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Abstract This paper presents an approach for structural
static reanalysis with unchanged number of degrees of free-
dom. Preconditioned conjugate gradient method is employed,
and a new preconditioner is constructed by updating the
Cholesky factorization of the initial stiffness matrix with
little cost. The proposed method preserves the ease of imple-
mentation and significantly improves the quality of the
results. In particular, the accuracy of the approximate solu-
tions can adaptively be monitored. Numerical examples show
that the condition number of preconditioned system using
the new preconditioner is much smaller than that using the
initial stiffness matrix as the preconditioner. Therefore, the
fast convergence and accurate results can be obtained by the
proposed approach.

Keywords Structural static reanalysis · Preconditioned
conjugate gradient (PCG) method · Cholesky factorization ·
Rank-one modification

H. F. Liu
Department of Mathematics, School of Science,
Xi’an Jiaotong University, Xi’an 710049,
People’s Republic of China

B. S. Wu (B) · Z. G. Li
Department of Mechanics and Engineering Science,
School of Mathematics, Jilin University, Changchun
130012, People’s Republic of China
e-mail: wubaisheng@yahoo.com

C. W. Lim
Department of Building and Construction,
City University of Hong Kong,
Tat Chee Avenue, Kowloon, Hong Kong,
People’s Republic of China

1 Introduction

It is well known that structures are progressively modified
during the process of design or optimization. Each modifi-
cation requires a fresh analysis for displacements and
stresses, and the process involves repeated and tremendous
calculations. This results in extensive studies on structural
static reanalysis (Abu Kasim and Topping 1987; Barthelemy
and Haftka 1993). The purpose of static reanalysis is to uti-
lize the information of the original structure to accurately
evaluate structural responses under a given static load of
the structure after modifications without repeatedly solving
the complete system of the modified equilibrium equations
so that the computational cost can be significantly reduced
(Abu Kasim and Topping 1987).

To date, many static reanalysis methods have been deve-
loped, especially for the case of fixed layout structural modifi-
cations where the number of degrees of freedom (DOFs)
keeps unchanged. Generally speaking, these reanalysis
methods can be divided into the following two categories:
direct methods and approximate methods. Direct methods
give exact closed-form solutions and are suitable for cases
where the changes in design variables are large in magni-
tude, yet only affect a relative small number of elements.
Most of these methods update the inverse of the modified
stiffness matrix using Sherman-Morrison-Woodbury formu-
lae (Sherman and Morrison 1949; Woodbury 1950). Various
improvements were proposed and the readers are referred to
Akgün et al. (2001). Direct methods are inefficient when
there are changes in many elements of the stiffness matrix.

Approximate reanalysis methods (Kirsch 2002) provide
approximate solutions of the response of the modified struc-
ture using the information obtained during the full analysis
of the original structure. These methods are applicable to mo-
difications where the changes in design variables are small
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in magnitude, yet may significantly influence a large portion
or the entire stiffness matrix. Generally, the approximate
methods can be divided into the following four classes: local
approximations, global approximations, combined approxi-
mations (CA), and preconditioned conjugate gradient (PCG)
approximations. Local approximations (Kirsch 2002) (also
called single-point approximations) use the information ob-
tained at a single design point. Methods such as the Taylor
series expansion or the binomial series expansion about a
given design point belong to local approximations. These
methods are effective only in cases which involve small
changes in the design variables. For large changes in the
design variables, accuracy of the approximate results often
deteriorates and may become meaningless. Global approx-
imations (Kirsch 2002) (also called multipoint approxi-
mations) include polynomial fitting, response surface and
reduced basis methods. These methods are obtained by ana-
lyzing the structure at a number of design points, and they
are valid for the whole space (or, at least, large regions of it).
However, global approximations may require much com-
putational cost in problems with a large number of design
variables. The CA method attempts to give global quali-
ties to local approximations (Kirsch 2002). The idea of the
CA method is combining the reduced basis method with the
first terms of a series expansion. Similar to local approx-
imations, the calculations are based on results of a single
exact analysis. Each subsequent reanalysis requires the solu-
tion of a reduced system. The reduced system is further
uncoupled by using the Gram-Schmidt orthonormalization
procedure. However, the CA method requires calculating
and storing all basis vectors, forming the reduced stiffness
matrix or completing the Gram-Schmidt orthonormalization
for the basis vectors, etc. Certainly, these procedures will
increase the computational cost and may result in numerical
instability. The PCG method (Golub and Van Loan 1996;
Saad 1996) is the most critical ingredient in the development
of efficient solutions for challenging problems in engineer-
ing and science computation (Benzi 2002). It is the most
efficient method for structural static reanalysis among the
approximate methods mentioned above (Kirsch et al. 2002;
Wu and Li 2006; Li and Wu 2007; Wu et al. 2004). This
method converts the modified system of equilibrium equa-
tions into a related system with a small condition number so
that the total number of iterations required for solving the
system to within some specified tolerances is significantly
reduced. The procedure is easy to be implemented and only
a small number of vectors need to be preserved in the mem-
ory. The accuracy of approximate solutions can adaptively
be monitored. For fixed layout modifications of structural
static reanalysis, the equivalence between the PCG meth-
ods of using the initial stiffness matrix as the preconditioner
and the CA method has been proved (Kirsch et al. 2002;
Nair 2002). For large modifications, however, the PCG

