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Abstract In this article, the optimization problem of
designing transonic airfoil sections is solved using a frame-
work based on a multi-objective optimizer and surrogate
models for the objective functions and constraints. The com-
puted Pareto-optimal set includes solutions that provide a
trade-off between maximizing the lift-to-drag ratio during
cruise and minimizing the trailing edge noise during the
aircraft’s approach to landing. The optimization problem
was solved using a recently developed multi-objective opti-
mizer, which is based on swarm intelligence. Additional
computational intelligence tools, e.g., artificial neural net-
works, were utilized to create surrogate models of the objec-
tive functions and constraints. The results demonstrate the
effectiveness and efficiency of the proposed optimization
framework when applied to simulation-based engineering
design optimization problems.

Keywords Shape optimization · Transonic airfoil design ·
Multi-objective optimization · Surrogate models ·
Swarm intelligence

1 Introduction

The design of transonic airfoils for civil aviation applica-
tions has been a major engineering challenge in the last fifty
years. The design process has been aided significantly by
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improvements in experimental methods and facilities, which
led initially to the design of supercritical airfoils (Whitcomb
1974). These airfoils have good transonic behavior while
maintaining acceptable performance at lower speeds. A
description of all the development phases of the supercritical
airfoils can be found in Harris (1990).

Advances in computational methods applicable to tran-
sonic flow (Jameson 1974; Drela and Giles 1987) have
allowed engineers to analyze and evaluate candidate designs
without the need for prototype construction and subse-
quent testing in the wind tunnel. Furthermore, the recent
development of aerodynamic shape optimization techniques
has provided designers with a tool to obtain airfoil shapes
with the desirable performance characteristics. One of the
first such methods, which is based on control theory, was
developed by Jameson (1988). Recently, researchers have
attempted to perform aerodynamic shape optimization using
evolutionary algorithms (Jones et al. 1998; Giannakoglou
2002).

Aircraft noise has been a major source of noise pollu-
tion since the beginning of the utilization of jet engines
in civil transport aircraft. The aircraft noise produced dur-
ing take-off and landing causes considerable nuisance to
the population living near the airports. Airframe noise,
engine noise, and the noise generated due to the inter-
ference between engine and airframe comprise the main
components of aircraft noise. In recent years, statutory lim-
its regarding noise levels have been set by the International
Civil Aviation Organization (ICAO 2008). At the same time,
considerable research effort has been made towards reduc-
ing aircraft noise. For example, the introduction of the
high-bypass ratio turbofan engine has significantly reduced
the amount of engine radiated noise.

Airframe noise is generated through the interaction of
turbulent flows with sharp-edged bodies (Howe 1978), e.g.,
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lifting surfaces. The highest levels of airframe noise occur
while the aircraft is in the final approach to landing (Lilley
2001). In this case, the landing gear and high lift devices,
e.g., trailing edge flaps and leading edge slats, are the main
sources of airframe noise. The trailing edge noise is another
source of airframe noise; it becomes the dominant source
for a clean wing configuration, i.e., an aircraft with the high
lift devices and the landing gear stowed.

If one of the design requirements is to obviate the need
for high lift devices, the minimization of the trailing edge
noise becomes a significant part of the aerodynamic shape
optimization problem. The prediction of the trailing edge
noise can be done through the computation of the far-
field noise intensity per unit volume of acoustic sources at
the trailing edge of a wing using the equation derived in
Goldstein (1976) and later modified in Lilley (2001). A
formulation which is easy to implement in a simulation-
based optimization problem was later derived in Hosder
et al. (2010).

In the current paper, the aerodynamic and aeroacous-
tic shape optimization problem is treated using a multi-
objective approach. The goal is to design a transonic airfoil
with low drag during cruise and low levels of trailing edge
noise during the approach to landing. The results presented
in Hosder et al. (2010) and Jouhaud et al. (2007) reveal
that there is a trade-off between the aforementioned objec-
tives, thus, there is no single globally optimal solution.
For this reason, it was decided to solve this optimization
problem using a multi-objective approach. During the last
fifteen years, various design methodologies have been uti-
lized by researchers to solve aerospace design optimization
problems (Sobieszczanski-Sobieski and Haftka 1997; Jones
et al. 1998; Leifsson et al. 2006).

