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Abstract The distribution of hydraulic head on the dam
foundation plane with curtain grouting is analyzed by the
simplified one-dimensional seepage model, also is studied
the effect of various parameters of curtain grouting on seep-
age pressure on the foundation plane. The theory of the
optimum thickness of curtain grouting is proposed from the
viewpoint of the minimum seepage pressure resultant and
proved by the two-dimensional seepage model and the finite
element method, which includes two cases of homogenous
foundation and layered foundation.
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1 Introduction

At present, the reduction factor of uplift pressure at the
drainage curtain is adopted in the design to reflect the effect
of the curtain grouting on seepage pressure on the founda-
tion plane (Qi 1997). By means of this empirical factor, only
the whole effect of curtain grouting and drainage curtain
is reflected comprehensively (Mao 2003). The quantitative
effect of permeability coefficient, thickness and depth of the
curtain grouting on seepage pressure on foundation plane
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is not taken into account (Chai et al. 2005a). Based on
the one-dimensional seepage theory, the effect of curtain
grouting on seepage pressure on foundation will be ana-
lyzed in this paper and the theory of the optimum thickness
of curtain grouting is proposed from the viewpoint of the
minimum seepage pressure resultant and proved by the two-
dimensional seepage model and the finite element method,
which includes two cases of homogenous foundation and
layered foundation.

Most optimization problems can be formulated as a for-
mal mathematical problem of the form min f(x) subject to
g(x) < 0 (Piermatei Filho and Leontiev 2009; Akbari et al.
2010; Fuchs and Shemesh 2004; Zhang et al. 2008). But
in this paper, we propose the optimum thickness of cur-
tain grouting on dam foundation from the viewpoint of the
minimum seepage pressure resultant (min f(x)) by equating
the first derivative to zero, the constraint conditions g(x) <

0 (various parameters of curtain grouting) will be meet by
engineering experiences.

2 Effect of the curtain grouting on seepage pressure
on the foundation plane

The sketch of a dam foundation with a complete curtain
grouting is shown as Fig. 1a, and the symbols and notations
are given in Table 1.

The flow in differential depth dz, which is close to the
foundation plane, is assumed to be one-dimensional in order
to obtain the seepage velocity and unit discharge directly by
Darcy’s law.

The unit seepage discharge q1 through AB is

q1 = v1 · dz = k J1dz = k
H − H1

a1
dz (1)
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Fig. 1 Complete curtain
grouting. a Complete curtain
grouting. b Hydrostatic seepage
pressure distribution on
foundation plane

b

a

where v1 and J1 are the seepage velocity and hydraulic
gradient of AB, respectively.

We can obtain the unit discharge q2 and q3 through BC
and CD, respectively, by the same theory as follows,

q2 = v2 · dz = kg J2dz = kg
H1 − H2

t
dz (2)

q3 = v3 · dz = k J3dz = k
H2

a2
dz (3)

where v2 and J2 are the seepage velocity and hydraulic gra-
dient of BC, respectively; v3 and J3 are the seepage velocity
and hydraulic gradient of CD, respectively.

From the continuity of fluid flow we have

q1 = q2 = q3 (4)

From (1–3) and (4), we have the following equations
⎧
⎪⎪⎨

⎪⎪⎩

k
H − H1

a1
dz = kg

H1 − H2

t
dz

kg
H1 − H2

t
dz = k

H2

a2
dz

(5)

Since H1 and H2 are unknown, the equations may be solved
as follows.
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

H1 =
k
kg

t + a2

k
kg

t + a1 + a2
H

H2 = a2
k
kg

t + a1 + a2
H

(6)

which quantitatively reflects the effect of the thickness of
curtain grouting t and permeability coefficient kg of curtain

Table 1 The symbols and
notations Symbol Notation Remark Symbol Notation Remark

A Point of the dam heel a2 Distance from the toe a2 = C D

to curtain downstream

B Junction of curtain L Total width of L = a1 + t + a2

upstream and foundation the foundation

C Junction of curtain T Foundation depth

downstream and

foundation

D Point of the dam toe k Average permeability

coefficient of foundation

H Total head between up kg Average permeability

and downstream coefficient of curtain

H1 Head at point B x Horizontal ordinate Downstream

as positive

H2 Head at point C z Vertical ordinate Down as positive

a1 Distance from heel to a1 = AB dz Differential depth which

curtainupstream is close to foundation plane

T Thickness of the curtain t = BC γ Gravity density of water
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on head distribution of the foundation plane. From (6), the
equivalent seepage travel length of curtain is approximately
equal to k

kg
times the actual thickness of curtain t via similar

triangles.
The total head h at any point in the seepage field is

composed of the pressure head (
p
γ
), elevation head z and

velocity head ( av2

2g ), that is (Chai et al. 1996),

h = p

γ
+ z + av2

2g
(7)

where p is the seepage pressure, γ is the gravity density of
water, z is the vertical ordinate, v is the seepage velocity,
a is the velocity head modification coefficient, and g is the
gravity acceleration.

