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Abstract Normal Boundary Intersection (NBI) and (En-
hanced) Normalised Normal Constraint (E)NNC are attrac-
tive and popular approaches to generate an approximation
of the Pareto set in nonlinear multi-objective optimisation
problems. All three methods are based on similar ideas, but
do not always yield identical results, which may confuse
practitioners. Hence, the current paper provides theoretical
insights in the conditions under which identical results are
obtained. Typically, NBI and ENNC are able to generate the
same candidate Pareto points, if all additional inequalities in
the ENNC subproblem are active. In general, NBI and NNC
do not return the same points when three or more objectives
are considered. Equivalence relations between the result-
ing lagrange multipliers for the additional NBI and ENNC
(in)equality constraints have been derived. Moreover, the
obtained relations have lead to novel criteria for detect-
ing non-Pareto optimal points that in adverse situations
maybe generated by these methods. The major advantage
is that the removal criteria do not rely on a time-consuming
pairwise comparison but only need matrix multiplications.
A Matlab implementation has been added for complete-
ness. The insights are illustrated for a general nonlinear
bi-objective and three-objective optimisation problem, and
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a dynamic three-objective tubular reactor optimisation prob-
lem from chemical engineering. Finally, practical guidelines
are added.
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1 Introduction

In many engineering optimisation problems multiple and
conflicting objectives are present (Marler and Arora 2004).
This gives rise to a set of Pareto optimal solutions instead of
a single optimum (Miettinen 1999). To generate the Pareto
set scalarisation approaches are often used. These con-
vert the multi-objective optimisation problem (MOOP) in a
series of parametric single objective optimisation problems
(Marler and Arora 2004). The most common scalarisation
approach is still the convex Weighted Sum (WS) of the indi-
vidual objectives. However, during the last fifteen years,
scalarisation approaches as Normal Boundary Intersection
(NBI) (Das and Dennis 1998) and (Enhanced) Normalised
Normal Constraint ((E)NNC) (Messac et al. 2003; Messac
and Mattson 2004; Sanchis et al. 2008) have been reported
to mitigate the drawbacks of the WS (Das and Dennis
1997). Moreover, NBI and (E)NNC can be combined with
gradient-based deterministic optimisation routines allowing
to find (at least locally) optimal solutions to large-scale and
highly constrained multi-objective optimisation problems in
a fast and efficient way (e.g., Logist et al. 2010a).

Although there exists a high number of similarities
between NBI and (E)NNC, the authors observed that these
approaches do not always provide identical results. These
differences can confuse practitioners when they compare
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results from different methods. The main goal of the paper is
to provide theoretical insights in the conditions under which
NBI and (E)NNC yield the same solutions. An important
additional result is that criteria have been elaborated for
identifying non-Pareto optimal points that may be gener-
ated by these methods (Messac et al. 2003). Finally, also
practical guidelines are provided.

The paper is structured as follows. Section 2 intro-
duces the NBI and (E)NNC methods using a uniform
notation. Section 3 provides theoretical considerations for
novel insights (i.e., equivalence conditions and removal
criteria). The obtained knowledge is illustrated on three
case-studies in Section 4. Finally, Section 5 summarises
practical guidelines for practitioners.

2 Mathematical formulation and methods

2.1 Preliminaries

An MOOP can be formulated as follows:

minimise
x∈Rn

{ f1(x), f2(x), . . . , fm(x)} (1)

s.t. : g(x) ≥ 0 (2)

h(x) = 0 (3)

with m ≥ 2. Here fi (x) : R
n → R denote the individual

objective functions, which are grouped into the cost vector
f(x) = [ f1(x), f2(x), . . . , fm(x)]ᵀ : R

n → R
m . The vectors

g = [g1(x), g2(x), . . . , gnineq(x)]ᵀ : R
n → R

nineq and h =
[h1(x), h2(x), . . . , hneq(x)]ᵀ : R

n → R
neq represent the

inequality and equality constraints, respectively. Hence, the
feasible decision space is S = {x : g(x) ≤ 0 and h(x) = 0}
and its mapping into the cost space yields the feasible cost
space J = {f(x) : x ∈ S}.

The concept of Pareto optimality is adopted as optimality
criterion for multi-objective optimisation (Miettinen 1999).
However, computational methods for general nonlinear
multicriteria optimisation can at best guarantee local Pareto
optimality, i.e., Pareto optimality in a certain neighbourhood
(Das and Dennis 1998).