method which utilizes the initial stiffness matrix as the
preconditioner may converge slowly. In order to acceler-
ate the solution convergence, the successive matrix inver-
sion method (Bae and Grandhi 2004; Bae et al. 2006a) is
exploited to construct the preconditioner (Bae et al. 2006b).
Since the incremental stiffness matrix is divided by columns
of interest, the preconditioner may be non-symmetric and
indefinite. For this reason, GMRES method (Saad and
Schultz 1986) or Bi-CGSTAB method (Van der Vorst 1992)
has to be employed for structural static reanalysis problems,
but breakdown or stagnation may take place.

In this paper, a new preconditioner is constructed for
fixed layout modifications with unchanged number of DOFs
by updating the Cholesky factorization of the original
stiffness matrix. Compared with the PCG method using the
initial stiffness matrix as the preconditioner, the condition
number for the proposed PCG method using the new pre-
conditioner is considerably reduced and fast convergence
can therefore be achieved.

2 Reanalysis problem formulation

Structural static reanalysis for the fixed layout modifications
with unchanged number of DOFs can be stated as follows
Kirsch (1991). Given an initial design, the corresponding
stiffness matrix is K0 ∈ Rn×n . The displacement vector y0

can be calculated by the equilibrium equations

K0y0 = R0 (1)

where R0 is the load vector. The stiffness matrix K0 is sym-
metric and positive definite (SPD). From the initial analysis,
the Cholesky factorization of K0 has already been known

K0 = L0D0LT
0 (2)

where L0 is a lower triangular matrix with unit elements
on the diagonal, D0 is a diagonal matrix, LT

0 denotes the
transpose of L0. Assume a change in the design so that the
modified stiffness matrix is

K = K0 + �K (3)

where �K is the change of the stiffness matrix due to a
change in the design and is called the incremental stiffness
matrix, and K ∈ Rn×n is a SPD matrix. The purpose of
structural static reanalysis is to obtain efficient and accu-
rate approximate solutions of the modified displacement
vector y without directly solving the modified equilibrium
equations

Ky = R (4)
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where R is the modified load vector which may be different
from the load vector of the initial design R0.

Once the displacement vector y is obtained, the stresses
can be readily determined by utilizing explicit stress-
displacement relations.

3 The construction of preconditioner for PCG methods

The PCG method (Golub and Van Loan 1996; Saad 1996)
will be applied to solve the present structural static reana-
lysis problem. The PCG method for fixed layout modifi-
cations (Kirsch 2002) is firstly reviewed, the rank-one
decompositions of the stiffness matrix and the incremental
stiffness matrix are then given, and a new preconditioner is
finally constructed in this section.

For the case of fixed layout modifications where the num-
ber of DOFs remains unchanged, the preconditioner may be
chosen as the initial stiffness matrix K0, and the reanalysis
procedure can be stated as follows Kirsch (2002), Golub and
Van Loan (1996).

Algorithm 1

Assume initial guess x = 0

k = 0

r = R

δ0 = rTr

while (
√

δk > ε)

Solve K0z = r for z

ρk+1 = rTz

k = k + 1

if k = 1

p = z

else

β = ρk

ρk−1
p = z + βp

end

w = Kp

α = ρk

pTw
x = x + αp

r = r − αw

δk = rTr

end

y = x

where ε is a specified error tolerance. It should be noted
that the solution of K0z = r is inexpensive by utilizing the
Cholesky factorization in (2).

