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Abstract A minimum cost problem for ultimate strength
in bending of rectangular reinforced concrete sections is
investigated. The design variables are section depth and
steel reinforcement areas. State equations are those of
equilibrium with compression depth as state variable. The
Kuhn-Tucker optimality conditions are solved analytically
and formulas for nondimensional design and state vari-
ables are obtained in four cases: Two singly-reinforced
solutions with either maximum allowable depth or smaller;
Two doubly-reinforced with maximum allowable depth and
either maximum compression depth or smaller. Each of the
solutions is optimal in a region of the plane ‘nondimensional
bending moment’–‘cost-effectiveness ratio of concrete to
steel’. The formulas are for an arbitrary concrete consti-
tutive law with tension cut-off and are specialized for the
parabola-rectangle law of Eurocode 2.

Keywords Reinforced concrete · Section design ·
Reinforcement optimization · Bending moment ·
Eurocode 2

1 Introduction

The sizing of reinforced concrete (RC) beam and skeletal
structures often falls to the design of rectangular sections
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for ultimate strength. For some bending moment (the case
considered in this paper), the designer must specify the
section dimensions (if not specified already by the archi-
tectural design) and the reinforcement area, or areas if a
doubly-reinforced section is required. Construction codes
and related literature are available for this task, in the guise
of simple formulas, tables and abacuses. The designer, how-
ever, is left with an infinity of feasible designs with little
help in the choice of the most economical, other than gen-
eral guidelines and his own experience, and may have to
compute and compare a large number of them. This situ-
ation becomes more acute when there is a rapid variation
of raw materials costs, which has been the case of steel
bar worldwide in recent years, and the designs must adapt
accordingly for economy sake. A key point of the design
codes is the constitutive law of concrete, such as parabola-
rectangle, bilinear, etc., and simplifications such as the
rectangular stress block. The same code may—as is the case
of Eurocode 2 (EC2 2001)—allow for different concrete
laws.

A number of researchers have investigated the optimal
design of concrete sections in bending without resort-
ing to computer implementation of numerical methods.
Al-Salloum and Siddiqi (1994) obtain close-form solutions
for optimal depth and steel ratio of a singly-reinforced
rectangular RC section in terms of material costs (includ-
ing formwork) and strength ratios. Constraints are flexural
strength and bounds on reinforcement area of the American
Concrete Institute (ACI) code and a maximum allowable
section depth. Five combinations of active side constraints
are analyzed. Samman and Erbatur (1995) present an itera-
tive procedure for economical design of RC beams compli-
ant with the ACI code with various support conditions where
section depth and steel ratios are determined. Equilibrium
equations with rectangular stress block for singly-reinforced
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rectangular sections are used. The effect of steel and con-
crete costs is shown in plots of optimum steel ratios against
costs ratio. Ceranic and Frier (2000) present formulas for
the optimal depth and steel reinforcement for both singly-
and doubly-reinforced RC rectangular sections. Analysis
is by means of limit state with rectangular stress block
and the objective function is the cost of materials. Design
curves for materials cost and strength parameters are shown.
Barros et al. (2005) investigate the cost optimization of rect-
angular RC sections using the non-linear MC90 equation,
showing that, for this constitutive relation, the maximum
strain in concrete lies between the strain for peak stress and
the ultimate strain. Explicit formulas for optimal section
depth, traction armature area and, in the doubly-reinforced
case, compression/traction armature ratio, are presented.
In a parallel development (Barros et al. 2011) investigate
the minimal cost problem of rectangular sections in bend-
ing using the parabola-rectangle law of EC2 (1991). The
objective function is raw materials cost and the design
variables are section depth and steel reinforcement areas;
the state variables are traction armature strain and maxi-
mum strain in concrete. With the constraint on steel strain
of the 1991 version of the code 7 solutions are obtained:
1 doubly-reinforced and 2 singly-reinforced with concrete
rupture, analogous to those presented here; 4 additional
singly-reinforced solutions with steel rupture (2) and simul-
taneous rupture of steel and concrete (2). The equivalent of
the optimality map shown here in Fig. 2 is partitioned in 6
regions.

Other investigators addressed the optimal design of RC
beams and frames, including structural analysis in the for-
mulation. Kanagasundaram and Karihaloo (1990) treat the
optimal design of beams, simply supported and multi-span,
and columns as a non-linear programming problem. Objec-
tive function is the cost of materials and formwork and the
constraints are strength at critical sections, serviceability
and other, conforming to Australian Standard AS3600-
1988. Design variables are section depth and width and steel
reinforcement, either uniform or different for each span.
Non-linear minimization algorithms, developed for struc-
tural optimization, are used to exemplify the formulation.
Adamu and Karihaloo (1995) state the minimum cost design
of RC frames as a discrete optimization of structures com-
posed of a number of beam and column elements. The cost
is the sum of concrete, steel and formwork costs and the
design variables are the cross-sectional parameters and steel
ratios of beams, columns and elements. Design constraints
include bending and shear strength of beams and columns
and limits on nodal deflections. The stiffness method is used
in the analysis of the real and adjoint structures in an iter-
ative optimization procedure. Adamu et al. (1994) apply
continuum-type optimality criteria (COC) to the design of
RC beams. Design variables considered are width, depth

and traction reinforcement steel ratio; these are functions
of the longitudinal coordinate. Constraints are flexural and
shear strength, maximum deflection and side constraints.
Calculus of variations on an augmented Lagrangian func-
tional yields the COC optimality conditions. An iterative
procedure is used to obtain discrete numerical approxima-
tions of optimal solutions. Genetic algorithms have been
used for the optimization of concrete structures, e.g., Lepš
and Šejnoha (2003) demonstrate the technique with RC
beams. Objective function is the cost of raw materials and
behavior constraints, conforming to EC2, are flexural and
shear strength and deflection criteria. Mindlin beam is used,
discretized by finite elements. Design variables are cross-
sectional dimensions of the beam and steel reinforcements
over multiple beam spans.

In this paper a minimal cost problem of a rectangu-
lar section in simple bending is investigated where the
objective function is the cost of raw materials and the
design variables are section depth, s.t. an upper side con-
straint, and steel reinforcement areas, traction and compres-
sion. The fundamental problem statement is an augmented
Lagrangian function. The state constraint equations are
those of equilibrium—force and moment—written for an
arbitrary concrete law with tension cut-off. The state vari-
ables are maximum concrete strain and compression depth.
The Kuhn-Tucker (K-T) necessary optimality conditions
(see, e.g., Bazaraa et al. 1993) are solved with the aid of
a symbolic processor (CAS). Only optimal solutions with
concrete rupture are accounted for; in this case the concrete
constitutive law appears as two constants in the equilib-
rium equations and it is found that the optimal strain is
indeed the ultimate for concrete laws satisfying a condition
on these constants. Active or inactive side constraints (on
section depth and compression armature area) are combined
in 4 cases to predefine primal and/or dual variables and the
remaining optimality conditions are used to complete the
solution, cf Haug and Arora (1979).

