500 rad/s: With the use of transverse stiffeners,
there is only a 10.26% reduction in input power, and
the optimized design is almost the same as the starting
design. However, with the use of longitudinal stiffeners,
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Table 1 Comparison of input
and acoustic sound powers for
different beam-stiffener models

Loading Base beam Transverse liners Longitudinal stiffeners

frequency Power Starting Optimized Starting Optimized

(rad/s) (mW) power (mW) power (mW) power (mW) power (mW)

Input power

500 3193.7 565.02 507.5 6.724 0.555

5000 8.584 5.527 1.373 11.229 2.226

Acoustic sound power

500 7.426 0.7726 0.6976 4.975 × 10−3 0.3085 × 10−3

5000 0.0404 0.0166 0.0037 0.1685 0.0861

there is a reduction of 92% in the input power. As seen
in Fig. 7, only two out of eight starting stiffeners, having
thickness four times of the starting thickness, remain.

2. ω̂ = 5000 rad/s: With the use of transverse stiffeners,
there is a 75.16% reduction in input power and 77.71%
reduction in sound power. The optimal design is shown
in Fig. 8. With the use of longitudinal stiffeners,
although there is an input-power reduction of 80.1%
with respect to the stiffened starting design, there is an

(a) Optimal design

(b) Optimization of power

Fig. 7 Optimal longitudinal-stiffener design and associated power
graph at driving frequency 500 rad/s; in this and subsequent figures,
the power values are normalized against their starting values shown in
parenthesis

increase in input power with respect to the base design
(see Table 1), thus, showing that longitudinal stiffeners
are inappropriate for this frequency.

Thus, the optimization strategy shows that longitudinal
stiffeners are appropriate for the case ω̂ = 500 rad/s,
while transverse stiffeners are appropriate for the case ω̂ =
5000 rad/s. Table 2 shows that the natural frequencies of the
starting design are pushed apart from the driving frequency
as a result of the optimization, thus, reducing the dynamic

(a) Optimal design

(b) Optimization of power

Fig. 8 Optimal transverse-stiffener design and associated power graph
at driving frequency 5000 rad/s
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Table 2 Effect of optimization on natural frequencies for different
beam-stiffener models

Design Natural frequencies (rad/s)

1st 2nd 3rd

Base beam

534.8 3362.0 9514.0

Transverse model

Starting 561 3518 9871

Optimized (500) 564 3523 9871

Optimized (5000) 415 2719 8449

Longitudinal model

Starting 1033 6461 18055

Optimized (500) 1877 11497 31014

Optimized (5000) 1815 10987 28947

compliance, and, indirectly, the radiated sound power. As
already noted, transverse stiffeners are ineffective for the
case ω̂ = 500 rad/s, and this is also seen from Table 2
where the natural frequencies move away from the driving
frequency by a small amount.

(a) Plate with stiffeners and the associated acoustic domain

(b) Details of the stiffener arrangement (dimensions
      are in mm)

Fig. 9 The acoustic domain and stiffener arrangement for the plate
problem

Table 3 Comparison of input and acoustic powers for different load-
ing frequencies

Loading frequency Starting Optimized

(rad/s) design design

Input power (mW)

2000 2.42 0.832

11000 7.38 4.68

Acoustic sound power (mW)

2000 0.0304 0.0077

11000 0.1146 0.089

4.2 Plate problem

The problem considered in Section 3 (see Fig. 1) is again
considered here, but now with the use of stiffeners as design
variables instead of topology optimization. Only one-fourth
of the domain is modeled due to symmetry considerations.
For conducting the acoustic analysis, inner and outer spher-
ical acoustic domains, having radii 0.3 and 0.5 m respec-
tively, are modelled over the plate top surface as shown
in Fig. 9a. Conventional and the ‘biased’ finite elements

(a) Optimal design

(b) Optimization of power

Fig. 10 Optimal design of stiffened plate and associated power graph
at driving frequency 2000 rad/s
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(a) Optimal design

(b) Optimization of power

Fig. 11 Optimal design of stiffened plate and associated power graph
at driving frequency 11000 rad/s

described in Section 2.1 are used in the inner and outer
domains, respectively.

The stiffeners shown in Fig. 9b have a cross-section
(thickness × width) of 1 × 1.5cm. The spacing between
them is 1 cm, and a total of 13 stiffeners are used for the
entire plate. The first three natural frequencies of the start-
ing design shown in Fig. 9b are 3948, 14196 and 24913
rad/s. The two different loading frequencies considered are
2000 and 11000 rad/s. The volume fraction for both loading
frequencies is taken to be 40%.

Table 3 presents the results for the input and acoustic
powers for the starting and optimized designs for both load-
ing frequencies. The optimal designs and associated power
graphs for the two frequencies are shown in Figs. 10 and 11.
In both cases, the central stiffener in the optimal design has
the maximum thickness.

Table 4 presents the effect of optimization on the nat-
ural frequencies. In both cases, the natural frequencies in
the neighborhood of the driving frequency are moved away
from the driving frequency, once again showing that the
dynamic compliance is an effective measure for reducing
vibrations.