The convergent rate of PCG method can be estimated by
the following inequality (Golub and Van Loan 1996):

∥
∥xk − x∗∥∥

2 ≤ 2
√

κ

(√
κ − 1√
κ + 1

)k
∥
∥x0 − x∗∥∥

2 (5)

where xk , x0 and x∗ represent the kth approximate solu-
tion, the initial guess and the exact solution, respectively,
κ is the spectral condition number of the coefficient matrix
of the preconditioned system, which is the ratio of maxi-
mum and minimum eigenvalues of its coefficient matrix.
From the estimation (5), it can be seen that the smaller
κ is, the faster the speed of the convergence of PCG
method is. Thus, the purpose of PCG method is to reduce
the spectral condition number κ so that the computa-
tional cost and the computational time can be significantly
reduced.

Note that each of the stiffness matrices K0 and K can be
decomposed into a series of rank-one matrices, the incre-
mental stiffness matrix �K = K − K0 can therefore be
written into sum of a series of rank-one matrices. The linear
isotropic three-dimensional beam elements will be used to
validate this decomposition.

For beam element mentioned above, the element stiffness
matrix [K(e)] is a sum of four matrices (Rao 2004):
the axial stiffness matrix [Kaxial], the bending stiffness
matrix [Kbending]xy in xy plane, the bending stiffness matrix
[Kbending]xz in xz plane, and the torsional stiffness matrix
[Ktorsion]:

[

K(e)
]

= [Kaxial] + [

Kbending
]

xy + [

Kbending
]

xz + [Ktorsion]

(6)

where

[Kaxial] = u1uT
1 , (7)

[Ktorsion] = u2uT
2 , (8)

[

Kbending
]

xy = u3uT
3 + u4uT

4 , (9)

[

Kbending
]

xz = u5uT
5 + u6uT

6 , (10)
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u1 =
√

E A

L

[

1 0 0 0 0 0 −1 0 0 0 0 0
]T

, (11)

u2 =
√

G J

L

[

0 0 0 1 0 0 0 0 0 −1 0 0
]T

, (12)

u3 = 1

L

√

E Iz

L

×[

0 2
√

3 0 0 0
√

3L 0 −2
√

3 0 0 0
√

3L
]T

, (13)

u4 =
√

E Iz

L

[

0 0 0 0 0 1 0 0 0 0 0 −1
]T

, (14)

u5 = 1

L

√

E Iy

L

×[

0 0 2
√

3 0 −√
3L 0 0 0 −2

√
3 0 −√

3L 0
]T

,

(15)

u6 =
√

E Iy

L

[

0 0 0 0 1 0 0 0 0 0 −1 0
]T

, (16)

and L denotes the length of beam element, E represents the
material elastic modulus, A is the element cross-sectional
area, Iz and Iy denote the moments of inertia about z axis
and y axis, respectively, G represents the material shear
modulus, J denotes the torsional moment of inertia of the
cross-sectional area.

Substituting (7)–(10) into (6), the decomposition of the
element stiffness matrix can be obtained:

[

K(e)
]

=
6

∑

i=1

ui ui
T (17)

For other elements such as truss, plate and shell etc., sim-
ilar decomposition of the element stiffness matrix can also
be established.

It is noted that the decomposition of the element stiffness
matrix of the linear isotropic three-dimensional beam given
in (17) is carried out with respect to the local xyz coordinate
system. After the transformation of the coordinates and the
extension of the size, all the element stiffness matrices are
employed to form the global stiffness matrix. Therefore, the

global stiffness matrix can be decomposed into a series of
rank-one matrices:

K =
p

∑

s=1

[

K
(e)

s

]

=
p

∑

s=1

6
∑

i=1

uisu
T
is, uis = GT

s RT
s uis (18)

where p is the total number of elements, Gs represents
the transforming matrix of the sth element which expands
the element stiffness matrix, by means of the connectiv-
ity relations, into part of the global stiffness matrix, Rs

denotes the matrix of the coordinates transformation of the
sth element, and uis (i = 1, · · · · · · , 6) is given in (11)–
(16). For the details of Gs and Rs , we refer readers to Rao
(2004). Application of displacement boundary conditions
yields the modified global stiffness matrix, which can also
be decomposed into a series of rank-one matrices.

In Gill et al. (1974), the algorithm of updating the
Cholesky factorization for a matrix following a rank-one
modification was presented. Assuming A ∈ Rn×n is a SPD
matrix, the Cholesky factorization of A is given by

A = LDLT (19)

where L is a unit lower triangular matrix and D is a diagonal
matrix. Further assume that A is formed by a symmetric
rank-one modification of matrix A, i.e.,

A = A + ηwwT (η ∈ R, η �= 0) (20)

where w ∈ Rn is a column vector. The Cholesky factoriza-
tion of A can be obtained by the following way instead of
directly factoring A

A = A + ηwwT

= L
(

D + ηppT)