The flow analysis was performed using computational
fluid dynamics (CFD). The CFD results obtained at specific
points within the design variable space were subsequently
utilized in order to build surrogate models for the objective
functions and constraints of the optimization problem. In
this way, the computational time required to solve the prob-
lem could be significantly reduced (Yang et al. 2002; Jin
2005; Wang et al. 2011).

The main objective of the current paper is to demon-
strate the effectiveness and efficiency of an optimization
framework based on swarm intelligence and surrogate mod-
els when applied to a multi-objective optimization problem.
The general definition of a multi-objective optimization
problem, the multi-objective optimizer, and the surrogate
models utilized in this research project are discussed in
Section 2. The theoretical background of the trailing edge
noise calculation is presented in Section 3. The shape
optimization procedure is described in Section 4. The opti-
mization results are presented in Section 5, in addition
to a comparison between selected Pareto-optimal airfoil

sections. Finally, conclusions and some directions for future
research are provided in Section 6.

2 Components of multi-objective design
optimization framework

2.1 Multi-objective optimization

The general multi-objective optimization problem, assum-
ing minimization of the objective functions, can be stated as
follows:

Minimize fi (x), i = 1, ..., I (1)

subject to gm(x) ≤ 0, m = 1, ..., M (2)

hn(x) = 0, n = 1, ..., N (3)

where

x (x1, x2, ..., xD), x jl ≤ x j ≤ x ju, j = 1, ..., D.

In unconstrained multi-objective optimization problems, a
solution vector A dominates another solution vector B,
if and only if the following two conditions for Pareto
dominance are satisfied:

• The objective vector that corresponds to solution A (xA)

is no worse than the objective vector that corresponds to
solution B (xB) in all objectives.

• Solution A is strictly better than solution B in at least
one objective.

If xA is not dominated by any other solution, it is called a
Pareto-optimal solution. The corresponding objective func-
tion vector belongs to the set of vectors that comprise
the Pareto front. In constrained problems, xA constraint-
dominates xB if any of the following conditions are satisfied
(Deb 2001):

• Both xA and xB are feasible and xA dominates xB ,
based on the aforementioned conditions for Pareto dom-
inance.

• Both xA and xB are infeasible but xA has a smaller
constraint violation.

• Solution xA is feasible and solution xB is not.

The constraints listed in (2) and (3) can have a significant
impact on the Pareto front and the corresponding Pareto-
optimal set. Parts of the unconstrained Pareto front, or in
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some cases the entire unconstrained Pareto front, might
become infeasible in the presence of constraints. Further-
more, constraints might be active in different regions of
the search space. A multi-objective optimizer needs to be
capable of handling the additional search requirements of a
constrained optimization problem.

2.2 Description of the ACMOPSO algorithm

The Pareto-optimal solutions of the multi-objective design
problem were obtained using the Adaptive Coevolutionary
Multi-Objective Particle Swarm Optimizer (ACMOPSO),
which was presented in Kotinis (2011). ACMOPSO
explores the design variable space using the search mech-
anism of PSO combined with random mutation. The swarm
is divided into a number of equi-sized smaller swarms at
the end of each algorithmic iteration; each of these swarms
focuses on a specific region of the computed Pareto front,
which consists of the non-dominated solutions stored in an
external archive. The latter is divided into a number of seg-
ments equal to the number of swarms. Two members of
the Pareto-optimal set within each segment are randomly
selected to act as leaders of the kth swarm particle for each
design variable j :

vk j (t + 1) = w · vk j (t) + c1 · (xndlr1, j (t) − xk j (t))