For the sake of simplicity, the perfectly plastic model
is used for steel reinforcements, as a first approach; this
avoids the added complication of checking for the yield
condition of the armatures. In this case three solutions
are obtained: (1) A singly-reinforced section with an opti-
mal depth smaller than the maximum allowable; (2) A
singly-reinforced section with the maximum depth allow-
able and steel reinforcement as required by equilibrium; (3)
A doubly-reinforced section with maximum depth and an
optimal distribution of armature steel. The 4th case of cal-
culated depth with double reinforcement does not have a
feasible solution.

Elastic-perfectly plastic armatures are accounted for in
Section 7 in the guise of a side constraint on compres-
sion depth, added to the augmented Lagrangian. It is found
the three solutions previously obtained are also solutions in
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this case, under revised conditions. An additional doubly-
reinforced solution (4) with the new constraint active and
maximum section depth is obtained.

Each of these solutions has a domain of optimal-
ity in the plane ‘nondimensional bending moment’–‘cost-
effectiveness ratio of concrete to steel’. These domains are
disjoint, except that those of solutions 3 and 4 (mostly)
overlap.

2 Stress resultants in RC section

Conventions regarding the RC section are represented in
Fig. 1. Section breadth is denoted by b and effective depth
by d . The maximum design depth is d̄, i.e., d ≤ d̄ . Let η and
r be adimensionalised (w.r.t. the maximum depth) effective
height and concrete cover, respectively:

η = d

d̄
≤ 1

r = a

d̄
≥ 0 (1)

Depth in compression x is adimensionalised w.r.t. section
depth:

γ = x

d
(2)

Armature areas are denoted by A and A′, traction and com-
pression, respectively. Steel reinforcement ratios w.r.t. the
maximum effective section area are defined by (compres-
sion armature area is 0 for singly-reinforced sections):

ρ = A

bd̄
> 0

ρ′ = A′

bd̄
≥ 0 (3)

Compressive strain in concrete ε for simple bending is
proportional to distance to the mean axis y (↑) (Fig. 1),
ε = y

R , where R > 0 is the radius of curvature of the
unstrained longitudinal fibres. Let εc = x

R denote the maxi-
mum strain in concrete. Using the latter identity to eliminate
R on the former, the strain equation is obtained:

ε = y

x
εc

Extension of traction steel reinforcement is εs = d−x
R , in

nondimensional form

εs = 1 − γ

γ
εc

and positiveness condition εs > 0 sets the bounds on
nondimensional compression depth:

0 < γ < 1

Compressive strain in the upper armature is ε′
s = x−a

R , or

ε′
s = γ − r

η

γ
εc

and for positiveness, ε′
s > 0:

r < γη

This condition is regarded as a limitation on concrete cover
r , to be checked in the doubly-reinforced section case, and
as such will not be included in the optimization constraints
(r is not a design variable).

The design compressive ultimate strength of concrete is
denoted by fcd > 0 and the ultimate design stress of steel
(either traction or compression) by fyd > 0. The strength
ratio of steel to concrete is the parameter:

β = fyd

fcd
> 0 (4)

Fig. 1 Strain, stress and forces
on RC section
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The response function of concrete is denoted by σc (·),
taken to be a [positive] compression for positive argu-
ment, with tension cut-off, and a nondimensional response
function is defined:

σ̃c (·) = σc (·)
fcd

(5)

The resultant axial force—which will be set to 0—is
the vector sum (→) of resultant forces in concrete and
armatures, traction and compression, (Fig. 1):

Nres = −Fc + Fs − F ′
s

The stress resultant in concrete is the stress integral in the
compression region

Fc = b
∫ x

0
σ(y)dy

and by change of integration variable using the strain
equation:

Fc = bx

∫ εc
0 σc(ε)dε

εc

The force resultants in steel reinforcements are:

Fs = A fyd

F ′
s = A′ fyd

A nondimensional force resultant is defined

Ñ = Nres

bd̄ fcd

and the formula for it is:

Ñ = −γ η

∫ εc
0 σ̃c(ε)dε

εc
+ ρβ − ρ′β (6)

The resultant bending moment (�), evaluated at the
lower armature, is the sum of concrete and upper armature
moments:

Mres = Mc + M ′
s

The moment of compressive stresses in concrete is

Mc = b
∫ x

0
σ(y) · (y + d − x) dy

and changing the integration variable as before:

Mc = bx2

∫ εc
0 σc(ε) · εdε

ε2
c

+ bx (d − x)

∫ εc
0 σc(ε)dε

εc

The moment of compression armature is

M ′
s = F ′

s (d − a)

The bending moment, adimensionalised w.r.t. the maximum
section dimensions, is

M̃ = Mres

bd̄2 fcd

and is evaluated by:

M̃ = γ 2η2

∫ εc
0 σ̃c(ε) · εdε

ε2
c

+ (1 − γ ) γ η2

∫ εc
0 σ̃c(ε)dε

εc
+ ρ′β (η − r) (7)

3 Optimal design problem

Let Cs and Cc be specific cost factors (economical, envi-
ronmental or other) of raw materials steel bar and concrete,
respectively. The cost ratio of steel to concrete is the
parameter

α = Cs

Cc
> 0 (8)

It is introduced at this point the quotient of cost and
strength ratios of raw materials

ξ = α

β
> 0 (9)

which is found to arise naturally in the solution of the opti-
mization problem in the following. It can be interpreted as
either the efficiency, or cost-effectiveness, ratio of concrete
to steel

ξ =
fcd
Cc

fyd
Cs

where by cost-effectiveness is understood the strength-to-
cost ratio of a raw material; or as the quotient of steel and
concrete cost-to-strength ratios:

ξ =
Cs
fyd

Cc
fcd

The beam cost per unit length is

C = Cs
(

A + A′) + Ccb (d + a)
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a nondimensional cost is defined

C̃ = C

bd̄Cc

and it is evaluated as the function of nondimensional vari-
ables and parameters:

C̃ = α
(
ρ + ρ′) + η + r (10)

To account for the replacement of concrete area by steel
reinforcement the numerical value of α − 1 can be used
instead of α.

The optimal design problem is the cost minimization
w.r.t. the design variables

C̃ −→
η, ρ, ρ′ min

nondimensional depth (η) and armature areas, traction (ρ)
and compression (ρ′), s.t.:

(1) State equations of equilibrium

Ñ = 0

M̃ = M

where Ñ (6) and M̃ (7) are functions of the design
variables and M > 0 is the nondimensional specified
bending moment.