LT
(21)

where Lp = w, and p is calculated by a forward substi-
tution. It is necessary to assume that A is SPD due to the
existence of Cholesky factorization. Note that D + ηppT

is SPD if and only if A is SPD. The Cholesky factoriza-

tion D + ηppT = L̂D̂L̂
T

can be obtained with little cost by
utilizing the following property: the subdiagonal elements
of every column of L̂ are multiples of the corresponding
elements of the vector p. The property can be proved by

induction. Explicitly forming the first column of L̂D̂L̂
T

, we
obtain the equations

d̂1 = d1 + ηp2
1 (22)
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L̂i1d̂1 = ηp1 pi , i = 2, · · · , n (23)

From (23), we have

L̂i1 = pi
ηp1

d̂1
, i = 2, · · · , n (24)

which shows that the subdiagonal elements of the first col-
umn of L̂ are same multiple of the corresponding elements
of p. Assume the first ( j–1)th columns are of the form

L̂ik = piβk, k = 1, · · · , j−1; i = k+1, · · · , n (25)

The j th column of L̂ can be determined by the following
equations

j−1
∑

i=1

L̂2
j i d̂i + d̂ j = d j + ηp2

j (26)

j−1
∑

i=1

L̂ j i L̂si d̂i + L̂s j d̂ j = ηp j ps, s = j + 1, · · · , n (27)

Substituting (25) into (26) and (27) gives

p2
j

j−1
∑

i=1

β2
i d̂i + d̂ j = d j + ηp2

j (28)

p j ps

j−1
∑

i=1

β2
i d̂i + L̂s j d̂ j = ηp j ps, s = j +1, · · · , n (29)

From the last equation, we have

L̂s j = ps
p j

d̂ j

⎛

⎝η −
j−1
∑

i=1

β2
i d̂i

⎞

⎠

= psβ j , s = j + 1, · · · , n (30)

where β j = p j

d̂ j

(

η −
j−1∑

i=1
β2

i d̂i

)

. Hence, the subdiagonal

elements of the j th column of L̂ are same multiple of the
corresponding elements of the vector p. Consequently, the
above property has been proved by induction. The property
can be also employed to calculate the product of L and L̂
inexpensively which is subsequently required:

Ā = LL̂D̂L̂TLT = L D L
T

(31)

where L = LL̂, D = D̂. The product of L and L̂ can be
obtained by the following Algorithm.

1. Define w(1) = w

2. For j = 1, . . . , n

for i = j + 1, . . . , n

w( j+1)
i = w( j)

i − p j Li j

Li j = Li j + β j w
( j+1)
i

end

End

Hence, the algorithm of updating the Cholesky factoriza-
tion for a matrix following a rank-one modification can be
given as follows, see Gill et al. (1974) for details.

Algorithm 2

1. Define η1 = η, w(1) = w.

2. For j = 1, 2, · · · , n, compute

p j = w
( j)
j

d j = d j + η j p2
j

β j = p jη j

d j

η j+1 = d jη j

d j
for r = j + 1, · · · , n

w( j+1)
r = w( j)

r − p j Lrj

Lr j = Lr j + β j w
( j+1)
r

end

End

The number of operations necessary to compute the
modified factorization using Algorithm 2 is 2n2 + O(n)

flops, and is roughly equal to the cost of a matrix-vector
product when n is large enough. For static reanalysis prob-
lem, components of the correction vector w usually contain
many “0”s and the stiffness matrix has a banded form. The
two properties can be applied to the algorithm of updating
the Cholesky factorization for the purpose of reducing the
computational cost. Let 2b + 1 be the bandwidth of A and t
satisfy the following relationship:

w = (0, · · · , 0, wt , · · · , wn)T , wt �= 0 (32)
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Then, the changes of elements of the matrix L only occur
in the lower right corner, which is a (n − t + 1) × (n −
t + 1) submatrix. Other elements remain unchanged and
are unnecessary to be re-calculated. The property of band
matrix can be easily utilized to reduce the computational
cost of the algorithm since some zero elements of the matrix
L can be determined before implementing the algorithm.
Owing to the above two properties, the number of opera-
tions of the algorithm can be reduced. Let f (n,t ,b) be the
number of the flops of the algorithm, then

f (n, t, b)

=
{

2b (2n −2t +2−b) + O (n − t +1) , n − t +1>b

2 (n − t +1)2 + O (n − t +1) , n − t +1≤b

(33)

Generally speaking, t and b usually satisfy t > 1 and b < n
and the computational cost for the algorithm of updating
the Cholesky factorization is less than the cost of a matrix-
vector product. The algorithm will be utilized to construct
the preconditioner for structural static reanalysis problems
mentioned above.