+ c1 · rand j (0, 1) · (xndlr2, j (t) − xk j (t)) (4)

where vk j is the movement of particle k within the range of
j , xndlr1, j (t) and xndlr2, j (t) are the j th position coordinates
of the two randomly selected leaders, xk j (t) is the corre-
sponding j th position coordinate of the kth particle, w is the
inertia weight, c1 is the social coefficient, and rand j (0,1) is
a random number uniformly distributed in (0,1). The kth
particle’s position is updated in every iteration (t + 1) by
adding the velocity vector over a single time increment to
the current position vector:

xk(t + 1) = xk(t) + vk(t + 1) (5)

This procedure is followed for 80% of the swarm parti-
cles. The remaining particles are substituted with randomly
selected non-dominated archived solutions, which are sub-
sequently mutated with a mutation rate pmut = 10%. The
inclusion of a mutation operator, combined with particle
substitution, enhances the algorithm’s capability to solve
problems with multiple local Pareto fronts, and also coun-
terbalances the high selective pressure due to the utiliza-
tion of a Pareto ranking procedure to manage the external
archive. It needs to be mentioned that if the number of non-
dominated solutions exceeds the nominal capacity of the
archive, the crowding distance operator (Deb et al. 2000)
is employed to maintain the solutions that reside in the least
crowded areas.

The values of the algorithmic parameters, w and c1,
are adapted on-line for each swarm using the feedback
provided by two metrics. The first metric takes into
account the effectiveness of each swarm in producing
new non-dominated solutions during the current iteration.
The second metric represents the overall ability of the
swarms to produce solutions capable of entering the external
archive.

In the current research project, a parallelized ver-
sion of ACMOPSO with five swarms was utilized. It
was shown in Kotinis (2011) that the utilization of five
swarms, in most cases, results in very fast convergence to
the true Pareto front. The parallelization process, which
involves the computation of the objective functions and con-
straints, was performed using the OpenMP (Chapman et
al. 2008) interface, and specifically a work-sharing par-
allel do construct. The results reported in Kotinis (2011)
regarding an application of the parallelized version of
ACMOPSO to an engineering design optimization prob-
lem demonstrated near-linear speedup and high parallel
efficiency.

2.3 Surrogate models

The approximation of the objective functions and con-
straints can lead to significant savings in terms of both
time and resources utilized in the optimization process.
However, it is of the utmost importance to provide sur-
rogate models that are able to generalize well, i.e., pro-
vide accurate predictions when presented with previously
unseen data. It was decided to compare the effectiveness
of different surrogate models for each objective and con-
straint function of the optimization problem, first, and then
select the most appropriate model for each function. For
this purpose, the University of Waikato’s open source data
mining software WEKA (Hall et al. 2009) was utilized.
WEKA provides the user with the capability to evaluate
and compare different metamodeling techniques through a
very user-friendly interface. Three such techniques were
selected and utilized: Artificial neural networks (ANNs),
support vector regression (SVR), and linear regression. The
effectiveness of each metamodel was assessed using ten-
fold cross-validation. A brief description of ANNs and
SVR is provided in the following paragraphs. The selec-
tion of the aforementioned techniques (ANNs and SVR)
was based on a preliminary extensive investigation, which
showed that these two methods had the best overall per-
formance in a number of benchmark problems. Linear
regression was also tested and utilized wherever its perfor-
mance was better or even comparable to ANNs and SVR,
as it provides a significantly less complex metamodeling
solution.
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2.3.1 Artif icial neural networks

Artificial neural networks have been used extensively across
many fields of scientific research. A review of ANN appli-
cations and history can be found in Eberhart and Shi (2007).
The primary reason for the use of ANNs is their universal
approximation capability given an adequate number of hid-
den nodes. It was proven in Cybenko (1989) that a network
with linear output nodes and a single hidden layer of sig-
moid nodes is sufficient for uniform approximation of any
continuous function in the unit hypercube. Although, there
are many types and topologies of ANNs, it was decided to
utilize a feedforward fully-connected network consisting of
an input layer, a single hidden layer with varying number
of sigmoid neurons (nodes), and a linear output layer. A
typical feedforward ANN is shown in Fig. 1. The ANNs
were trained in WEKA using the backpropagation algorithm
(Rumelhart et al. 1986) for a fixed number of epochs (train-
ing iterations). Assuming I input nodes, J hidden nodes,
a bias node added to the input (I + 1) and to the hid-
den layer (J + 1), and a single output node, the equation
that provides the network prediction y can be written as
follows:

y =
J+1∑

j=1

w j f

(
I+1∑

i=1

u ji xi

)
(6)

where u ji is the weight of the connection between input
node xi and hidden node h j , w j is the weight of the con-
nection between hidden node h j and the output node, and f