A point x∗ ∈ S, is Pareto optimal if there does not exist
another point x ∈ S, such that fi (x) ≤ fi (x∗) for all i and
fi (x) < fi (x∗) for at least one objective function (Miettinen
1999).

Pareto optimality refers to the decision space. The
equivalent concept in the cost space is (non-)dominance
(Miettinen 1999).

A point f(x∗) ∈ J is non-dominated if there does not
exist another point, f(x) ∈ J , such that fi (x) ≤ fi (x∗) for
all i with at least one fi (x) < fi (x∗). Otherwise, f(x∗) is
dominated.

Furthermore, the following items are introduced:

– the minimiser x∗
i of i-th cost function fi (x),

– the utopia point f∗ = [ f ∗
1 , f ∗

2 , . . . , f ∗
m]ᵀ which con-

tains the minima of the individual objective functions
fi (x∗

i ),
– the individual minima cost vectors f(x∗

i ), which is the
cost vector evaluated for the individual minimiser x∗

i ,
– the pay-of f matrix �, whose i-th column is f(x∗

i ) − f∗,
and

– a scalarisation parameter or weight vector w =
[w1, w2, . . . , wm]ᵀ ∈ R

m+ (with
∑m

i=1 wi = 1).

In addition, let e = [1, 1, ..., 1]ᵀ ∈ R
m be the m-dimension-

al vector containing all ones, ei = [0, . . . , 0, 1, 0, . . . , 0]ᵀ
∈ R

m the i-th natural basis vector and e′
i = e−ei ∈ R

m , the
vector corresponding to the i-th vertex that contains exactly
one zero in an m-dimensional unit hypercube. Let E =
[e′

1, e′
2, . . . , e′

m] ∈ R
m×m be the matrix with as columns the

m vertices of an m-dimensional unit hypercube that contain
exactly one zero (see Fig. 1).

2.2 Normal Boundary Intersection

The Normal Boundary Intersection method reformulates
the original MOOP in the following way (Das and Dennis
1998):

max
x∈Rn , l∈R

l (4)

s.t. : g(x) ≥ 0 (5)

h(x) = 0 (6)

�w − l�e = f(x) − f∗ (7)

Fig. 1 Unit hypercube in 3D
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Here �w indicates a point on the hyperplane containing all
individual minima and −l�e describes the (quasi-)normal
direction to this plane. The rationale behind the method is
that the intersection between the (quasi-)normal from any
point �w and the boundary of the feasible cost space clos-
est to the utopia point is expected to be Pareto optimal. To
this end, (4) introduces the maximisation of the length l
along the (quasi-)normal described by m additional equality
constraints described by (7).

2.3 (Enhanced) Normalised Normal Constraint

(Enhanced) Normalised Normal Constraint reformulates the
original MOOP in an alternative way:

min
x∈Rn

f m (8)

s.t. : g(x) ≥ 0 (9)

h(x) = 0 (10)

(f(x∗
m) − f(x∗

i ))
ᵀ(�w − f(x)) ≥ 0 i = 1, . . . , m − 1 (11)

where indicates variables based on normalised objec-
tives. The rationale is to minimise the single most important
objective described by (8), while reducing the feasible cost
space by adding m − 1 hyperplanes given by (11) that are
orthogonal to the plane through the (normalised) individ-
ual minima. Normalisation can be achieved by first shifting
the objectives such that the utopia point coincides with the
origin and afterwards pre-multiplying them with a matrix
T ∈ R

m×m :

f(x) = T(f(x) − f∗). (12)

Because Messac and Mattson (2004) considered only the
shifting and scaling of the individual objectives in the classic
Normalised Normal Constraint method (NNC), the matrix T
is diagonal. The diagonal elements are the following:

[T]i,i = 1

f �
i − f ∗

i

(13)

where f �
i = max{ fi (x∗

j ), j = 1, . . . , m} is the maximum
for objective function i for the set of individual minimis-
ers x∗

j . In their Enhanced Normalised Normal Constraint
method (ENNC), Sanchis et al. (2008) introduce a differ-
ent matrix T for a three-objective case based on the solution
of a system of 9 linear equations. This matrix T can be
generalised as follows:

T = E�−1 (14)

with E the matrix containing zeros on the diagonal and ones
on the off-diagonal. As � = T� = E�−1� = E, it is
clear that the normalisation based on (14) maps the indi-
vidual minima to the m vertices of an m-dimensional unit
hypercube that each contain exactly one zero.