The construction of the preconditioner should be based
on the following principles (Van der Vorst 2003):

1. The preconditioner is a good approximation to the
coefficient matrix of the linear system in some sense.

2. The cost of the construction of the preconditioner is not
prohibitive.

3. The preconditioned system is much easier to solve than
the original system.

Based on the rules above, the choice of preconditioners
for fixed layout modifications of structures in this paper
is described as follows. The modification in a design opti-
mization is generally determined by sensitivity information.
For each iteration, the information for objective and con-
straint functions with respect to design variables is used
to improve the current design. Based on the sensitivity
information, major and minor contributing variables which
impose large and small modifications on the current struc-
tural design, respectively, can be determined. It is obvious
that the major contributing design variables have a large
influence on the structural behavior. The proposed method
will separate the effect of the major contributing design vari-
ables on the structural behavior at the coefficient matrix
level.

Based on the discussion above, the incremental stiffness
matrix can be written in the following form

�K = �K1 + �K2 (34)

where �K1 represents the contributions of elements where
changes in design variables are significant in magnitude,
yet only a relative small number of elements are involved,
�K2 denotes the contribution of elements where changes in
design variables are small in magnitude, but a relative large
number of elements are affected. The optimal division of
�K into �K1 and �K2 should further be studied. Note that
�K1 is only a part of the incremental stiffness matrix and it
can be decomposed into a series of rank-one matrices, while
�K2 does not need such a decomposition. In this paper,
K0 + �K1 is selected as the preconditioner of the PCG
method instead of K0. It is necessary to require that K0 +
�K1 is a SPD matrix. The proposed preconditioned matrix
K0 + �K1 approximates the modified stiffness matrix
K0 + �K than K0 better. Algorithm 2 is applied to
obtain the Cholesky factorization of K0 + �K1 by con-
sidering a rank-one modification each time without directly
factoring K0 + �K1. Therefore, the cost of construct-
ing the preconditioner is inexpensive. Once the Cholesky
factorization of K0 + �K1 is obtained, the precondi-
tioner system with coefficient matrix K0 + �K1 can be
solved with little cost. Finally, replacing the original pre-
conditioner K0 by the present K0 + �K1 in Algorithm
1, we can calculate the displacements of the modified
structure.

4 Numerical examples

In this section, three examples are presented to illustrate
the efficiency of the proposed method. An error tolerance
ε of 10−6 is fixed in the three examples. The proposed
method is compared with the PCG method of using the ini-
tial stiffness matrix K0 as the preconditioner, since the latter
is the most efficient method for fixed layout modifications
of structural static reanalysis among the approximate meth-
ods. The computations of Example 1 are completed on a PC:
Pentium 4, quad-core CPU with 2.66 GHz, 2 GB RAM.
MATLAB 7.2.0.232(R2006a) is used. The computations
of Examples 2 and 3 are completed on a PC: Pentium 4,
3.2 GHz CPU, 2 GB RAM. The compiler is Compaq Visual
Fortran 6.5.

Example 1 Consider a truss structure as shown in Fig. 1.
The elasticity modulus of material is E = 2 × 1011 Pa, the
cross-sectional area of all the elements is 1 × 10−3 m2.
The length and width of the structure are 2 m and 1 m,
respectively. The structure has 6 nodes, where 4 nodes
are located at the vertices of a 2 m × 1 m rectangle, the
remaining 2 nodes are located at the midpoints of its long
edges. The eight unknowns are the horizontal and vertical
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displacements at nodes 3, 4, 5 and 6, since nodes 1 and 2
are constrained. Nodes 3 and 5 are subjected to the vertical

loads, P1 = P2 = 2 × 103 N. The stiffness matrix K0 of the
structure is given as follows:

K0 = 108 ×

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

5.41421356 0 0 0 −2 0 −0.70710678 −0.70710678
0 3.41421356 0 −2 0 0 −0.70710678 −0.70710678
0 0 4 0 0 0 −2 0
0 −2 0 2 0 0 0 0

−2 0 0 0 2 0 0 0
0 0 0 0 0 2 0 −2

−0.70710678 −0.70710678 −2 0 0 0 2.70710678 0.70710678
−0.70710678 −0.70710678 0 0 0 −2 0.70710678 2.70710678

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

The load vector of the structure is P = [0 −2000 0
0 0 −2000 0 0]T. For a modification, the cross-sectional
areas of four elements are increased from originally 1 ×
10−3 m2 to 1.1 × 10−3 m2, and one truss element with

cross-sectional area 1.1 × 10−3 m2 is added, as shown in
Fig. 2. The stiffness matrix K of the modified structure can
be given as follows:

K = 108×

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

5.68492424 0.07071068 0 0 −2.2 0 −0.77781746 −0.77781746
0.07071068 3.48492424 0 −2 0 0 −0.77781746 −0.77781746

0 0 4.97781745 −0.77781746 −0.77781746 0.77781746 −2.2 0
0 −2 −0.77781746 2.77781745 0.77781746 −0.77781746 0 0

−2.2 0 −0.77781746 0.77781746 2.97781745 −0.77781746 0 0
0 0 0.77781746 −0.77781746 −0.77781746 2.97781745 0 −2.2

−0.77781746 −0.77781746 −2.2 0 0 0 2.97781745 0.77781746
−0.77781746 −0.77781746 0 0 0 −2.2 0.77781746 2.97781745

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

The incremental stiffness matrix �K is

	K = 108×

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.27071068 0.07071068 0 0 −0.2 0 −0.07071068 −0.07071068
0.07071068 0.07071068 0 0 0 0 −0.07071068 −0.07071068

0 0 0.97781745 −0.77781746 −0.77781746 0.77781746 −0.2 0
0 0 −0.77781746 0.77781745 0.77781746 −0.77781746 0 0

−0.2 0 −0.77781746 0.77781746 0.97781745 −0.77781746 0 0
0 0 0.77781746 −0.77781746 −0.77781746 0.97781745 0 −0.2

−0.07071068 −0.07071068 −0.2 0 0 0 0.27071067 0.07071068
−0.07071068 −0.07071068 0 0 0 −0.2 0.07071068 0.27071067

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

The matrix can be divided into two parts. One is the
stiffness matrix of the newly added truss element and the
other is the change in the stiffness matrix that results from an
increase of truss cross-sectional areas. It is obvious that the

number of newly added element is one and the new element
contributes significantly to the incremental stiffness matrix.
Thus, the incremental stiffness matrix resulting from the
newly added element is chosen as 	K1:

	K1 = 108 ×

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0.77781745 −0.77781746 −0.77781746 0.77781746 0 0
0 0 −0.77781746 0.77781745 0.77781746 −0.77781746 0 0
0 0 −0.77781746 0.77781746 0.77781745 −0.77781746 0 0
0 0 0.77781746 −0.77781746 −0.77781746 0.77781745 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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Fig. 1 A truss structure
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Fig. 2 A truss structure after modification

Table 1 Computational costs of the modified truss structure

Preconditioner Iters CCCPs Matvecs CN

K0 4 0 8 3.741449

K0 + �K1 3 1 7 1.100000

Table 2 Computational times of the modified truss structure

Preconditioner Time1 Time2 The total time

K0 0 s 0.00147 s 0.00147 s

K0 + �K1 0.00012 s 0.00110 s 0.00122 s

 10h 1

2h  2   

Fig. 3 An offshore oil platform

It can be easily verified that 	K1 = uuT, where u =
8.81939601 × 103 × [

0 0 1 −1 −1 1 0 0
]T

.
Thus, the Cholesky factorization of K0 + 	K1 can be

obtained by executing Algorithm 2 one time. For the prob-
lem, the computational cost of Algorithm 2 is roughly equal

Fig. 4 The original ribs at the bottom of the platform
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Fig. 5 The modified ribs at the bottom of the platform

Table 3 Computational costs of the modified offshore oil platform

Preconditioner Iters CCCPs Matvecs CN

K0 210 0 420 2.618476 × 105

K0 + �K1 9 168 186 1.587963

Table 4 Computational times of the modified offshore oil platform

Preconditioner Time1 Time2 The total time

K0 0 s 11.36094 s 11.36094 s

K0 + �K1 0.58125 s 0.48906 s 1.07031 s

to that of a matrix-vector product. For simplicity, the com-
putational cost of implementing Algorithm 2 one time is
regarded as the same as that of a matrix-vector product.
Once the Cholesky factorization of K0 +	K1 is obtained, it
is selected as the preconditioner of the PCG methods instead
of K0. The computational cost and the corresponding
condition numbers are presented in Table 1, where Iters

indicate the number of iterations of the PCG methods for
an error tolerance ε = 10−6, CCCPs represent the com-
putational cost of constructing the preconditioner which
is counted in terms of the number of matrix-vector mul-
tiplications, Matvecs denote the number of matrix-vector
multiplications and CN is the abbreviation of the condition
number.