Table 4 Effect of optimization on the natural frequencies for the plate-
stiffener problem

Design Natural frequencies (rad/s)

1st 2nd 3rd

Starting 3948 14196 24913

Optimized (2000) 4615 10468 10481

Optimized (11000) 4264 10481 10542

4.3 Shell problem

The shell problem described in Section 3 (see Fig. 3) is
revisited here in the context of stiffener optimization. As
in the beam example, we consider transverse and longitudi-
nal stiffeners (see Fig. 12). Once again, in order to facilitate
a comparison of results, the number of stiffeners and their
dimensions in the two cases are chosen such that the total
volume of the base shell and stiffeners is the same. The radii

(a) Longitudinal-stiffener model

(b) Transverse-stiffener model

Fig. 12 Starting design for the shell-stiffener optimization problem
(dimensions shown are in mm)
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Table 5 Comparison of input
and acoustic powers for
different shell stiffener models

Loading Base shell Transverse stiffeners Longitudinal stiffeners

frequency Power Starting Optimized Starting Optimized

(rad/s) (μW) power (μW) power (μW) power (μW) power (μW)

Input power

3000 8.475 0.942 0.412 6.08 5.97

9000 25.561 2362.5 2249.4 15.774 9.408

Acoustic sound power

3000 10.31 × 10−3 0.369 × 10−3 0.125 × 10−3 6.1 × 10−3 6 × 10−3

9000 1.448 218.87 208.45 0.783 0.556

of the inner and outer acoustic domains are chosen as 0.2 m
and 0.4 m, respectively. Due to symmetry, only one fourth
of the domain is modeled and meshed.

In the quarter domain, the dimensions of each longitu-
dinal stiffener along the r -θ -z directions are 0.002, 0.01
and 0.1524 m. The first stiffener is placed at a distance
0.005 m (along the arc) from the y = 0 symmetry plane.
Six stiffeners placed 0.01 m apart (see Fig. 12a) are used.
For the (quarter) transverse model, the dimensions along
the r -θ -z directions are 0.002, 0.1228 and 0.015 m. The

(a) Optimal design

(b) Optimization of power

Fig. 13 Optimized shell design with transverse stiffeners for driving
frequency 3000 rad/s

first stiffener is placed at a distance 0.0075 m from the z-
symmetry plane (along the length of shell), and a total of
five stiffeners are used with an inter-stiffener spacing of
0.015 m (see Fig. 12b).

The first three natural frequencies for the starting
transverse-stiffener model are 8874, 15962 and 24870 rad/s,
while those for the starting longitudinal-stiffener model are
5059, 14138 and 14487 rad/s. The two loading frequencies
considered are 3000 and 9000 rad/s. Table 5 presents a com-
parison of the input and acoustic sound powers for the two

(a) Optimal design

(b) Optimization of power

Fig. 14 Optimized shell design with longitudinal stiffeners for driving
frequency 9000 rad/s
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Table 6 Effect of optimization on natural frequencies for the trans-
verse and longitudinal-stiffener models

Design Natural frequencies (rad/s)

1st 2nd 3rd

Base shell

5145 13529 14942

Transverse model

Starting 8874 15962 24870

Optimized (3000) 9510 15115 19482

Optimized (9000) 8868 15959 24856

Longitudinal model

Starting 5059 14138 14487

Optimized (3000) 5088 14007 14455

Optimized (9000) 4374 14030 15854

models with those of the base shell and the starting design.
In contrast to the conclusions for the beam example, we find
in this case that the transverse stiffeners are more effective
than longitudinal ones for the lower frequency, and vice-
versa for the higher frequency. In fact, for the case ω̂ =
9000 rad/s, addition of transverse stiffeners worsens the per-
formance relative to the base shell by a factor of about 100!
Thus, the intuitive idea that ‘addition of stiffeners reduces
vibration levels’ can be dramatically wrong (depending on
the driving frequency for a given structure), and shows the
importance of using the dynamic compliance for measur-
ing vibration levels of the structure. The optimal designs
using transverse and longitudinal stiffeners for the lower
and higher driving frequencies, respectively, are shown in
Fig. 13 and 14. As can be seen from the associated power
graphs, they result in very significant reductions in both the
input and sound powers.

Table 6 shows the very significant shifting of the natural
frequencies away from the driving frequency with the use of
transverse stiffeners when ω̂ = 3000 rad/s, and longitudinal
ones when ω̂ = 9000 rad/s.

5 Conclusions

We now summarize the findings of this work.

1. In the case of light-fluid loaded structures, such as struc-
tures vibrating in air, we have shown in the case of
beam, plate and shell structures, that significant reduc-
tions in sound-power levels can result as an indirect
benefit of minimizing the dynamic compliance of the
structure, due to the fact that this process of optimiza-
tion moves the natural frequencies of the structure in the
vicinity of the driving frequency away from the driv-
ing frequency. Since only a structural analysis needs

to be conducted, and since analytical sensitivities are
used, the whole procedure is extremely efficient, and
bypasses the need for an acoustic, and the associ-
ated (and quite complicated) sensitivity analysis that
is required in minimizing acoustic performance mea-
sures (such as sound pressure levels or acoustic power)
directly.

2. Although it is well known that topology optimization
can result in significant reductions in a performance
functional, we have shown in this work that using alter-
native design variables such as stiffeners can also lead to
significant reductions in the dynamic compliance. This
is important from the viewpoint of manufacturability.

3. For a particular driving frequency, merely adding
stiffeners may worsen the situation relative to the base
structure, resulting in significantly increased vibration
levels. Thus, a systematic approach such as the one out-
lined in this work needs to be used, not only for finding
the optimal dimensions of the stiffeners, but also their
optimal placement.
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