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Abstract We demonstrate the use of multiple surrogates and
kriging believer for parallelizing surrogate-based contour
estimation. For the demonstration example, we reduce wall
clock time with minimal penalty in number of simulations.

Keywords Design and analysis of computer experiments -
Metamodeling - Gaussian process

1 Introduction

Surrogate use for constrained optimization and design under
uncertainty has become popular (Basudhar and Missoum
2010; Ranjan et al. 2008; Kuczera et al. 2010; Valdebenito
and Schuéller 2010; Picheny et al. 2010; Lee et al. 2011;
Dubourg et al. 2011). Surrogates fitted to constraints must
be most accurate near the contour demarcating the bound-
ary of the feasible domain (limit state). Thus, algorithms

This work was supported in part by U.S. Air Force Office of Scientific
Research grant FA9550-09-1-0153 and National Science Foundation
grant CMMI-0856431.

F. A. C. Viana (X)) - R. T. Haftka

Department of Mechanical and Aerospace Engineering,
University of Florida, Gainesville, FL 32611-6250, USA
e-mail: felipeacviana@ gmail.com

R. T. Haftka
e-mail: haftka@ufl.edu

L. T. Watson

Departments of Computer Science and Mathematics,
Virginia Polytechnic Institute & State University, Blacksburg,
VA 24061, USA

e-mail: Itw@cs.vt.edu

that prefentially sample near the limit state have been
developed—e.g., the efficient global reliability analysis
(EGRA) algorithm (Bichon et al. 2008). These algorithms
add one point at a time, not taking advantage of parallel
computing for concurrent constraint evaluations.

We propose two strategies for parallelizing the sam-
pling, both based on the efficient global optimization (EGO)
algorithm (Jones et al. 1998). The first is to fit multiple sur-
rogates to the data (Viana et al. 2010), each contributing one
sample point. The second is based on the “kriging believer”
approach (Ginsbourger et al. 2010), where after selecting a
new sample, kriging is updated using the estimated value as
if it were data.

2 Sequential sampling for contour estimation
with the Efficient Global Reliability Analysis
(EGRA) algorithm

Given the scalar constraint g(x) < g defining the limit state
g, EGRA (Bichon et al. 2008) defines the feasibility1 atxas

F(x) =max(e(x)— |§—G(x)|,0), H

where G(x) is the random variable representing the
unknown g(x), and €(x) measures the uncertainty in G (X).

F(x) is nonzero in a band near the limit state and
maximal where the uncertainty e(x) is largest. If G(x) is

! An alternative definition is found in Ranjan et al. (2008) and Ranjan
etal. (2011)
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modeled by a kriging surrogate (Gaussian process), then the
expectation of F(x) is easy to calculate? as

EGIF®)] = (@x) —8) [20wu) — du™) — ou7)]
—sX) [20w) —p™h) —Ppu7)]
+e[e@h) —o@)] ., @

where ® and ¢ are the standard Gaussian CDF and PDF,

respectlvely7 u = g_—g(x)’ u+ — g-’_e—_g(x)’ u+ —

~ s(X) s(X)

%—)g(x), 2(x) is the kriging prediction, s(x) is the
s(x

square root of the kriging prediction variance, and € =
as(x) (Bichon et al. 2008 suggested o = 2).

The efficient global reliability analysis (EGRA) algo-
rithm sequentially adds points to the data set in an effort
to improve the surrogate accuracy near the limit state. As
an adaptive sampling strategy, EGRA involves solving the
optimization problem of finding the best point to be sam-
pled. In each cycle, the next point to be sampled is the one
that maximizes® Eg[F (x)]. Kriging is updated after adding
the new point to the existing data set. EGRA iterates until a
convergence criterion is met (e.g., computational budget or
EG[F (x)] history).

3 Strategies for multiple point EGRA

The first strategy we propose to provide multiple points
per cycle is the multiple surrogate efficient global reliabil-
ity analysis (MSEGRA) algorithm. MSEGRA is inspired
by the multiple surrogate efficient global optimization algo-
rithm (Viana et al. 2010) and uses n surrogates to provide up
to n points per cycle. In each cycle, we maximize Eg[F (X)]
of each surrogate. MSEGRA could use different instances
of kriging (with different correlation functions). How-
ever, we illustrate the algorithm with surrogates based on
different techniques (radial basis function, linear Shepard,
and support vector regression).*

The second strategy uses the kriging believer heuristic
(Ginsbourger et al. 2010). In each cycle, n points are cre-
ated by sequentially maximizing Eg[F (x)] (n times). When

2That is Eg[F(x)] = f;fj(;")) [ex) — 1§ — G®™)|] fG(g)dg. Further
discussion and derivation can be found in Bichon (2010).

3Here, we used differential evolution as implemented in the companion
software of Price et al. (2005) to solve this optimization problem.
4This version runs EGRA with surrogates that might not furnish
uncertainty estimates. These estimates can certainly be provided by
sophisticated schemes, e.g. the Bayesian approach (Seok et al. 2002).
Here, we use the kriging uncertainty estimates with all other surro-
gates (Viana and Haftka 2009). Although theoretically less attractive,
this heuristic avoids the overhead of estimating the uncertainty for each
surrogate.
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a point is obtained, via maximization of Eg[F(x)], the krig-
ing prediction is “believed” (taken as new data) and kriging
is updated. In other words, the kriging believer replaces the
actual response at the chosen sites by the kriging prediction.
In practice, this makes the kriging uncertainty vanish at that
point—and thus also Eg[F(x)]. At the end of the cycle,
actual simulations are conducted at the n new points (which
are added to the data set). Kriging is then updated with the
augmented data set.