Note that implementing each iteration of the PCG meth-
ods requires solving the preconditioner system once and
one matrix-vector multiplication. The computational cost of
solving the preconditioned system is equal to that of one
matrix-vector multiplication when the Cholesky factoriza-
tion of the preconditioner has already been known. Thus,
the cost of an iteration of PCG methods is roughly equal to
that of two matrix-vector multiplications.

It can be observed from Table 1 that the condition num-
ber of using K0 + 	K1 as preconditioner is smaller than
that of using K0 as preconditioner. Therefore, the number
of iterations of using K0 + 	K1 as preconditioner is fewer
than that of using K0 as preconditioner. However, some
extra computational cost is required to obtain the Cholesky
factorization of the new preconditioner. Integrating these
calculations altogether, one may find that the total compu-
tational cost of using K0 + 	K1 as the preconditioner is
less than that of using K0 when the same error tolerance
ε = 10−6 is specified.

The computational times for the modified truss structure
are given in Table 2. Here, Time1 denotes the computational
time of constructing the preconditioner, Time2 represents
the computational time for executing the PCG iterations.
Note that the Cholesky factorization of K0 has already been
known from the initial analysis, thus the computational time
of constructing the preconditioner is 0 s when K0 is used as
the preconditioner.

It is observed from Table 2 that the total computational
time of using K0 + 	K1 as the preconditioner is less than
that of using K0 when the same error tolerance ε = 10−6 is
specified.

Fig. 6 The original
suspension-arch bridge
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Fig. 7 The original ribs under
the bridge

Example 2 Consider an offshore oil platform as shown in
Fig. 3. The material modulus of elasticity is E = 2×1011 Pa
and the Poisson’s ratio is υ = 0.3. The height of the struc-
ture is 162 m where h1 = 15 m and h2 = 6 m. The bottom
of the structure is constrained by 6 nodes at boundary of
a 24 m × 16 m rectangle where 4 nodes are located at the
vertices of the rectangle, the remaining 2 nodes are located
at the midpoints of its long edges. Twelve pipes are con-
nected to the boundaries of two 12 m × 8 m rectangles
where 8 nodes are located at the vertices of these rectangles,
the other 4 nodes are located at the midpoints of their long
sides. The length, width and thickness of the two rectangu-
lar platforms are 16 m, 12 m and 3 × 10−2 m, respectively.
The offshore oil platform is discretized into a finite ele-
ment model with 396 elements and 192 nodes. Every node
has 6 DOFs except the 6 constrained nodes and the total
number of DOFs of the structure is 1116. Three kinds of
elements have been employed, they include: 40 beam ele-
ments, 96 plate elements and 260 pipe elements. The beam
cross-section is 0.3 m × 0.3 m. There are three pipe cross-
section sizes: outer radius 0.6 m, thickness 3 × 10−2 m;
outer radius 0.4 m, thickness 2 × 10−2 m; and outer radius
0.15 m, thickness 0.1 m. Every node of the structure is sub-
jected to a vertical load: for nodes of the two platforms
P1 = 5 × 104 N, for the remaining nodes P2 = 3 × 104 N.
In order to reinforce the two platforms (modification), one
rib with 0.3 m × 0.3 m cross-section is added at the bottom
of every platform, respectively, and the thickness of the two
platforms is increased from 3×10−2 m to 3.5×10−2 m. The
newly added ribs have been discretized into beam elements.
Thus, 28 beam elements are added in the structure and the
thickness of all plate elements is changed. Figures 4 and 5
show the initial ribs and the ribs after modifications at the
bottom of the platform, respectively.

The incremental stiffness matrix is composed of stiffness
matrices of newly added beam elements and those resulting
from the increase of platform thickness. It is obvious that the
number of newly added beam elements is small and its con-
tribution to incremental stiffness matrix is great. Thus, the
part of incremental stiffness matrix resulting from the newly
added beam elements is chosen as 	K1, while that from
a change of platform thickness is viewed as 	K2. Since
	K1 can easily be decomposed into a series of rank-one
matrices, the Cholesky factorization of K0 + 	K1 can be
obtained by executing 168 times Algorithm 2. For the prob-
lem, the computational cost of Algorithm 2 is usually less
than the cost of a matrix-vector product. For simplicity, the
computational cost of implementing Algorithm 2 one time
is regarded as the same as that of a matrix-vector product.
Once the Cholesky factorization of K0 + 	K1 is obtained,
the linear system with coefficient matrix K0 + 	K1 is
easy to be solved and it can be employed as a precon-
ditioner instead of K0. The computational costs and the
corresponding condition numbers are listed in Table 3, see
Example 1 for the meanings of the column headers in the
table.