In general, the seepage velocity v is very small and av2

2g is
so much smaller that it can be neglected. On the foundation
plane the elevation head z = 0. So, the seepage pressure on
foundation plane p can be expressed as follows.

p = γ h (8)

Therefore the seepage pressure distribution in the case of
the complete curtain grouting can be obtained as shown in
Fig. 1b. The seepage pressure p1 and p2 at the upstream and
downstream curtain face can be expressed as follows.

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

p1 =
k
kg

t + a2

k
kg

t + a1 + a2
Hγ =

L +
[

k
kg

− 1
]

t − a1

L +
[

k
kg

− 1
]

t
Hγ

p2 = a2
k
kg

t + a1 + a2
Hγ = L − a1 − t

L +
[

k
kg

− 1
]

t
Hγ

(9)

We can see that p1 increases and approaches to Hγ and p2

reduces and approaches to zero when k
kg

increases gradu-
ally or the permeability coefficient kg of curtain grouting
decreases gradually.

According to (9) and Fig. 1b, we can get the resultant
force P (the area of the map 1(b)) of seepage pressure within
unit width of dam foundation as follows.

P = a1

2
(γ H + p1) + t

2
(p1 + p2) + a2

2
p2

= γ H

2
· t2 + 2a1t + βL2

t + βL
(10)

in which

β =
[

k

kg
− 1

]−1

(11)

Now we analyze the effect of a1, kg and t on P , respectively.

(1) From (10), P will increase correspondingly while a1

increases. When a1 = 0, the value of P is minimum.
But in engineering practice, the curtain grouting can-
not begin from heel due to the limits of the construction
conditions and so on. So it is better to make a1 as small
as possible in order to reduce the seepage pressure
resultant P .

(2) Taking P differentiating with respect to β, we have

∂ P

∂β
= γ H

2
· Lt (L − t − 2a1)

(t + βL)2
= γ H

2
· Lt (a2 − a1)

(t + βL)2

(12)

Generally, a2 > a1, so ∂ P
∂β

> 0 and P reduces if β reduces.
That is to say, β and total seepage pressure resultant P
reduces while kg reduces and the value of k

kg
increases.

(3) Taking P differentiating with respect to t , we have

∂ P

∂t
= γ H

2
· t2 + 2βLt + (

2βLa1 − βL2
)

(t + βL)2
(13)

We can see from the above equation that when t <[√
β2 + β − 2β a1

L − β
]

L , ∂ P
∂t < 0, so the seepage pres-

sure resultant P decreases with the thickness of curtain
grouting t increasing. But ∂ P

∂t > 0 in the case of t >
[√

β2 + β − 2β a1
L − β

]
L , so the seepage pressure resul-

tant P increases with the thickness of curtain grouting t
increasing. Therefore, the thickness of grouting can not be
increased infinitely. In theory, the optimum thickness of
grouting topt can be given as follows.

topt =
[√

β2 + β − 2β
a1

L
− β

]

L (14)

Table 2 The optimum thickness of curtain grouting

Case Introduction to case β topt Pmin

1
k

kg
= 10, a1 = 0 1/9 0.240L 0.240γ H L

2
k

kg
= 100, a1 = 0 1/99 0.091L 0.091γ H L

3
k

kg
= 10, a1 = 0.1L 1/9 0.207L 0.307γ H L

4
k

kg
= 100, a1 = 0.1L 1/99 0.080L 0.180γ H L

5
k

kg
= 10, a1 = 0.05L 1/9 0.224L 0.274γ H L
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Fig. 2 The computation model and FE mesh of the example

The corresponding minimum seepage pressure resultant Pmin is

Pmin = γ H L

[√

β2 + β − 2β
a1

L
+ a1

L
− β

]

= γ Htopt + γ Ha1 (15)

The optimum thickness of curtain grouting topt and the cor-
responding minimum seepage pressure resultant Pmin are
calculated and listed in Table 2 for several cases.

3 Example and validation

The two-dimensional computational model for calculation
example is shown as Fig. 2. In the case of complete curtain
grouting, the above model is calculated by two-dimensional
finite element method. The dam foundation (seepage area)
is divided into 20 × 20 = 400 elements and 21 × 21 =
441 nodes. The one-dimensional seepage model theory is
verified by two-dimensional finite element method (Chai
and Deng 2004; Chai and Li 2004; Chai et al. 2004, 2005b;
Piermatei Filho and Leontiev 2009; Akbari et al. 2010;
Fuchs and Shemesh 2004; Zhang et al. 2008). The solutions
of seepage pressure distribution and the resultant force by
two methods are listed in Table 3 under four different cases
with different k/kg and t .