3 Novel insights from theoretical considerations

In the current section conditions are derived under which
NBI and ENNC return the same candidate Pareto optimal
solution. In a first step, the conditions for equivalence are
derived in Section 3.1 for a normalised case. Here, nor-
malised means that the individual minima are located at the
m vertices of an m-dimensional unit hypercube which con-
tain each exactly one zero element. In the second step, it
is shown in Section 3.2 that ENNC and NBI are invariant
with respect to the normalisation f(x) = T(f(x) − f∗). The
results do not change by mapping the original cost functions
to the m vertices of an m-dimensional unit hypercube which
each contain exactly one zero element. Based on these con-
ditions practical procedures are elaborated in Section 3.3
for the removal of candidate solutions returned by NBI and
ENNC that are non-Pareto optimal. The main advantage is
that only matrix multiplications are required and no pairwise
comparisons have to be performed.

3.1 Equivalence in an m-dimensional unit hypercube

The necessary conditions are presented under which the
NBI and ENNC subproblems allow the same stationary
point in a unit hypercube (when solved to global optimal-
ity). Here, a stationary point indicates a point satisfying
the first-order conditions for optimality (also called Karush-
Kuhn-Tucker or KKT conditions). However, due to the
general nonlinear (and, thus, possibly multi-modal) charac-
ter of the optimisation problems, it cannot be guaranteed
that an actual optimisation run with fast gradient based
deterministic solvers will return identical stationary points.

Equivalence conditions. Given a normalised m-
dimensional multi-objective optimisation problem, i.e.,
with as individual minima f(x∗

i ) = e′
i = e − ei , and a

weight vector w: any stationary point for the NBI sub-
problem defined by (4)–(7) is also a stationary point for
the ENNC subproblem specified by (8)–(11), provided
that all additional ENNC inequalities specified by (11)
are active.

Remark 1 If different points are returned by NBI and
ENNC in an actual optimisation run, a practical check is to
restart the multi-objective optimisation method that gave the
worse of both solutions with the better one of both solutions
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as initial guess. This test indicates whether at least locally
the same stationary point is possible.

As a stationary point satisfies the KKT-conditions, the
proof is based on a comparison of these conditions for the
ENNC and NBI subproblems. To cast everything within a
mimisation framework, the maximisation of l in the NBI is
replaced by the minimisation of −l. Hence, the lagrangian
for NBI is:

LNBI(x, l) = −l − λᵀ
NBIh(x) − μᵀ

NBIg(x)

− νᵀ
NBI(�(w − le) − (f(x) − f∗)) (15)

with lagrange multipliers λNBI ∈ R
neq , μNBI ∈ R

nineq
+ and

νNBI ∈ R
m . The KKT conditions require the existence of a

solution x∗
NBI, l∗NBI, λ∗

NBI, μ∗
NBI, ν∗

NBI satisfying:

∇(x,l)L(x∗
NBI, l∗NBI) = 0 (16)

h(x∗
NBI) = 0 (17)

g(x∗
NBI) ≥ 0 (18)

μ∗ᵀ
NBIg(x∗

NBI) = 0 (19)

�(w − l∗NBIe) − (f(x∗
NBI) − f∗) = 0 (20)

Equation (16) gives rise to

∇(x,l)L(x∗
NBI, l∗NBI)

=
[ −∇xh(x∗

NBI)λ
∗
NBI − ∇xg(x∗

NBI)μ
∗
NBI + ∇xf(x∗

NBI)ν
∗
NBI

−1 + ν
∗ᵀ
NBI�e

]

= 0 (21)

The assumption that all additional inequalities specified
by (11) are active, yields the following lagrangian for
ENNC:

LENNC(x) = f m − λᵀ
ENNCh(x) − μᵀ

ENNCg(x)

−
m−1∑

i=1

νENNC,i (f(x∗
m) − f(x∗

i ))
ᵀ(�w − f(x)) (22)

with lagrange multipliers λENNC ∈ R
neq , μENNC ∈ R

nineq
+ and

νENNC ∈ R
m−1. Hence, any solution x∗

ENNC, λ∗
ENNC, μ∗

ENNC, ν∗
ENNC

has to satisfy the KKT conditions:

∇xL(x∗
ENNC) = 0 (23)

h(x∗
ENNC) = 0 (24)

g(x∗
ENNC) ≥ 0 (25)

μ∗ᵀ
ENNCg(x∗

ENNC) = 0 (26)

(f(x∗
m) − f(x∗

i ))
ᵀ(�w − f(x)) = 0 i = 1, . . . , m − 1 (27)

where (23) is

∇xL(x∗
ENNC)

= ∇x f m(x∗
ENNC) − ∇xh(x∗

ENNC)λ
∗
ENNC

− ∇xg(x∗
ENNC)μ

∗
ENNC

+
m−1∑

i=1

ν∗
ENNC,i∇xf(x∗

ENNC)(f(x
∗
m) − f(x∗

i )) = 0. (28)

In order to prove the equivalence, for every solution
(x∗

NBI, l∗NBI, λ∗
NBI, μ∗

NBI, ν∗
NBI) of the NBI problem, an equivalent

solution (x∗
ENNC, λ∗

ENNC, μ∗
ENNC, ν∗

ENNC) for the ENNC problem
exist.

The assumption that the solutions x∗
NBI = x∗

ENNC are the
same, induces that the original equalities h(x) and inequal-
ities g(x) are satisfied and that the same inequalities are
active. Hence, based on (19) and (26) the lagrange multi-
pliers μ∗

NBI and μ∗
ENNC are proportional, i.e., μ∗

NBI = aμ∗
ENNC

with a ∈ R+0. Consequently, only the equivalence of (i)
the additional constraints described by (20) and (27) and (ii)
the lagrange gradients given by (21) and (28) needs to be
checked.

All individual minima are located at the vertices of an m-
dimensional unit hypercube that contain one zero: f(x∗

i ) =
e′

i = e − ei . This results in the utopia vector f∗ = f
∗ = 0,

the matrix T = I, the cost vector f(x) = f(x) and the pay-
off matrix � = � = E. Hence, all objective functions in
(16)–(21), can be replaced by their normalised versions. To
indicate that the optimisation is performed in the normalised
space, the normalised lagrange multipliers and length l are
denoted by .

Equivalence of the additional constraints The m addi-
tional equality constraints in NBI resulting from (20) can be
reformulated as:

�(w − l
∗
NBIe) − (f(x∗

NBI) − f
∗
) = 0 (29)

m∑

j=1, j 
=i

w j − (m − 1)l
∗
NBI − f i (x

∗
NBI) = 0, i = 1, . . . , m (30)

The optimal value for the length along the quasi-normal is
determined as:

l
∗
NBI = 1

m − 1

⎛

⎝− f m(x∗
NBI) +

m−1∑

j=1

w j

⎞

⎠ . (31)

Eliminating this variable from (30) yields m − 1 constraints
of the form:

wm −wi + f m(x∗
NBI)− f i (x

∗
NBI) = 0, i = 1, . . . , m −1. (32)
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Alternatively, the m − 1 additional and active inequality
constraints in ENNC originating from (27) are:

(ei − em)ᵀ

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∑m
j=1, j 
=1 w j − f 1(x

∗
ENNC)

∑m
j=1, j 
=2 w j − f 2(x

∗
ENNC)

...
∑m

j=1, j 
=k w j − f k(x
∗
ENNC)

...
∑m

j=1, j 
=m w j − f m(x∗
ENNC)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= 0

i = 1, . . . , m − 1. (33)

This expression leads to:

m∑

j=1, j 
=i

w j − f i (x
∗
ENNC) −

m∑

j=1, j 
=m

w j + f m(x∗
ENNC) = 0

i = 1, . . . , m − 1 (34)

wm − wi + f m(x∗
ENNC) − f i (x

∗
ENNC) = 0

i = 1, . . . , m − 1 (35)

which is the same as (32). Clearly, the additional inequality
constraints in ENNC are identical to the additional equal-
ities imposed in NBI, under the assumption that they are
active.