Input Layer Hidden Layer Output Layer

Fig. 1 Feedforward ANN with a single hidden layer

is the activation function, which for this specific application
corresponds to the sigmoid function:

f (x) = 1

1 + e−x
(7)

2.3.2 Support vector regression

Support vector regression (SVR) is a machine learning
technique based on the support vector machine (SVM) algo-
rithm developed at AT&T Bell Laboratories by Vapnik and
co-workers (Boser et al. 1992). SVR utilizes a nonlinear
mapping function, typically based on kernels, in order to
map the data from the input variable space to the feature
space. Given a data set of training points (features), the
algorithm attempts to provide a regression function where
the predicted values of the training points are within a
specified distance ε from the actual values and also the func-
tion is as flat as possible. Because such a function might
not exist, slack variables are introduced to the problem to
deal with distances larger than ε. The trade-off between
flatness and the amount up to which deviations larger than
ε are accepted is controlled by a parameter C . A review
of SVR can be found in Smola and Schölkopf (2004). The
SVR model utilized in WEKA is based on the algorithm
presented in Shevade et al. (2000). For the purpose of the
current research, the mapping was performed using a kernel
based on the universal Pearson VII function (PUK) as sug-
gested in Üstün et al. (2006). The SVR prediction is given
through a regression function f as follows:

f (x) =
n∑

i=1

(ai − a∗
i )k(x, xi ) + b (8)

where ai and a∗
i are the Lagrange multipliers, 0 ≤ ai ,

a∗
i ≤ C , and xi is a training point. The PUK kernel function

k(x, xi ) is given by the equation:

k(x, xi ) = 1[
1 +

(
2
√

‖x−xi ‖2
√

21/ω−1
σ

)2
]ω (9)

where the parameters σ and ω control the shape of the
function.

3 Trailing edge noise metric

The basis for the noise metric formulation is the expression
derived in (Goldstein 1976). For low Mach numbers, the
far-field noise intensity per unit volume of acoustic sources
is formulated as:

I = ρ∞
2π3c2∞

ω0u4
0 cos3 β

D(θ, φ)

H2
(10)
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Fig. 2 Parameters used
in the definition of the
far-field noise intensity

where ρ∞ is the freestream density, c∞ is the freestream
speed of sound, ω0 is the characteristic source frequency,
u0 is the characteristic velocity scale of turbulence, H is
the distance to the ground (receiver), β is the trailing edge
sweep angle, D(θ ,φ) is the directivity term, and θ and φ are
the polar and azimuthal directivity angles (shown in Fig. 2),
respectively.

The directivity term is equal to 2sin2(θ /2)sinφ. For most
conventional wings the sweep angle term can be neglected.
Assuming a constant value of the Strouhal relation for tur-
bulent flow ((ω0
0)/u0), as proposed in (Lilley 2001), we
can rewrite (10) as:

I ≈ ρ∞
2π3c2∞


−1
0 u5

0
D(θ, φ)

H2
(11)

where 
0 is the characteristic length scale of turbulence.
Using the following expression (Hosder et al. 2010) for a
correlation volume per unit span at the trailing edge:

dV = 
2
0dy (12)

we can integrate (11) over the wing span, b, to obtain the
expression for the noise intensity indicator:

IN I = ρ∞
2π3c2∞

b∫

0


0u5
0

D(θ, φ)

H2
dy (13)

The noise intensity metric that was proposed in Hosder et
al. (2010) models the characteristic turbulent velocity at
a spanwise location of the wing trailing edge as equal to
the maximum value of the turbulent kinetic energy (TKE)
profile at that particular spanwise location:

u0 = max
(√

T K E(n)
)