For the detailed process of calculating the computational
cost, see Example 1. It can be observed from Table 3 that
the condition number of using K0 + 	K1 as preconditioner
is much smaller than that of using K0 as preconditioner.
Therefore, the number of iterations of using K0 + 	K1

as preconditioner is fewer than that of using K0 as pre-
conditioner. However, some extra computational cost is
required to obtain the Cholesky factorization of the new
preconditioner.

The computational time for the modified offshore oil
platform is given in Table 4. For the meanings of Time1
and Time2 in Table 4, see Example 1.

Fig. 8 The modified ribs under
the bridge
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It is obvious from Table 4 that the total computational
time of using K0 + 	K1 as the preconditioner is less than
that of using K0 when the same error tolerance ε = 10−6 is
specified.

Example 3 The suspension-arch bridge shown in Fig. 6 is
studied in this example. The length and width of the bridge
are 140 m and 20 m, respectively. The distance from the
support points to the bridge surface is 10 m and the height
of the arch is 20 m. A finite element model is established to
simulate the bridge under a given load. The model has 356
elements and 355 nodes. Every node has 6 DOFs except
the 4 constrained nodes and the total number of DOFs of
the structure is 2106. It includes three kinds of elements:
8 truss elements, 236 beam elements and 112 plate ele-
ments. The modulus of elasticity for the beam and truss is
E1 = 2 × 1011 Pa and the modulus of elasticity for the plate
is E2 = 3 × 1010 Pa. The Poisson’s ratios for the beam
and plate are υ1 = 0.3 and υ2 = 0.2, respectively. The
cross-section of the beam is 1 m × 1 m. The cross-sectional
area of the truss members is 0.0314 m2 and the thickness
of the plate is 0.3 m. Every node of the bridge surface is
subjected to a vertical load P = 1 × 104 N. To reinforce
the bridge (modification), the cross-section of all beams has
been increased from originally 1 m × 1 m to 1.1 m × 1.1 m,
and one new 1.1 m × 1.1 m beam has been added at the bot-
tom of the bridge surface. The new added beam has been
discretized into 20 elements and the total number of the
elements for the modified structure is 376. Figures 7 and
8 show the initial ribs and the ribs after modifications at
the bottom of the suspension-arch bridge, respectively. It
is obvious that the number of newly added beam elements
is small and they contribute significantly to the incremen-
tal stiffness matrix. Thus, the incremental stiffness matrix
resulting from newly added beam elements is chosen as
	K1, while that from a change of cross-sections of all orig-
inal beams is viewed as 	K2. Since 	K1 can easily be
decomposed into a series of rank-one matrices, Algorithm
2 is implemented 120 times to obtain the Cholesky fac-
torization of K0 + 	K1. Then, K0 + 	K1 is selected as
the preconditioner of the PCG methods instead of K0. The
computational cost is presented in Table 5.

Table 5 Computational costs of the modified suspension-arch bridge

Preconditioner Iters CCCPs Matvecs CN

K0 1133 0 2266 3.888313 × 106

K0 + �K1 11 120 142 1.464102

Table 6 Computational times of the modified suspension-arch bridge

Preconditioner Time 1 Time 2 The total time

K0 0 s 241.60000 s 241.60000 s

K0 + �K1 0.52188 s 2.350000 s 2.87188 s

From Table 5, it can be seen that the total computa-
tional cost of using K0 + 	K1 is less than that of using
the preconditioner K0 when an error tolerance ε = 10−6

is given. The computational times using preconditioners K0

and K0 + 	K1 are shown in Table 6. It is obvious from
Table 6 that the computational time of using K0 + 	K1 as
the preconditioner is much less than that of using K0.

5 Conclusions

An efficient PCG approach for structural static reanalysis
with unchanged number of degrees of freedom has been
presented. The approach is based on a new preconditioner
constructed by updating the Cholesky factorization of the
original stiffness matrix. The proposed procedure not only
preserves the ease of implementation but also requires little
computational cost. Fast convergences in numerical exam-
ples have been observed. The precondition technique is
specially efficient in dealing with cases where small parts of
elements are significantly modified while their major parts
are slightly modified. In particular, when the number of the
modified elements is small, a direct method can be estab-
lished by utilizing the procedure of the construction of the
preconditioner. Furthermore, once the Cholesky factoriza-
tion of the modified stiffness matrix involving major con-
tributing variables only is calculated, it can be used as the
initial information when the structure is further modified.
The future work is to generalize the proposed approach to
structural static reanalysis problems with varying number
of DOFs and to combine it with structural optimization.
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