(2) Side constraints on state

εc ≤ εcu

where εcu > 0 is the ultimate compressive strain in
concrete, and design variables:

η ≤ 1

ρ′ ≥ 0

(3) Inclusion, or domain, constraints:

εc > 0

γ > 0

γ < 1

η > 0

ρ > 0

An augmented Lagrangian for the constrained optimiza-
tion problem is defined

L(εc, γ, η, ρ, ρ′, λ, μ, ν, π, κ) = (11)

= C̃ + λÑ +μ
(

M̃ − M
)
+ν (εc−εcu)+π (η−1)−κρ′

a function of state variables (εc, γ ), design variables (η, ρ,
ρ′) and Lagrange multipliers (λ, μ, ν, π , κ). The saddle-
point optimality conditions, on primal and dual variables,
are

⎧⎨
⎩

L −→
εc>0, 0<γ<1, η>0, ρ>0, ρ′ min

L −→
λ,μ, ν≥0, π≥0, κ≥0

max

and the K-T necessary optimality conditions, in differential
form, are the set of equations

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂L

∂εc
= λ

∂ Ñ

∂εc
+ μ

∂ M̃

∂εc
+ ν = 0

∂L

∂γ
= λ

∂ Ñ

∂γ
+ μ

∂ M̃

∂γ
= 0

∂L

∂η
= 1 + λ

∂ Ñ

∂η
+ μ

∂ M̃

∂η
+ π = 0

∂L

∂ρ
= α + λ

∂ Ñ

∂ρ
= 0

∂L

∂ρ′ = α + λ
∂ Ñ

∂ρ′ + μ
∂ M̃

∂ρ′ − κ = 0

∂L

∂λ
= Ñ = 0

∂L

∂μ
= M̃ − M = 0

(12)

and the constraint conditions, positivity of Lagrange multi-
pliers and complementarity conditions:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂L

∂ν
= εc − εcu ≤ 0, ν ≥ 0, ν

∂L

∂ν
= 0

∂L

∂π
= η − 1 ≤ 0, π ≥ 0, π

∂L

∂π
= 0

∂L

∂κ
= −ρ′ ≤ 0, κ ≥ 0, κ

∂L

∂κ
= 0

(13)

4 Simplified optimality conditions

Only solutions with concrete rupture

εc = εcu (14)

will be considered here. The condition under which this
assumption is valid will be obtained from the analysis of
Lagrange multiplier ν.

Under this assumption the strain functions in Ñ (6) and
M̃ (7) become the constants:

C1 =
∫ εcu

0 σ̃c(ε)dε

εcu
> 0

C2 =
∫ εcu

0 σ̃c(ε) · εdε

ε2
cu

> 0 (15)
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The physical meaning of C1 is the mean stress σ̄c in the
stress–strain curve of concrete and

C2

C1
= ε̄c

εcu

is the ratio of the mean to the maximum strains. By the mean
theorem

C2

C1
< 1 (16)

and, therefore, C1 > C2, which will be used recurrently.
It will be further assumed—as a restriction to concrete

laws for which the results presented here are applicable—
that

C2

C1
≥ 1

2
(17)

from which the following inequality ensues, recorded here
for later reference:

1

2

C1

C1 − C2
≥ 1 (18)

Under the latter assumption the bending moment (7) is a
monotonically increasing function of γ for γ < 1

∂ M̃

∂γ
= η2C1

(
1 − γ

1
2

C1
C1−C2

)
> 0

hence it is a sufficient condition for root uniqueness of γ ∈
]0, 1[ in the moment equilibrium equation.

The following identities are needed for the K-T optimal-
ity conditions (12) (note that σ̃c(εcu) = 1):

∂

∂εc

∫ εc
0 σ̃c(ε)dε

εc

∣∣∣∣∣
εc=εcu

= 1 − C1

εcu

∂

∂εc

∫ εc
0 σ̃c(ε) · εdε

ε2
c

∣∣∣∣∣
εc=εcu

= 1 − 2C2

εcu

For solutions with εc = εcu the optimality conditions are,
the simplified K-T equations (12)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

γ η (μη (1−γ )−λ)
1−C1

εcu
+μγ 2η2 1−2C2

εcu
+ν =0 (a)

−ληC1+μη2 (C1+2γ (C2−C1))=0 (b)

1−λγ C1+2μγη (1−γ ) C1+2μγ 2ηC2+μρ′β+π =0 (c)

α+λβ =0 (d)

α−λβ+μβ (η − r)−κ =0 (e)

−γ ηC1+ρβ−ρ′β =0 (f)

γ 2η2C2+(1−γ ) γ η2C1+ ρ′β (η−r)= M (g)

(19)

and conditions (13)
⎧⎨
⎩

ν ≥ 0
η − 1 ≤ 0, π ≥ 0, π (η − 1) = 0
−ρ′ ≤ 0, κ ≥ 0, κρ′ = 0

(20)

plus the inclusion constraints:
⎧⎪⎪⎨
⎪⎪⎩

γ > 0
γ < 1
η > 0
ρ > 0

(21)

There are 9 variables to determine: 1 state variable (γ );
3 design variables (η, ρ, ρ′); 5 Lagrange multipliers (λ, μ,
ν, π , κ). Owing to it’s simplicity, the second and third sets
of conditions in (20) predefine 2 variables—either a design
variable (η, ρ′) or the Lagrange multiplier for the corre-
sponding side constraint (π , κ). Thus, there are 4 cases—
free or constrained height, singly- or doubly-reinforced
section—to be analyzed, using the 7 core equations (19) to
determine the remaining variables. This will be done in the
next section. Detailed analysis of the solutions obtained will
be postponed to the following section.

5 Solutions of the optimality conditions

System of equations (18) is nonlinear. However, it has a dis-
tinct sparse nature, lending itself to solution by successive
elimination. It will be seen that it can be solved uniquely for
each of the cases mentioned above, except one for which
it will be shown no solution exists. The first five equations
are solved independently of case. Firstly, equations (19d),
(19b) and (19a) are solved for Lagrange multipliers λ, μ and
ν; secondly, the equilibrium equations (19f) and (19g) are
solved for ρ and γ ; finally, the 4 cases are analyzed, using
equations (19c) and (19e) to determine the design variables
η and ρ′, if free, or the Lagrange multipliers π and κ , if the
side constraints are saturated, in 3 cases and in 1 is shown
not to be feasible.