Equivalence of the lagrangian gradients For NBI, the
second line of (21) is rewritten as:

−1 + (m − 1)

m∑

i=1

ν∗
NBI,i = 0, (36)

from which the last lagrange multiplier is eliminated:

ν∗
NBI,m = 1

m − 1
−

m−1∑

i=1

ν∗
NBI,i . (37)

Substituting this variable in the first line of (21) and rewrit-
ing the result yields:

−∇xh(x∗
NBI)λ

∗
NBI − ∇xg(x∗

NBI)μ
∗
NBI

+
m−1∑

i=1

ν∗
NBI,i (∇x f i (x

∗
NBI) − ∇x f m(x∗

NBI))

+ 1

m − 1
∇x f m(x∗

NBI) = 0 (38)

Alternatively, based on the normalised setting, (28) for
ENNC yields:

∇x f m(x∗
ENNC) − ∇xh(x∗

ENNC)λ
∗
ENNC

− ∇xg(x∗
ENNC)μ

∗
ENNC

+
m−1∑

i=1

ν∗
ENNC,i∇xf(x∗

ENNC)(−em + ei ) = 0 (39)

which simplifies to:

∇x f m(x∗
ENNC) − ∇xh(x∗

ENNC)λ
∗
ENNC

− ∇xg(x∗
ENNC)μ

∗
ENNC

+
m−1∑

i=1

ν∗
ENNC,i (∇x f i (x

∗
ENNC)−∇x f m(x∗

ENNC))=0.

(40)

Hence, when selecting the lagrange multipliers as: λ
∗
NBI =

1
m−1λ

∗
ENNC, μ∗

NBI = 1
m−1μ∗

ENNC and ν∗
NBI,i = 1

m−1ν∗
ENNC,i for

i = 1, . . . , m − 1, (38) and (40) are the same provided
that the ENNC and NBI solutions are the same, i.e., x∗

NBI =
x∗

ENNC. Note that, as required, the lagrange multipliers μ∗
NBI

and μ∗
ENNC are proportional with a positive constant 1

m−1 .
Moreover, based on (37), it directly follows that:

ν∗
NBI,m = 1

m − 1

(

1 −
m−1∑

i=1

ν∗
ENNC,i

)

. (41)

Consequently, it is concluded that for a multi-objective
optimisation problem in a normalised setting, any stationary
point for a specific ENNC subproblem is also a stationary
point for the corresponding NBI subproblem, provided that
all additional inequality constraints for ENNC are active.

3.2 Invariance of NBI and ENNC under normalisation

Here, it is shown that the results of NBI and ENNC are
invariant under the normalisation T(f(x) − f∗) with T non-
singular. Hence, shifting, rescaling and rotating the multi-
objective problem to an m-dimensional unit hypercube will
not change the resulting stationary points and, hence, the
candidate Pareto solutions.

Clearly, as ENNC intrinsically maps the m objectives
to an m-dimensional unit hypercube, a prior normalisation
will not affect the resulting candidate points. As men-
tioned already in the original paper by Das and Dennis
(1998), NBI is invariant with respect to shifting and scaling.
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However, this property can be extended to the normalisa-
tion f = T(f − f∗). Taking into account that f − f∗ = T−1f,
f
∗ = 0, � = T−1� and ∇xf = ∇xf(T−1)

ᵀ
the KKT con-

ditions described by (16) to (21) for NBI are rewritten as
follows:

−∇xg(x∗
NBI)λ

∗
NBI − ∇xh(x∗

NBI)μ
∗
NBI

+∇xf(x∗
NBI)(T

−1)
ᵀ
ν∗

NBI = 0 (42)

−1 + ν∗ᵀ
NBIT

−1�e = 0 (43)

h(x∗
NBI) = 0 (44)

g(x∗
NBI) ≥ 0 (45)

μ∗ᵀ
NBIg(x∗

NBI) = 0 (46)

T−1�(w − l∗NBIe) − T−1(f(x∗
NBI) − f

∗
) = 0 (47)

When choosing the multipliers μ∗
NBI = μ∗

NBI, λ∗
NBI = λ

∗
NBI and

(T−1)
ᵀ
ν∗

NBI = ν∗
NBI, the set of (42) to (47) corresponds to

the KKT conditions for the NBI problem with normalised
objective functions. Hence, the same stationary point is
returned by both the original NBI and its variant which
first normalises all objectives, i.e., maps them to an m-
dimensional unit hypercube. The corresponding lagrange
multipliers are the same, except for the multipliers of the
additional equality constraints, which are related through
the matrix T.