(14)

where n is the direction normal to the wing surface. Sim-
ilarly, the characteristic length scale of turbulence at a
spanwise location can be modeled as:


0 = max
(√

T K E(n)
)

ω
(15)

where ω is the turbulence frequency (specific dissipation
rate of TKE) observed at the position of maximum TKE at
the spanwise location under consideration. The noise inten-
sity indicator can be scaled using a reference value of the
noise intensity (Ire f = 10−12 W/m2) in order to obtain the
following metric for the trailing edge noise (in dB):

N M(dB) = 10 log10
INI

Iref
= 120 + 10 log10 IN I (16)

It needs to be mentioned that only the upper surface of
the airfoil was taken into consideration when computing
the noise metric, as the contribution of the lower surface
boundary layer to the far-field radiated trailing edge noise
is generally minimal; this was also confirmed by the CFD
results.

4 Multi-objective shape optimization of transonic
airfoil sections

The flowchart of the optimization framework is depicted in
Fig. 3. In the following sections, each step is explained and
details regarding its implementation are provided.

4.1 Selection of operating points

The aircraft is assumed to be at an altitude of 120 m in the
approach condition with the receiver located directly below
the aircraft, where the noise certification measurements are
taken (ICAO 2008). The directivity angles in (13) are set
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Fig. 3 Flowchart of optimization framework

equal to 90◦. Therefore H = 120 m and D(θ ,ψ) is equal to
unity. During cruise the corresponding altitude is 35,000 ft.
The mean aerodynamic chord (mac) value was assumed to
be equal to 5.67 m, a value typical of transport aircraft. The
Mach number was set equal to 0.80 and 0.215 for cruise and
approach, respectively. The corresponding Reynolds num-
ber values, based on mac, are 35.6·106 and 28.1·106. The

angle of attack was assumed to be equal to 2.5◦ during cruise
and 10◦ during approach.

4.2 Formulation of the multi-objective
optimization problem

The goal is to find the airfoil sections that correspond to
the solution of the following shape optimization problem:
Minimize the noise metric given in (16) during approach
(A) and maximize the lift-to-drag ratio during cruise
(C). Constraints were imposed on the pitching moment
coefficient value during cruise, the lift coefficient value dur-
ing approach, and the maximum thickness-to-chord ratio of
the section. It needs to be mentioned that the RAE-2822
airfoil was used as a baseline design in the optimization
procedure. The reason for selecting a subsonic airfoil as a
baseline design, i.e., instead of a supercritical airfoil, was
to avoid biasing the search towards shapes with good per-
formance in one objective. The problem was formulated as
follows:

Minimize : f1(x) = (N M)A (17)

Maximize f2(x) = (CL/CD)C (18)

subject to : g1(x) = (CM@0.25c)C ≥ −0.11 (19)

g2(x) = (CL)A ≥ 1.10 (20)

g3(x) = (t/c)max ≥ 0.105 (21)

where CL is the lift coefficient, CD is the drag coefficient,
CM@0.25c is the pitching moment coefficient about the
quarter-chord position, and t /cis the thickness ratio of the
section. The vector of fourteen design variables, x, is
defined as:

x (x1, x2, ..., x14), x jl ≤ x j ≤ x ju, j = 1, ..., 14.

Fig. 4 Control points of the cubic B-splines
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Table 1 Values of x-coordinate of control points

xl2 0.000 xu2 0.000

xl3 0.100 xu3 0.100

xl4 0.250 xu4 0.300

xl5 0.400 xu5 0.500

xl6 0.650 xu6 0.700

xl7 0.850 xu7 0.900

xl8 0.950 xu8 0.950

4.3 Parameterization of the airfoil shape

The airfoil shape was parameterized using two cubic B-
splines; one for the upper and one for the lower airfoil
surface. The B-splines are generated by utilizing nine con-
trol points for each surface as shown in Fig. 4. Assuming
that the chord length is equal to one, the first control point,
which is common to both surfaces, is placed on the lead-
ing edge with coordinates (0,0). The last control point is
placed on the trailing edge with coordinates (1,0). Seven
additional control points are placed at intermediate positions
on each surface. The x-coordinates of these points, which
are listed in Table 1, are kept fixed and the y-coordinates are
allowed to vary in the ranges displayed in Table 2. The y-
coordinates of the fourteen control points form the vector of
design variables x; the ranges listed in Table 2 correspond to
the boundary constraints of the optimization problem. These
ranges were based on the values that were used to generate
the baseline design (RAE-2822 airfoil).