5.1 Lagrange multipliers λ, μ and ν

From equation (19d) is obtained

λ = −ξ

and from equation (19b):

μ = −ξ

η

C1

C1 − 2γ (C1 − C2)

Replacing λ and μ on equation (19a) and solving for ν:

ν = ξγ 2η

εcu

2 (C1 − C2) − C2
1

C1 − 2γ (C1 − C2)



Optimal design of rectangular RC sections for ultimate bending strength 851

The algebraic in the denominator is positive, C1 −
2γ (C1 − C2) > 0 is equivalent to

γ <
1

2

C1

C1 − C2

which is always true on account of inequality (18). Posi-
tivity of the Lagrange multiplier (ν ≥ 0) requires that the
numerator be positive, 2 (C1 − C2) − C2

1 ≥ 0, from which
the condition on constants C1 and C2 is derived:

C2

C1
≤ 1 − C1

2
(22)

This is the condition for the optimal solutions (all of them)
to have concrete strained to the maximum, εc = εcu . It is
seen this is so for some concrete laws—those for which

ε̄c

εcu
≤ 1 − σ̄c

2

In particular, on account of (17), the average stress in con-
crete σ̄c can not be larger than 1. This may occur when the
peak stress is greater than the ultimate one, and the opti-
mal strain will be smaller than the ultimate, as would be
expected.

5.2 Equilibrium equations

Zero force resultant equation (19f) determines the traction
armature

ρ = 1

β

(
γ ηC1 + ρ′β

)

and moment equilibrium equation (19g) is used to obtain the
nondimensional compression depth:

γ = 1

2

C1

C1 − C2
−

√
C2

1η2 − 4 (C1− C2) (M− ρ′β (η− r))

2 (C1 − C2) η

Equation (19g) has a second root (with a plus sign instead of
minus for the second term) which is inadmissible (γ > 1)
on account of inequality (18). With the solving strategy fol-
lowed, the equilibrium equations were solved independently
from the remaining—as they would have in an analysis
context.

5.3 Singly-reinforced section, free height: Solution 1

In this case one design variable and one Lagrange multiplier
are predefined:

ρ′ = 0

π = 0

Equation (19e) is solved for Lagrange multiplier κ

κ = 2ξβ − ξβC1 (η − r)√
C2

1η2 − 4M (C1 − C2)

and equation (19c) for design variable η:

η = ξC2
1 + 2 (C1 − C2)√
ξC2

1 + C1 − C2

√
M

C1

Equation (19c) has a second negative solution (it is the sym-
metric of a square root), inadmissible—it violates inclusion
constraint η > 0.

5.4 Singly-reinforced section, maximum height: Solution 2

In this case two design variables are predefined (the third,
ρ, was determined by equilibrium equation (19f)):

ρ′ = 0

η = 1

Equation (19e) is solved for κ , obtaining the same result
as in solution 1 (with η = 1), and equation (19c) for
Lagrange multiplier π :

π =
ξC3

1 − (
ξC2

1 + 2 (C1 − C2)
)√

C2
1 − 4M (C1 − C2)

2 (C1 − C2)

√
C2

1 − 4M (C1 − C2)

5.5 Doubly-reinforced section, maximum height:
Solution 3

In this case one Lagrange multiplier and one design variable
are predefined:

κ = 0

η = 1

Equation (19e) is solved for compression steel reinforce-
ment ratio

ρ′ = 1

β

16M (C1 − C2) − C2
1

(
3 + 2r − r2

)
16 (C1 − C2) (1 − r)

and equation (19c) for Lagrange multiplier π :

π = 16ξ M(C1−C2)−4ξC2
1r2+(

ξC2
1 −8(C1−C2)

)
(1−r)2

8 (C1−C2) (1−r)2
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5.6 Doubly-reinforced section, free height: No solution

In this case two Lagrange multipliers are predefined

κ = 0

π = 0

and two design variables (η, ρ′) are to be determined, using
equations (19c) and (19e).

Replacing λ and μ, as obtained by elimination in
equations (19d) and (19b), in equations (19c) and (19e),
solving both for γ and equating the results and, finally,
solving for η the result is:

η = 4ξ (C1 − C2) ρ′β + (
ξC2

1 + 2 (C1 − C2)
)

r

2 (C1 − C2) − ξC2
1

Noting that the numerator is positive, for positivity of the
denominator the cost-effectiveness ratio

ξ < 2
C1 − C2

C2
1

is outside the range of admissibility that will be set on the
next section.

6 Analysis of optimal solutions

6.1 Singly-reinforced section, free height: Solution 1

The full solution, obtained by back substitution in the results
of the last section, is:

γ = C1

ξC2
1 + 2 (C1 − C2)

η = ξC2
1 + 2 (C1 − C2)√
ξC2

1 + C1 − C2

√
M

C1

ρ = 1

β

C1
√

M√
ξC2

1 + C1 − C2

ρ′ = 0

λ = −ξ

μ = −
√

ξC2
1 + C1 − C2

C1
√

M

ν =
√

M

εcu

2 (C1 − C2) − C2
1

C2
1

√
ξC2

1 + C1 − C2

π = 0

κ = β
ξC2

1 − 2 (C1 − C2)

C2
1

+ βr

√
ξC2

1 + C1 − C2

C1
√

M
(23)

Compliance to domain constraints ρ > 0, η > 0 and
γ > 0 can be confirmed directly by inspection of the for-
mulas above. The condition γ < 1 sets the lower bound on
the cost-effectiveness ratio:

ξ >
2C2 − C1

C2
1

(24)

Positiveness condition on Lagrange multiplier κ ≥ 0 can,
equivalently, be stated as a restriction on concrete cover

r ≥ −ξC2
1 − 2 (C1 − C2)√
ξC2

1 + C1 − C2

√
M

C1

and for this to be an arbitrary positive number (r ≥ 0) it
suffices that the r.h.s. be non-positive, which will be the
case if

ξ ≥ 2
C1 − C2

C2
1

(25)

and this will be considered here as a lower bound on the
cost-effectiveness ratio. If

C2

C1
<

3

4

the latter bound is larger than the required by condition
γ < 1 (24) and supersedes it.