It can be seen from Table 3 that the result has a small error
and the same law of seepage pressure distribution and resul-
tant force, comparing one-dimensional seepage model with
two-dimensional finite element method. Comparing case 1
with case 2, we can see that the seepage pressure resultant
P reduces when the thickness of curtain t increases from
0.1L to 0.2L , which is because the optimum thickness topt

is 0.207L under these two cases, P reduces with t arising
when t < topt. Comparing case 3 with case 4, P increases
when t increases from 0.1L to 0.2L , which is because topt

is 0.080L under these two cases, P increases with t arising
when t > topt. This indicates the rationality of the optimum
thickness theory of curtain grouting from the viewpoint of
the minimum seepage pressure resultant.

In addition, comparing case 1 with case 3, and comparing
case 2 with case 4, we can know that the total seepage pres-
sure P reduces with k/kg increasing, which also supports
the above conclusion.

Table 3 The seepage pressure
distribution and the resultant
force on homogenous
foundation

Case Introduction to case
H1

H

H2

H

P

γ H L
Remark

1
k

kg
= 10, a1 = 0.1L , t = 0.1L 0.947 0.421 0.334 One-dimensional seepage theory

0.887 0.465 0.394 Two-dimensional finite element method

2
k

kg
= 10, a1 = 0.1L , t = 0.2L 0.964 0.250 0.307 One-dimensional seepage theory

0.912 0.336 0.371 Two-dimensional finite element method

3
k

kg
= 100, a1 = 0.1L , t = 0.1L 0.991 0.073 0.182 One-dimensional seepage theory

0.968 0.141 0.228 Two-dimensional finite element method

4
k

kg
= 100, a1 = 0.1L , t = 0.2L 0.995 0.034 0.214 One-dimensional seepage theory

0.981 0.075 0.240 Two-dimensional finite element method
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Table 4 Seepage pressure
distribution and resultant force
on layered foundation

Case Introduction to case
H1

H

H2

H

P

γ H L
Remark

1
k

kg
= 100, a1 = 0.1L , t = 0.1L 0.991 0.073 0.182 One-dimensional seepage theory

k1: k2: k3: k4 = 10:5:2.5:1 0.973 0.145 0.213 Two-dimensional finite element method

2
k

kg
= 100, a1 = 0.1L , t = 0.1L 0.991 0.073 0.182 One-dimensional seepage theory

k1: k2: k3: k4 = 1:2.5:5:10 0.964 0.147 0.213 Two-dimensional finite element method

3
k

kg
= 100, a1 = 0.1L , t = 0.2L 0.995 0.034 0.214 One-dimensional seepage theory

k1: k2: k3: k4 = 10:5:2.5:1 0.984 0.083 0.235 Two-dimensional finite element method

4
k

kg
= 100, a1 = 0.1L , t = 0.2L 0.995 0.034 0.214 One-dimensional seepage theory

k1: k2: k3: k4 = 1:2.5:5:10 0.977 0.085 0.233 Two-dimensional finite element method

4 Discussions about the layered foundation

The above discussions are all about simple and homoge-
neous foundations, but in reality most foundations are lay-
ered. The theory of OPTIMUM thickness of curtain grouting
based on the one-dimensional theory for a homogeneous case
could not apply directly to the multi-layer scenario. Here we
show the error and effectivity of the theory of OPTIMUM
thickness of curtain grouting in case of the multi-layer
scenario. Now we assume that the foundation of the compu-
tation model (in Fig. 2) is divided into four layers averagely,
and that k1, k2, k3, k4 are the permeability coefficients
of four layers, respectively, from up to down. By the
one-dimensional theory and two-dimensional finite element
method, we can get the calculating results as Table 4.

We can see from Table 4 that the permeability of lay-
ered foundation has certain effect on seepage pressure. The
seepage pressure mainly depends upon the permeability of
the top layer. Comparing case 1 with case 3, and case 2
with case 4, it can be seen that the theory of the opti-
mum thickness of curtain grouting on dam foundation is
also effective from the viewpoint of the minimum seepage
pressure resultant.

5 Conclusions

In this paper we analyze the seepage pressure on the foun-
dation plane with curtain grouting by the one-dimensional
theory and propose the optimum thickness of curtain grout-
ing from the viewpoint of the minimum seepage pressure
resultant and proved by the two-dimensional seepage model
and the finite element method, which includes two cases
of homogenous foundation and layered foundation. In engi-
neering practice, it is better to make the distance from
curtain grouting to the heel of dam as near as possible (to

make a1 minimum), to make the highest quality of the
curtain grouting (to make kg minimum), and to make the
thickness of curtain grouting near the optimum thickness
topt, so that the seepage pressure resultant can be minimized.
The conclusions have an important value for engineering
design of the curtain grouting on dam foundation.
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