Equivalence relations. Provided that the additional
ENNC inequality constraints are active, ENNC and NBI
yield a same stationary point x∗

NBI = x∗
ENNC and related

lagrange multipliers:

λ∗
NBI = 1

m − 1
λ

∗
ENNC (48)

μ ∗
NBI = 1

m − 1
μ∗

ENNC (49)

(T−1)
ᵀ

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

ν∗
NBI,1
...

ν∗
NBI,m−1

ν∗
NBI,m

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

= 1

m − 1

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ν∗
ENNC,1

...

ν∗
ENNC,m−1

1 −
m−1∑

i=1

ν∗
ENNC,i

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(50)

where λ∗
NBI, μ

∗
NBI and ν∗

NBI are the multipliers from the orig-
inal NBI formulation and λ

∗
ENNC, μ∗

ENNC and ν∗
ENNC the ones

from the ENNC method.

Remark 2 It has been shown that ENNC and NBI subprob-
lems yield the same solutions when all additional inequal-
ities for ENNC are active. However, it should be noted
that this result is in general not true for the original NNC
method. For bi-objective problems NNC and ENNC are
identical and no differences with NBI will be observed.
However, for three or more objectives NNC and ENNC
yield the same results only when the different objective val-
ues fi (x∗

j ) for the individual minimisers x∗
j are identical,

except when i equals j . In this situation, the original prob-
lem can be mapped to a unit hypercube by shifting and
scaling only (i.e., without rotating), and the matrix T will
be diagonal.

Remark 3 Equation (50) allows making the connection
from ENNC to the corresponding weights wWS,i of a WS
via (Das and Dennis 1998):

wWS,i = ν∗
NBI,i∑m

i=1 ν∗
NBI,i

. (51)

Remark 4 For practical reasons, the vector

ν∗
ENNC,aug =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ν∗
ENNC,1

...

ν∗
ENNC,m−1

1 −
m−1∑

i=1

ν∗
ENNC,i

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(52)

is called the augmented vector of ENNC multipliers. In
addition, the vectors

ν̂
∗
NBI = (T−1)

ᵀ
ν∗

NBI (53)

ν̂
∗
ENNC = 1

m − 1
ν∗

ENNC,aug (54)

are introduced to facilitate comparisons and further
derivations.

As a result, (50) is rewritten as:

(T−1)
ᵀ
ν∗

NBI = 1

m − 1
ν∗

ENNC,aug (55)

ν̂
∗
NBI = ν̂

∗
ENNC (56)

3.3 Implications for the removal of non-Pareto optimal
points from NBI and ENNC candidate solutions

It is well-known that in adverse situations NBI and (E)NNC
can generate non-Pareto optimal points (Das and Dennis
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1998; Messac et al. 2003). To mitigate this situation, a
Pareto filter algorithm based on a pairwise comparison of
the generated candidate points has been proposed by Messac
et al. (2003). However, this approach has some drawbacks
as observed by the authors. Due to the discrete nature of the
candidate set, the exact boundary of the Pareto set may be
hard to determine and non-Pareto optimal points close to the
boundary may be retained (see, e.g., Section 4.1.3). Also the
algorithm becomes time consuming for large sets of candi-
date points. Hence, any a priori criterion that can assist in
removing dominated points is welcome.

Due to the less restrictive additional inequalities,
(E)NNC is able to avoid some of the dominated points that
are returned by NBI (caused by to the more strict additional
equalities). This is typically achieved by leaving one (or
more) of the additional hyperplanes constraining the feasi-
ble criterion space and making the corresponding inequality
constraint(s) inactive. The corresponding multiplier(s) ν∗

ENNC

are then no longer strictly positive but become zero (see,
e.g., Section 4.1.2).

The rationale behind the removal criteria is that in general
a candidate solution which is not locally Pareto optimal will
leave the constraining hyperplanes determined by ENNC.
This tendency can be checked via the lagrange multipliers
and relation (50). When evaluating a candidate solution gen-
erated by NBI or ENNC, it is assumed that the candidate
will not leave the constraints set by ENNC and that all addi-
tional ENNC inequalities are active. Hence, the candidate
can have been generated by both NBI and ENNC. More-
over, relation (50) holds and the first m − 1 elements of
both the left and right hand side have to be positive. Based
on the multipliers returned by the optimiser (i.e., ν∗

NBI and
ν∗

ENNC) the left and right hand side vectors of relation (50)
can be computed, i.e., ν̂

∗
NBI and ν̂

∗
ENNC. If the positivity of

the first m − 1 elements of these vectors is not satisfied, the
assumption was wrong. Consequently, the candidate can be
removed as a possible Pareto optimal solution.