The side constraint on nondimensional height η ≤ 1 sets
the upper bound on bending moment:

M ≤ C2
1

ξC2
1 + C1 − C2(

ξC2
1 + 2 (C1 − C2)

)2
(26)

The bending moment in solution 1, adimensionalised
w.r.t. the actual section depth,

M1 = Mres

bd2 fcd

relates to the specified (adimensionalised w.r.t. the maxi-
mum depth) M1 = M

η2 and is found to be a function of the
cost-effectiveness ratio only

M1 = C2
1

ξC2
1 + C1 − C2(

ξC2
1 + 2 (C1 − C2)

)2
(27)

and equal to the upper bound (26). The traction reinforce-
ment ratio adimensionalised w.r.t. the actual section area

ρ1 = A

bd

is the function of two design variables ρ1 = ρ
η

and is also
a function of the efficiency ratio (and not of the specified
bending moment):

ρ1 = 1

β

C2
1

ξC2
1 + 2 (C1 − C2)

(28)
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6.2 Singly-reinforced section, maximum height: Solution 2

The complete solution is:

γ = 1

2

C1 −
√

C2
1 − 4M (C1 − C2)

C1 − C2

η = 1

ρ = 1

β

C1

2

C1 −
√

C2
1 − 4M (C1 − C2)

C1 − C2

ρ′ = 0

λ = −ξ

μ = − ξC1√
C2

1 − 4M (C1 − C2)

ν = ξ

εcu

2 (C1 − C2) − C2
1

2 (C1 − C2)
2

×
C2

1 − 2M (C1 − C2) − C1

√
C2

1 − 4M (C1 − C2)√
C2

1 − 4M (C1 − C2)

π =
ξC3

1 − (
ξC2

1 + 2 (C1 − C2)
) √

C2
1 − 4M (C1 − C2)

2 (C1 − C2)

√
C2

1 − 4M (C1 − C2)

κ = 2ξβ − ξβC1 (1 − r)√
C2

1 − 4M (C1 − C2)

(29)

Inclusion constraints ρ > 0 and γ > 0 are readily
verified to hold for all M > 0. Constraint γ < 1 sets
an upper bound on bending moment for validity of this
solution:

M < C2 (30)

It is straightforward to conclude that, under the latter condi-
tion, positivity of the radicand C2

1 − 4M (C1 − C2) > 0 in
(29) holds in the entire range of constants C1 and C2, i.e.,
C2
C1

∈ [ 1
2 , 1[.

Positivity of Lagrange multiplier π ≥ 0 sets the lower
bound on bending moment

M ≥ C2
1

ξC2
1 + C1 − C2(

ξC2
1 + 2 (C1 − C2)

)2
(31)

which is the upper bound (26) of solution 1, derived from
condition η ≤ 1, complementary to π ≥ 0.

Lagrange multiplier positiveness condition κ ≥ 0 sets an
upper bound on bending moment:

M ≤ C2
1

16

4 − (1 − r)2

C1 − C2
(32)

The lower bound (31) is a monotonically decreasing
function of ξ (the first derivative is negative for positive ξ ),
hence it can not be larger than the value at the lower bound
of ξ (25)

C2
1

ξC2
1 + C1 − C2(

ξC2
1 + 2 (C1 − C2)

)2
≤ 3

16

C2
1

C1 − C2

and equality holds only at this point, whereas the upper
bound (32)

C2
1

16

4 − (1 − r)2

C1 − C2
≥ 3

16

C2
1

C1 − C2

hence the two bounds are compatible and intersect at the
lower bound of ξ (25) for r = 0. The upper bound imposed
by κ ≥ 0 (32) supersedes (30) if:

r <
3C1 − 4C2

C1

6.3 Doubly-reinforced section, maximum height:
Solution 3

The full solution is:

γ = C1 (1 + r)

4 (C1 − C2)

η=1

ρ = 1

β

16M (C1 − C2) + C2
1

(
1 − 2r − 3r2

)
16 (C1 − C2) (1 − r)

ρ′ = 1

β

16M (C1 − C2) − C2
1

(
3 + 2r − r2

)
16 (C1 − C2) (1 − r)

λ=−ξ

μ=− 2ξ

1 − r

ν = ξ

εcu

C1
(
2 (C1 − C2) − C2

1

)
(1 + r)2

8 (C1 − C2)
2 (1 − r)

π = 16ξ M(C1−C2)−4ξC2
1r2+(

ξC2
1−8 (C1−C2)

)
(1−r)2

8 (C1−C2) (1−r)2

κ =0 (33)

Positivity of the compression armature ρ′ ≥ 0 sets the
lower bound on bending moment

M ≥ C2
1

16

4 − (1 − r)2

C1 − C2
(34)

which is the upper bound (32) of solution 2, set by the
complementary condition κ ≥ 0.
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Positivity of Lagrange multiplier π ≥ 0 imposes the
condition

M ≥ 8 (C1 − C2) (1 − r)2 − ξC2
1

(
1 − 2r − 3r2

)
16ξ (C1 − C2)

and it ensues from the former because the r.h.s. of the latter
is smaller than the former’s if

ξ ≥ 2
C1 − C2

C2
1

1 − r

1 + r

which is true, considering the lower bound on ξ (25).
From the positiveness condition ρ > 0 is obtained

M >
C2

1

16

3r2 + 2r − 1

C1 − C2

which always holds because, comparing with (34), 4 −
(1 − r)2 > 3r2 + 2r − 1 for all r ∈ [0, 1[.

The condition γ < 1 imposes the constraint on concrete
cover

r <
3C1 − 4C2

C1
(35)

and for the r.h.s. to be a positive number it is necessary that
constants C1 and C2 satisfy

C2

C1
<

3

4
(36)

otherwise the doubly-reinforced solution is unfeasible.
The condition r < γ simplifies to

r <
C1

3C1 − 4C2

and the r.h.s. is not smaller than 1 for C2
C1

∈ [ 1
2 , 3

4 [, hence it
is trivially verified.

7 Elastic-perfectly plastic armatures

In this section previous results are extended in order to
account for the yield of armatures by adding conditions
εs ≥ εsy and ε′

s ≥ εsy where εsy > 0 is the design yield
strain of steel.

For the traction armature the yield condition (with con-
crete compressed to the maximum)

εs = 1 − γ

γ
εcu ≥ εsy

sets an upper bound on nondimensional compression depth

γ ≤ γ̄ (37)

where

γ̄ = εcu

εsy + εcu
< 1 (38)

For the compression armature

ε′
s = γ − r

η

γ
εcu ≥ εsy

a condition on concrete cover r is obtained

r ≤ γ η
εcu − εsy

εcu

to be checked separately, and not included in the optimiza-
tion constraints, as before.