Table 2 Ranges of y-coordinate of control points

Design variable Lower limit Upper limit

yl2 −0.0230 −0.0110

yl3 −0.0515 −0.0375

yl4 −0.0660 −0.0490

yl5 −0.0750 −0.0560

yl6 −0.0400 −0.0230

yl7 −0.0075 −0.0045

yl8 −0.0020 0.0050

yu2 0.0110 0.0230

yu3 0.0375 0.0515

yu4 0.0530 0.0700

yu5 0.0560 0.0750

yu6 0.0430 0.0600

yu7 0.0140 0.0260

yu8 0.0055 0.0125

4.4 Design of experiments

The optimization problem was solved using surrogate mod-
els of the objective functions and constraints. These models
were developed and trained using a data set of points
selected from within the design variable space. For this
purpose, an experimental design methodology was utilized.
Uniform design (Fang 1980; Fang et al. 2000), which
is a kind of fractional factorial design, has been shown
(Simpson et al. 2001) to be a very effective sampling strat-
egy even when small data sets are available. Therefore, it
was decided to use a U90(914) uniform design for 90 runs
with fourteen factors (design variables) each having nine
discrete levels. Given the continuous nature of the design
variables, each one of the ranges listed in Table 2 was dis-
cretized into nine equi-spaced values. The 90 airfoil sections
were analyzed using the ANSYS R© FLUENT R© software as
described in Section 4.5. The results were combined to
create five datasets; one for each objective and constraint
function.

4.5 Analysis of performance of airfoil sections

The analysis of the steady flow around the airfoils in
both cruise and approach conditions was performed in
FLUENT R©, a general-purpose CFD software, at the oper-
ating points described in Section 4.2. The flow domain is
shown in Fig. 5. A C-type grid was created with 54,000
cells (540 cells in the streamwise direction and 100 cells
in the normal direction). The airfoil shapes that were gen-
erated using B-splines were analyzed by first creating files
containing discrete data points on the airfoil surface. These
files were imported into GAMBIT R©, a general-purpose pre-
processor for CFD analysis, where the mesh of the flow
domain was created. The flow analysis was performed by
solving the governing equations for mass, momentum, and
energy using the density-based implicit numerical solver of
FLUENT R©, which is based on a finite volume method with
the flow properties calculated at the cell centers. The con-
vection terms were discretized using a second-order upwind
scheme and the diffusion terms with a central-differencing
scheme. Gradients were computed using a least squares cell-
based method. The inviscid fluxes were calculated using the
Roe flux-difference splitting scheme. Turbulence was mod-
eled using the shear-stress transport (SST) model (Menter
1994). At least ten cells in the direction normal to the airfoil
surface were placed within the turbulent boundary layer in
order to provide adequate flow resolution in that region. A
pressure far-field boundary condition was imposed on the
flow boundaries, where the turbulence intensity value was
set equal to 0.1%.

The CFD simulations for each airfoil were terminated
when the scaled residuals of all the governing equations
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Fig. 5 Flow domain for CFD analysis

had been reduced by at least five orders of magnitude,
provided that the lift and drag coefficients had also con-
verged. The values of the lift, drag, and pitching moment
coefficients were recorded and the profiles of the turbu-
lent kinetic energy and the specific dissipation rate at the
trailing edge were extracted. These were subsequently ana-
lyzed to find the location of maximum turbulent kinetic
energy and the value of the specific dissipation rate at that
location.