While kriging believer find samples in sequence, in
MSEGRA they can be found in parallel. Therefore, when
search for samples (and surrogate updates) dominates the
cost of function evaluations, MSEGRA may have some
gains of parallelization. When using multiple surrogates,
selection is done after sampling is finished (e.g., using
cross-validation (Viana et al. 2009)).

4 Numerical experiments

As test problem, we used the Branin-Hoo function (Dixon
and Szego6 1978)

5.1x%  5x g
g(X)=<X2— - 1+—]—6)

472 T

1
+ 10 (1 — —) cos(xy) + 10 < 50,
8w

—5<x1<10,and 0 < xp < 15. 3)

Table 1 Setup for the surrogates used

Surrogates Details

(1) krg Kriging: constant trend and Gaussian correlation.
Kriging parameters @ are optimized within
103 <6; <2p' i =1,...,d (pis the number
of points in the d-dimensional space) using 6; = p'/4
as initial guess.
(2) rbf-mq Radial basis functions: ‘mq’ and ‘g’ stand for
(3) rbf-g  multiquadric and Gaussian basis function,

respectively (both using spread = 2).

(4) shep Linear Shepard model: Subroutine LSHEP from
SHEPPACK (Thacker et al. 2010).
(5) svr Support vector regression: with Exponential kernel

function and e-insensitive loss function (e = 0
and C = 00).

The DACE (Lophaven et al. 2002), RBF (Jekabsons 2009), SURRO-
GATES (Viana 2011), and SVM (Gunn 1997) toolboxes were used to
run the kriging, radial basis function, linear Shepard, and support vec-
tor regression algorithms, respectively. In these implementations, only
kriging furnishes an uncertainty estimate. All other surrogates import
the kriging uncertainty



Sequential sampling for contour estimation with concurrent function evaluations 617

Table 2 Setup for the sequential sampling

Strategy Points per cycle Points added
EGRA 1 20
MSEGRA 5 100
EGRA-believer 5 100

The SURROGATES toolbox (Viana 2011) is used to run EGRA,
MSEGRA (with all surrogates of Table 1) and EGRA-believer for 20
cycles

The surrogates of Table 1 are initially fitted with ten
points. To average out the influence of the initial data, we
repeat the experiments with 100 different Latin hypercube
designs created with the MATLAB® function lhsdesign
(Mathworks contributors 2004) (set with “maxmin” and
1,000 iterations).

We run EGRA, MSEGRA and EGRA-believer for 20
cycles (details in Table 2) tracking the performance with
test points and the misclassification fraction (Basudhar and
Missoum 2010)

= 2ilgxi) =9 ®I1Ex) =g
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(b) Kriging model after 20
EGRA cycles (my = 0:01).
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(a) Kriging model fitted to
the initial points (my = 0:1).
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(c) Misclassification fraction history.

Fig. 1 EGRA for a single experimental design. Points added after 20
EGRA cycles reduce misclassification (4)

where (.) is the indicator function, @ represents the exclu-
sive disjunction (which is 1 if only one of the operands is
true and O otherwise), and piwst = 10,000 (created with
the lhsdesign set with “maxmin” and 50 iterations). m
indicates the fraction of the design space the surrogate
misclassifies as either feasible or infeasible.

5 Results and discussion

We illustrate the EGRA using a single data set. Figure la
shows kriging fitted to ten points (misclassification fraction
my = 0.1). Figure 1b illustrates results after 20 cycles.
The misclassification fraction is reduced to my = 0.01.
Figure 1c shows changes in misclassification fraction as
points are added one at a time.

Figure 2 shows the median of m ; with 100 experimental
designs for the three EGRA variants. Figure 2a shows that
while MSEGRA and EGRA-believer have approximately
my = 0.007 by the third cycle, EGRA only achieves that
mark by the 12th cycle. If function evaluations can be done
in parallel (concurrently), MSEGRA and EGRA-believer
save about ten cycles (many days for some applications).
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(a) Median of misclassification fraction vs
number of cycles.
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number of function evaluations
(b) Median of misclassification fraction vs
function evaluations.

Fig. 2 Median (over 100 experimental designs) of misclassification
fraction (4) for EGRA variants of Table 2. Five points per cycle
improve performance without a severe penalty in terms of number of
function evaluations
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Using multiple function evaluations per cycle is attractive
when the main concern is the number of cycles, rather than
number of simulations. However, one would expect a cost
associated with the number function evaluations. Figure 2b
shows the median of misclassification fraction versus the
number of function evaluations for all three algorithms. For
this problem, the penalty in increased number of evaluations
is small.

6 Summary and conclusions

We proposed two approaches for contour estimation with
concurrent function evaluations. The multiple surrogate
efficient global reliability analysis (MSEGRA) algorithm
uses a set of surrogates. EGRA-believer runs the kriging
believer heuristic. We demonstrated the two approaches
for an algebraic example and surrogates including kriging,
radial basis function, linear Shepard and support vector
regression. We found that

1. MSEGRA and EGRA-believer reduced substantially
the number of cycles required for convergence, and

2. the penalty in terms of total number of function evalua-
tions was less than a factor of two.

Results for the demonstration example need to be aug-
mented with other problems to provide a more solid estimate
of the savings associated with the procedure. In particular,
the optimal number of simultaneous evaluations needs to be
studied as function of the cost of function evaluations and
the benefit of short wall times. The multiple surrogate ver-
sion also allows one to select a single surrogate after the
sampling is concluded based on accuracy measures, such as
cross validation errors.
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