With the additional side constraint on γ (37) augmented
Lagrangian (11) is replaced by

L(εc, γ, η, ρ, ρ′, λ, μ, ν, π, κ, τ )

= C̃ + λÑ + μ
(

M̃ − M
)

+ ν (εc − εcu)

+ π (η − 1) − κρ′ + τ (γ − γ̄ ) (39)

where τ is the additional Lagrange multiplier, and sim-
plified optimality conditions (19a) and (19b) are replaced
by (note that they coincide if τ = 0):

⎧⎨
⎩

γ η (μη (1 − γ ) − λ)
1 − C1

εcu
+ μγ 2η2 1 − 2C2

εcu
+ ν − τ

εsy

(εsy + εcu)2
= 0 (a)

−ληC1 + μη2 (C1 + 2γ (C2 − C1)) + τ = 0 (b)
(40)

The feasible region of the optimization problem with addi-
tional side constraint (37) is a subset of the one in the previ-
ous sections and the objective function is the same. Hence,

solutions 1, 2 and 3 of the latter problem are also solutions
of the former (with Lagrange multiplier τ = 0) if they sat-
isfy (37). This will be seen to be the case, under additional
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conditions. It is not, therefore, necessary to investigate the
4 additional cases with constraint (37) active. It will also be
seen that solution 3 verifies (37) only under a limiting condi-
tion; if this condition is not met, another doubly-reinforced
solution needs to be sought. For the latter case a fourth
solution will be obtained, with constraint (37) active. The
additional K-T optimality conditions in the case where the
constraint is active are:

{
γ = γ̄

τ ≥ 0
(41)

7.1 Single reinforcement, free height: Solution 1

With side constraint γ ≤ γ̄ instead of condition γ < 1 the
lower bound (24) is replaced by:

ξ ≥ C1 − 2γ̄ (C1 − C2)

γ̄ C2
1

(42)

Lower bound (25) supersedes (42) if

γ̄ ≥ 1

4

C1

C1 − C2

otherwise (42) shall be taken as the lower bound on the cost-
effectiveness ratio ξ , instead of (25).

7.2 Single reinforcement, maximum height: Solution 2

Side constraint γ ≤ γ̄ imposes an upper bound on bending
moment not larger than (30):

M ≤ γ̄ C1 − γ̄ 2 (C1 − C2) < C2 (43)

The upper bound on bending moment (32) is smaller than
(43) if concrete cover verifies

r ≤ 4γ̄ (C1 − C2) − C1

C1
(44)

otherwise (43) shall be taken as the upper bound for solution
2. Inequality (44) can be rewritten as:

r ≤ 3C1 − 4C2

C1

εcu

εsy + εcu
− εsy

εsy + εcu

The lower bound of bending moment (31) equals the
upper bound (43) at the lower bound (42) of the cost
effectiveness ratio ξ , hence the two bounds (31) and (43)
are consistent because the r.h.s. of (31) is a monotonically
decreasing function of ξ .

7.3 Double reinforcement, maximum height: Solution 3

Side constraint γ ≤ γ̄ is found to set condition (44) on
concrete cover r and, if this condition is met, upper bound
(32) of solution 2 and lower bound (34) of solution 3 sepa-
rate the singly- and doubly-reinforced solutions. For (44) to
allow for positive concrete cover r at all it is necessary that

γ̄ ≥ 1

4

C1

C1 − C2

or, equivalently,

εsy

εcu
≤ 3C1 − 4C2

C1

and the r.h.s. of the latter has to be strictly positive, which
requires condition (36). If condition (44) is not met then
solution 3 is unfeasible. This will be the case, in particular, if
concrete and steel strains do not satisfy the latter inequality.

The yield condition of the compression armature sets the
upper bound on concrete cover

r ≤ C1
(
εcu − εsy

)
(3C1 − 4C2) εcu + C1εsy

and this bound is superseded by (44) if

εsy

εcu
≥ −3C1 − 4C2

C1

which is always true because the r.h.s. is negative.

7.4 Double reinforcement, maximum height, maximum
compression depth: Solution 4

The complete solution for the system of equations (40)
and (19c)–(19g) in this case (κ = 0, η = 1, γ = γ̄ )
is (reinforcement areas are determined by the equilibrium
equations (19g) and (19f) alone):

γ = γ̄

η=1

ρ = 1

β

M + γ̄ 2 (C1 − C2) − γ̄ C1r

1 − r

ρ′ = 1

β

M + γ̄ 2 (C1 − C2) − γ̄ C1

1 − r

λ=−ξ

μ=− 2ξ

1 − r

ν = ξ

εcu

γ̄

1 − r

(
4γ̄ 2 (C1 − C2) − γ̄ C1 (3 + r) + 1 + r

)
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π = 2ξ M−2γ̄ 2ξ(C1−C2)(1−2r)+γ̄ ξC1
(
1−2r −r2

)−(1−r)2

(1−r)2

κ = 0

τ = ξ
C1 (1 + r) − 4γ̄ (C1 − C2)

1 − r
(45)

From the Lagrange multiplier positiveness condition τ ≥
0 the condition on concrete cover r is obtained

r ≥ 4γ̄ (C1 − C2) − C1

C1
(46)

and comparing with (44) it is found this is the solution when
solution 3 is unfeasible.

Positivity of compression armature ρ′ ≥ 0 sets the lower
bound on the bending moment

M ≥ γ̄ C1 − γ̄ 2 (C1 − C2) (47)

which is the upper bound (43) of solution 2. When (46)
holds, (43) and (47) separate the singly- and doubly-
reinforced solutions 2 and 4.

Comparing the formulas for both armatures it is immedi-
ately recognized that ρ >ρ′ (r <1) hence ρ >0.

Lagrange multiplier positivity ν ≥ 0 can be restated as a
condition on concrete cover r (property C1 ≤ 1 is used)

r ≥ 3γ̄ C1 − 4γ̄ 2 (C1 − C2) − 1

1 − γ̄ C1

and comparing the r.h.s. of this inequality with that of (46) it
is found that the condition that the latter be greater than the
former is equivalent to (22), hence the Lagrange multiplier
is positive.

Positivity of Lagrange multiplier π ≥ 0 sets the lower
bound on the bending moment

M ≥ (1 − r)2

2ξ
+ γ̄ 2 (C1 − C2) (1 − 2r)− γ̄ C1

1 − 2r − r2

2

comparing with bound (47) it is found the latter is larger
than the former if

ξ ≥ 1 − r

γ̄ (3C1 + C1r − 4γ̄ (C1 − C2))

and comparing this bound on the cost-effectiveness ratio
with (42) the latter supersedes the former for all concrete
cover r satisfying (46), hence (47), (42) and (46) imply
π ≥ 0, and no additional condition is required.

The yield condition of compression armature simplifies
to

r ≤ εcu − εsy

εsy + εcu
(48)

and, for solution 4 to be feasible, it is necessary for con-
crete cover r to lie between the lower and upper bounds (46)
and (48), respectively. The two bounds are consistent for
C2
C1

≥ 1
2 (17).

8 Specialization to parabola-rectangle law

The parabola-rectangle concrete response function specified
by EC2 (2001) is used:

σ̃c(·) =
{

1 −
(

1 − ε
εc2

)n
if 0 ≤ ε ≤ εc2

1 if εc2 ≤ ε ≤ εcu

For this law concrete constants C1 and C2 evaluate:

C1 = 1 − εc2

(n + 1) εcu

C2 = 1

2
− ε2

c2(
2 + 3n + n2

)
ε2

cu

These constants are listed in Table 1 for the fourteen
concrete classes of EC2.