4.6 Surrogate models

Using the results obtained from the flow analysis, surro-
gate models for the objective and constraint functions were
generated in WEKA. Instead of using a single type of surro-
gate model, it was decided to evaluate a number of different
models for each function. Specifically, the models that
were included in the evaluation process were the following:
Feedforward ANNs with a single hidden layer and number
of hidden nodes varying between two and ten, SVR with
the PUK kernel, and linear regression. The model evalua-
tion was performed using ten-fold cross-validation on the
data set of 90 points using the root mean squared error as
the evaluation metric. Different parameter values for each
model were tested. The surrogate model with the best per-
formance for each function was utilized by the optimization
algorithm.

4.7 Running the ACMOPSO optimizer

ACMOPSO was run for 100 iterations per optimization
cycle using five swarms with twenty particles each. At
the end of the first cycle, as shown in Fig. 3, five points
were selected from the computed Pareto front and the cor-
responding airfoil shapes were generated using B-splines
and subsequently analyzed in FLUENT R©. The results were
added to the existing data set and the surrogate models were
reconstructed. This iterative process was repeated until the
computed Pareto front showed minimal changes between
two successive iterations. A total of five optimization cycles
was required in order to obtain the final Pareto front.

Table 3 Comparison between
surrogate models Objective/constraint Surrogate model RMSE

(NM)A ANN (5 hidden nodes, 500 training epochs) 0.6721

SVR (PUK kernel, C = 2.1, σ = 4.1, ω = 2.5) 1.6171

Linear regression 1.8378

(CL/CD)C ANN (5 hidden nodes, 500 training epochs) 0.8638

SVR (PUK kernel, C = 2.5, σ = 5.0, ω = 1.0) 0.7526

Linear regression 1.1084

(CM@0.25c)C ANN (4 hidden nodes, 500 training epochs) 0.0059

SVR (PUK kernel, C = 2.0, σ = 2.7, ω = 1.6) 0.0049

Linear regression 0.0049

(CL )A ANN (2 hidden nodes, 500 training epochs) 0.0130

SVR (PUK kernel, C = 1.5, σ = 4.0, ω = 2.0) 0.0214

Linear regression 0.0225

t /c ANN (4 hidden nodes, 500 training epochs) 0.0008

SVR (PUK kernel, C = 1.0, σ = 5.0, ω = 2.0) 0.0005

Linear regression 0.0005
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Fig. 6 Multi-objective
optimization results

5 Multi-objective shape optimization results
and discussion

The representation in the objective function space of a sub-
set of the initial data set of 90 sample points is depicted
in Fig. 6. Some of these points correspond to infeasible
solutions. The Pareto front consists of only three members.
During the iterative optimization process, a total of twenty
new points, as shown in Fig. 6, were evaluated and added to
the existing data set. In the same figure, the final Pareto
front is also depicted. The effectiveness of the iterative
optimization procedure is demonstrated by the fact that the
optimal values in both objectives, i.e., at the extreme points
on the Pareto front, were significantly improved compared
to the solutions in the initial data set. The surrogate mod-
els that were used to approximate the objective functions
enabled the optimizer to converge to the final Pareto front
in only five iterations. Even though, there is no guarantee
that this is the global Pareto front, the improvement in the
objective function values is definitely noteworthy consider-
ing that it was achieved with only twenty additional problem

evaluations. A comparison between the surrogate models
that were tested and the corresponding optimal parameter
values is displayed in Table 3. The optimal parameter val-
ues were obtained manually. Minimization of the root mean
squared error (RMSE) value, which was obtained using
ten-fold cross-validation, was utilized as the selection cri-
terion. The RMSE values of the models that were selected
as surrogates of the problem objectives/constraints in order
to produce the final Pareto front are listed in bold font.