However, whether or not a possible solution leaves
the constraints imposed by ENNC also depends on the
behaviour of the selected objective fm in the admissible
directions given by the corresponding additional inequal-
ities determined by the selection of m. As a result, m
cases have to be checked, i.e., one for each objective fk as
selected objective fm . However, no additional optimisations
are needed to check this but only matrix multiplications.

To this end, the following permutation matrices:

P =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 . . . 1
1 0 0 . . . 0
...

...
. . .

...

0 1 0 . . . 0
0 0 1 . . . 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(57)

and Pᵀ are exploited. The product PM yields a matrix in
which all the rows of the matrix M are shifted down one
row and the last row becomes the first. Similarly, the prod-
uct MPᵀ shifts all columns of M one column to the right and
puts the last column first. Of course, this procedure can be
repeated, e.g., pre-multiplying with PP shifts all rows two
rows down and puts the second to last and the last rows in
the first and second place, respectively. An important fea-
ture of permutation matrices is that they are orthogonal, i.e.,
Pᵀ = P−1.

Assume that x[m]∗ is obtained for an objective sequence
[ f1, f2,. . ., fm] with corresponding multipliers ν

[m]∗
NBI for NBI

and ν
[m]∗
ENNC,aug for ENNC. The corresponding pay-off and

rotation matrices are �[m] and T[m], respectively. For
a sequence [ fm , f1, f2,. . ., fm−1] the objective to be min-
imised is fm−1 and the pay-off and rotation matrices can
be computed as follows:

�[m−1] = P�[m]Pᵀ (58)

T[m−1] = EP�[m]−1
Pᵀ. (59)

Still under the assumption that all additional equations
set by ENNC are active (which is always so for NBI), it can
be shown that the following equations hold:

ν̂
[m−1]∗
ENNC = ν

[m−1]∗
ENNC,aug

m − 1
= E−1PEν

[m]∗
ENNC,aug

m − 1
(60)

ν̂
[m−1]∗
NBI = (T[m−1]−1

)
ᵀ
ν

[m−1]∗
NBI = E−1P�[m]ᵀ ν

[m]∗
NBI . (61)

These formulae can be applied recursively to account for
all m possible choices. However, each time the m − 1 first
elements of these vectors have to be positive, which can be
summarised as follows.

Removal criteria. Given candidate solution x∗
NBI and

x∗
ENNC generated by NBI and ENNC, respectively, with

corresponding (augmented) Lagrange multiplier vectors
ν∗

NBI and ν∗
ENNC,aug. � is the pay-off matrix and P the

permutation matrix. The candidate can be removed as
a possible Pareto optimal solution if not all m − 1 first
elements of the following m vectors are positive:

ν̂
[ j]∗
NBI = E−1Pm− j�

ᵀ
ν∗

NBI for NBI (62)

ν̂
[ j]∗
ENNC = E−1Pm− j Eν∗

ENNC,aug

m − 1
for ENNC (63)

with j = m, m − 1, . . . , 1.

Remark 5 These criteria are easily implemented requiring
about 10 lines of Matlab code (see Appendix). This code



424 F. Logist, J. Van Impe

is also made available as Supplementary Material to this
article. Note that the criterion is only based on local infor-
mation. It can help for a first removal of local non-Pareto
optimal candidates, before using the Pareto filter which acts
globally. However, computations can be done efficiently
as only matrix multiplications are required and the com-
putation time is only linear in the number of candidates.
Moreover, the criterion can be applied without knowledge
about the other candidates.

4 Results

In this section the results from the theoretical considera-
tions are illustrated. First, a bi-objective case is discussed in
Section 4.1 as this allows a clear explanation and visualisa-
tion of the insights gained. Second, the extension is made to
a more general three-objective case in Section 4.2. The aim
is to illustrate: (i) the sets of candidate solutions generated
by the different methods, (ii) the equivalence conditions and
(iii) the application of the removal criteria. Afterwards, a
complex dynamic optimisation problem involving a tubular
chemical reactor is studied (Section 4.3).