It can be readily shown that these constants satisfy all
constraints that have arisen here, without resorting to a case-
by-case analysis; it suffices to note that εcu ≥ εc2 and n > 1
for all classes. Solving inequality C2

C1
≥ 1

2 (17) for εcu

εcu ≥ 2

2 + n
εc2

Table 1 Constants C1 and C2
for parabola-rectangle law
(EC2 2001)

Parameter C12/15–C50/60 C55/67 C60/75 C70/85 C80/95 C90/105

εc2
20

10,000
22

10,000
23

10,000
24

10,000
25

10,000
26

10,000

εcu
35

10,000
31

10,000
29

10,000
27

10,000
26

10,000
26

10,000

n 200
100

175
100

160
100

145
100

140
100

140
100

C1
17
21

23
31

262
377

281
441

187
312

7
12

C2
139
294

13,007
28,830

42,586
98,397

222,661
547,722

53,327
137,904

77
204
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Table 2 Nondimensional
compression depth γ and height
η, mechanical reinforcement
ratios ρβ (traction) and ρ′β
(compression) for
C12/15–C50/60

Variable Solution 1 Solution 2 Solution 3 Solution 4

γ 357
289ξ+297

119−7
√

289−594M
99

119(1+r)
198 γ̄

η
(289ξ+297)

√
2M

17
√

578ξ+297
1 1 1

ρβ 17
√

2M√
578ξ+297

289−17
√

289−594M
297

2376M+289
(
1−2r−3r2)

2376(1−r)
294M+99γ̄ 2−238γ̄ r

294(1−r)

ρ′β 0 0
2376M−289

(
3+2r−r2)

2376(1−r)
294M+99γ̄ 2−238γ̄

294(1−r)

which is always true. Solving inequality C2
C1

≤ 1 − C1
2

(22) for the same variable an equally self-evident result is
obtained:

εcu >
εc2

1 + n

On account of the previous inequality (22), noting that in
this case C1 > 1

2 because

εcu >
2

1 + n
εc2

and, therefore, C2
C1

< 3
4 (36).

In Table 2 are listed the primal variables for C12/15–
C50/60 concrete classes. Optimality regions of solutions
1, 2, 3 and 4 in the plane ‘cost-effectiveness ratio’–
‘nondimensional bending moment’ (ξ–M) are shown in
Fig. 2, for the same concrete classes, and a three-

Fig. 2 Optimality regions for EC2 C12/15–C50/60 concrete classes.
The numbering refers to the inequalities bounding the solutions. Axis
markings are for S400 steel (E=200GPa). For S600 solution 3 is
unfeasible. M is the nondimensional bending moment and ξ is the
cost-effectiveness ratio of concrete to steel

dimensional representation of the cost function is shown in
Fig. 3.

9 Examples

9.1 Example 1

Optimal solutions for ξ = 3 and ξ = 6 with increasing
specified bending moment M are compared. The parabola-
rectangle law of EC2 (2001) for classes C12/15–C50/60 is
used. The nondimensional concrete cover used is r = 0.05.
Nondimensional height η and total mechanical reinforce-
ment ratio

(
ρ + ρ′) β (see Table 2) are shown in Fig. 4.

Differences are observed up to the bound M � 0.217 of
solution 1 with ξ = 3. For the comparatively smaller cost-
effectiveness ratio of concrete to steel ξ = 3 less concrete
and more steel reinforcement are used than for ξ = 6; con-
versely, for the comparatively higher cost-to-strength ratio
of steel to concrete ξ = 6 less armature and a larger section
are used. The bound of solution 1, up to which the section
is downsized, for the higher cost-effectiveness ratio of con-
crete to steel ξ = 6 is M � 0.132, lower than for ξ = 3. The
upper bound for solution 2 (in both cases) is M � 0.377;
for M � 0.377 the optimal solution is doubly-reinforced
(solution 3).

0
0.1

0.2
0.3

0.5 2

6
8

0

5

10

C M

Fig. 3 Cost contour curves for EC2 C12/15–C50/60 concrete classes
(solutions 1-2-3, r = 0)
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0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 M

Fig. 4 Section 9.1: Optimal nondimensional heigth η and total
mechanical reinforcement ratio

(
ρ + ρ′) β vs bending moment M for

ξ = 3 and ξ = 6

9.2 Example 2

The purpose of this example is to analyze the influence of
maximum depth d̄ on optimal solutions. Parabola-rectangle
law for EC2 concrete classes C12/15–C50/60 is used. Sup-
pose that the nondimensional bending moment is M0 = 0.5
for some specified bending moment Mres and initial design
d̄0, hence a doubly-reinforced section is required (solution
3), and that the section cost is C0. The parameters ξ = 6.42
and r = 0 are used. With increasing d̄ the nondimensional
bending moment M decreases and it is found that the bound-
ary between solutions 3 and 2 is for d̄

d̄0
= 1.17 and between

2

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0
1 1.2 1.4 1.6 1.8 2 2.2 2.4

Fig. 5 Section 9.2: Section depth d
d̄0

and mechanical reinforcement

ratio A+A′
bd β vs maximum allowable depth d̄

d̄0

1

0.8

0.6

0.4

0.2

0 1 1.2 1.4 1.6 1.8 2 2.2 2.4

Fig. 6 Section 9.2: Section cost C
C0

and nondimensional bending

moment Mres
bd2 fcd

vs maximum allowable depth d̄
d̄0

solutions 2 and 1 for d̄
d̄0

= 2.00. In Fig. 5 are plotted the

nondimensional optimal depth d
d̄0

and the mechanical rein-

forcement ratio A+A′
bd β, adimensionalised w.r.t. the optimal

section area. Section cost ratio C
C0

and bending moment
Mres

bd2 fcd
are shown in Fig. 6. It is seen the optimal depth

increases and armature decreases, with decreasing cost,
until solution 1 is reached and then all variables level off.
The most economical section (singly-reinforced) is reached
for twice the initial maximum depth with 63.6% of the
initial cost and bending moment M = 0.125.