5.1 Comparison between two Pareto-optimal solutions

It was decided to compare two solutions from the final
Pareto-optimal set. The first Pareto-optimal solution (air-
foil #1) that was selected was the computed solution with
the maximum lift-to-drag ratio value. The second Pareto-
optimal solution (airfoil #2) was chosen from the ‘knee’
section, which contains solutions that provide a balanced
trade-off between high lift-to-drag ratio and low noise met-
ric values. The shapes of the airfoil sections are displayed
in Fig. 7. The main geometric characteristics of the two

Fig. 7 Pareto-optimal airfoil
section #1 (solid line)
and #2 (dashed line)
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Table 4 Maximum thickness
(tmax ) and camber ( fmax ) of
two Pareto-optimal airfoils

Airfoil section tmax /c Position of tmax /c (% c) f max /c Position of f max /c (% c)

#1 0.1068 41.7 0.0127 77.1

#2 0.1064 39.8 0.0093 85.1

Table 5 Aerodynamic
performance of two
Pareto-optimal airfoils

Cruise (α = 2.5◦)

Airfoil section CL CD CM Machmax (CL /CD)ac (CL /CD)pr

#1 0.5749 0.0225 −0.0729 1.32 25.55 25.48

#2 0.5785 0.0286 −0.0658 1.36 20.23 20.27

Approach (α = 10◦)

Airfoil section CL CD TKEmax (J/kg) ω (1/s) NMac (dB) NMpr (dB)

#1 1.119 0.0194 42.16 874.9 30.02 30.03

#2 1.121 0.0183 33.32 950.3 26.61 26.63

Fig. 8 Pressure coefficient
distribution of two
Pareto-optimal airfoil sections
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airfoil sections are listed in Table 4, while their aerody-
namic performance characteristics are presented in Table 5.
It can be observed from Table 5 that the predicted objec-
tive function values (pr) for these two points on the Pareto
front are very close to the actual values (ac), i.e., the val-
ues obtained from a flow analysis in FLUENT R©; a fact that
demonstrates the good prediction capabilities of the utilized
surrogate models.

Both solutions have a thickness ratio close to the mini-
mum allowable value, however, the position of maximum
thickness of airfoil #2 is located closer to the leading edge
(a distance equal to approximately two per cent of the chord
length) than the corresponding location on airfoil #1. The
curvature on the upper surface of airfoil #1, particularly in
the mid-chord region, is significantly smaller than the cur-
vature on the upper surface of airfoil #2, as shown in Fig. 7.
Both solutions have a relatively large leading edge radius.
Small curvature along the upper surface, combined with a
large leading edge radius, is an important design element of
the shape of supercritical airfoils.

A comparison of the corresponding pressure coefficient
distributions, displayed in Fig. 8, reveals that the shock
strength in the case of airfoil #1 is much weaker than in
the case of airfoil #2. Furthermore, the shock wave occurs
further aft in the case of airfoil #1. The maximum Mach
number value of the flow over airfoil #1 is 1.32, as shown
in Table 5, compared to a maximum Mach number value of
1.36 for airfoil #2. Even though, the lift coefficient values
during cruise are not significantly different, airfoil #1 has
a significantly lower drag coefficient value, which can be
attributed to the aforementioned observations regarding the
shock wave and the maximum Mach number value.

The values of the noise metric for the two airfoils are also
listed in Table 5. Airfoil #2 has a significantly smaller value
than airfoil #1 due to the low value of maximum turbulent
kinetic energy at the trailing edge of the former airfoil. The
value of the drag coefficient is also lower for airfoil #2 in
the approach condition.

6 Conclusions

A multi-objective particle swarm optimizer (ACMOPSO)
was utilized for the shape optimization of transonic air-
foil sections. The computed Pareto-optimal set includes
solutions that provide a trade-off between maximizing the
lift-to-drag ratio during cruise and minimizing the trailing
edge noise during the approach to landing. Five iterations
of the optimization process were performed. Significant

improvements in both objectives were observed in the val-
ues of the final Pareto front compared to the front obtained
after the initial sampling of the design variable space. The
utilization of various metamodels and the selection of the
most appropriate for each objective and constraint function
resulted in very accurate predictions and, thus, in a smaller
number of required problem evaluations.

The inclusion of robustness in the shape optimization
problem objectives, in addition to methods capable of
increasing the level of automation within the optimiza-
tion framework will be investigated in future research
projects.
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