9.3 Example 3

This is a counter-example, where results derived in this
paper are not applicable. Adjusted for conventions used
here, the MC90 nondimensional concrete response func-
tion is (see Table 3 for material constants description and
numerical values):

σ̃c(·) = 1 + Ecc1−2
εc1

εcu

Ecc1
εc1

εcu − ε2
cu

ε2
c1

Ecc1
εc1

ε − ε2

ε2
c1

1 + Ecc1−2
εc1

ε

It can be readily verified that constants C1 and C2 listed
in Table 3 for 4 concrete classes violate condition (22)—
for C16/20 and C25/30 no computation is even required as,
on account of (17), C1 can not be larger than 1. Therefore,
basic assumption (14), that concrete is strained to the maxi-
mum (εcu), does not hold for this constitutive law. In Barros
et al. (2005) is demonstrated that, at the maximum bending
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Table 3 Section 9.3: Mechanical properties of EC2 concrete classes
C16/20–C50/60 for model code MC90

Parameter C16/20 C25/30 C40/50 C50/60

εc1 0.001875 0.002069 0.002324 0.002465

εcu 0.0035 0.0035 0.0035 0.0035

Ecc1 3.5431 2.7762 2.2366 2.0059

C1 1. 032 5 1. 011 8 0.947 99 0.906 89

C2 0.565 14 0.568 16 0.550 52 0.536 61

εc1: strain at peak stress; εcu : ultimate strain; Ecc1: conventional
elasticity modulus; C1 and C2: material constants defined in (15)

moment allowable, maximum concrete strain lies between
the strain for peak stress (εc1) and the ultimate strain (εcu).

10 Conclusions

Solutions of the K-T optimality conditions were obtained
for a generic concrete constitutive law and conditions to
determine wether they are applicable to a specific law were
established. The parabola-rectangle law of EC2 (2001) is
one case of applicability for all concrete classes, as shown
in Section 8, and MC90 of non-applicability (Section 9.3).

The four solutions obtained—(23), (29), (33) and (45)—
were analyzed for the range of parameters where each
is optimal. This is illustrated summarily in Fig. 2. It is
noteworthy that all formulas are sensibly short.

The investigation presented here confirms practical
experience—an interesting result in it’s own right—and
adds guidelines (and mathematical formulas) for the cost
optimization of rectangular RC sections. Known basic
designs are shown to be cost-optimal under certain condi-
tions, but not always. The singly reinforced section with
predefined height, for some given bending moment (solu-
tion 2), for instance, may be optimal for some value of
the cost-effectiveness ratio but not for another (illustrated
in Section 9.1): the optimal may be a section with reduced
height (solution 1). Or the doubly-reinforced section with
maximum compression depth, as allowed by the minimum
strain in traction armature (solution 4): it will not be opti-
mal if there is a feasible solution with less than maximum
compression depth (solution 3), for which an optimal dis-
tribution of armatures (traction and compression) can be
obtained. Solutions 3 and 4 are unaffected by cost factors
because the amount of concrete is fixed and the optimal
solution is simply the one using less steel. It was shown
that there is not an optimal doubly-reinforced section if the
depth is allowed to vary freely.

The argument is made that, compared to solution 1, the
other solutions are sub-optimal (illustrated in Section 9.2).

Fig. 7 Optimal bending moment M1 (27) vs cost-effectiveness ratio ξ

(9) for EC2 C12/15–C90/105 concrete classes

Indeed, all other solutions have an additional active
constraint—maximum section depth—and can not, there-
fore, be more economical than solution 1; if the constraint is
removed this will be the only solution. Moreover, the bend-
ing moment in solution 1 adimentionalised w.r.t. the actual
section depth M1 (27) is a function of the cost-effectiveness
ratio alone. This can be used as a straightforward design
recommendation, leaving the designer with one degree of
freedom less: section depth, breadth, or other. This opti-
mal nondimensional bending moment is plotted in Fig. 7
for the parabola-rectangle law of EC2 (2001). Armature
is given by ρ1 (28), also a decreasing function of the cost-
effectiveness ratio; with increasing cost-effectiveness of
concrete (or decreasing of steel) a larger section with less
armature is more economical.

References

Adamu A, Karihaloo BL, Rozvany GIN (1994) Minimum cost design
of reinforced concrete beams using continuum-type optimality
criteria. Struct Optim 7:91–102

Adamu A, Karihaloo BL (1995) Minimum cost design of RC frames
using the DCOC method part I: columns under uniaxial bending
actions. Struct Optim 10:16–32

Al-Salloum YA, Siddiqi GH (1994) Cost-Optimum Design of Rein-
forced Concrete Beams. ACI Struct J 91(6):647–655

Barros AM, Barros MHM, Ferreira CC (2011) Analytical solutions of
the optimality conditions for the sizing of rectangular reinforced
concrete sections (in Portuguese), vol 27(1), pp 29–42. Revista
Internacional de Métodos Numéricos para Cálculo y Diseño en
Ingeniería

Barros MHFM, Martins RAF, Barros AFM (2005) Cost optimization
of singly and doubly reinforced concrete beams with EC2-2001.
Struct Multidisc Optim 30:236–242

Bazaraa MS, Sherali HD, Shetty CM (1993) Nonlinear programming:
theory and algorithms. John Wiley & Sons



860 A.F.M. Barros et al.

Ceranic B, Frier C (2000) Sensitivity analysis and optimum design
curves for the minimum cost design of singly and doubly rein-
forced concrete beams. Struct Multidisc Optim 20:260–268

Eurocode 2 (1991) Design of concrete structures—Part 1-1: Gen-
eral rules and rules for buildings. CEN European Committee for
Standardization. ENV 1992-1-1:1991

Eurocode 2 (2001): Design of concrete structures—Part 1-1: Gen-
eral rules and rules for buildings. CEN European Committee for
Standardization. EN 1992-1-1

Haug EJ, Arora JS (1979) Applied optimal design: mechanical and
structural systems. Wiley

Kanagasundaram S, Karihaloo BL (1990) Minimum cost design of
reinforced concrete structures. Struct Optim 2:173–184

Lepš M, Šejnoha M (2003) New approach to optimization of reinforced
concrete beams. Comput Struct 81:1957–1966

Samman MM, Erbatur HF (1995) Steel ratios for cost opti-
mum reinforced concrete beams. Build Environ 30(4):545–
551


	Optimal design of rectangular RC sections for ultimate bending strength
	Abstract
	Introduction
	Stress resultants in RC section
	Optimal design problem
	Simplified optimality conditions
	Solutions of the optimality conditions
	Lagrange multipliers ,  and 
	Equilibrium equations
	Singly-reinforced section, free height: Solution 1
	Singly-reinforced section, maximum height: Solution 2
	Doubly-reinforced section, maximum height: Solution 3
	Doubly-reinforced section, free height: No solution

	Analysis of optimal solutions
	Singly-reinforced section, free height: Solution 1
	Singly-reinforced section, maximum height: Solution 2
	Doubly-reinforced section, maximum height: Solution 3

	Elastic-perfectly plastic armatures
	Single reinforcement, free height: Solution 1
	Single reinforcement, maximum height: Solution 2
	Double reinforcement, maximum height: Solution 3
	Double reinforcement, maximum height, maximum compression depth: Solution 4

	Specialization to parabola-rectangle law
	Examples
	Example 1
	Example 2
	Example 3

	Conclusions
	References