4.1 Case 1

As a first example, the bi-objective case studied by Messac
et al. (2003) is revisited:

min
x∈R2

[
f1(x) = x1

f2(x) = x2

]

(64)

s.t. x2 ≥ 5 exp(−x1) + 2 exp(−0.5(x1 − 3)2), (65)

The criterion space is depicted in Fig. 2, in which the infea-
sible region is coloured in gray. The segments from A to
B and D to E comprise the global Pareto front. The region
from C to D includes local Pareto optimal points. Points in
the segment from B to C are non-Pareto optimal.

4.1.1 Candidate solutions

Candidate solutions are generated with all three methods
(i.e., NBI, NNC and ENNC) for the two possible sequences

Fig. 2 Case 1. Criterion space

Fig. 3 Case 1. Candidate solutions returned by NBI, NNC and ENNC
for the sequence [ f1, f2] (top) and [ f2, f1] (bottom)

of objective functions (i.e., [ f1, f2] and [ f2, f1]). As in
Messac et al. (2003) 60 uniformly distributed w vectors are
taken. The results for the different methods can be seen
in Fig. 3. For the sequence [ f1, f2] identical results as in
Messac et al. (2003) are obtained for NBI and NNC.
Because there are only two objectives NNC and ENNC pro-
vide identical candidate solutions, which is indicated by the
coinciding circles ◦ and triangles �. As indicated by the
crosses ×, NBI returns solutions that are non-Pareto optimal
(in segment BC) and only locally Pareto optimal (in seg-
ment CD) for both sequences. However, depending on the
sequence of objective functions used, NNC and ENNC can
avoid some of the non-Pareto points from segment BC.

This aspect is clarified in Fig. 4 which elaborates on the
solution of the NBI and (E)NNC subproblems. NBI reduces
the feasible region by constraining a solution to be on the
(quasi-)normal. This is indicated by coloring the entire fea-
sible region gray except for the (quasi-)normal. Moreover,
NBI aims for a solution as close as possible to the origin
without going infeasible, which is indicated by the arrow.
As a result, the cross ×, lying in the non-Pareto optimal
segment is obtained. Also this result is independent of the
sequence of objectives used. Alternatively, (E)NNC reduce
the feasible region by adding inequality constraints, repre-
sented by gray halfplanes. These methods aim to minimise
a selected objective ( f2 for the sequence [ f1, f2] and f1 for
the sequence [ f2, f1]) which is indicated by the arrow. They
return as a candidate point the filled circles �. By leav-
ing the additional constraining halfplanes, these methods
are able to escape from the non-Pareto optimal points. This
leaving is for instance observed when minimizing f2. Alter-
natively, when minimizing f1 for the same case, it is seen
that leaving the constraining halfplane is impossible. This
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Fig. 4 Case 1. ENNC and NBI subproblem for w which causes the
constraining quasi-normal or halfplane to cross the non-convex part of
the Pareto set. Result for ENNC with sequence [ f1, f2] (top), ENNC
with sequence [ f2, f1] (middle) and NBI with sequences [ f1, f2] and
[ f2, f1] (bottom)

fact can be attributed to the monotonous decrease of the
f1 value when following the border of the feasible region.
Clearly f2 does not exhibit this monotonous behaviour.

4.1.2 Equivalence conditions

As NNC and ENNC yield identical results for bi-objective
problems, only results for ENNC and NBI are compared.
Figures 5 and 6 depict the left and right hand side of (50)
for both objective function sequences. The equivalence rela-
tion holds whenever the additional ENNC constraints are
active as indicated by the coinciding � and + markers.
Also the ENNC and NBI solutions coincide. However, the
results differ when ν̂1 multiplier becomes negative for NBI
(�), while the corresponding variable for ENNC (�) is zero.
Here, the solution has left the constraining halfplane in the
ENNC subproblem in order to avoid a non-Pareto optimal
solution. This is not possible in NBI due to the constrain-
ing (quasi-)normal. A classification of the candidate points
in the criterion space according to their ν̂1-value is also
depicted. It is seen that points with a negative ν̂1-value can
be removed. However, it should be noted that the ν̂1-value
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depends on the selected sequence. NBI produces the same
candidate points for both sequences. However, when using
[ f2, f1] as a basis for removal, it is seen that ν̂1 is always
positive. Hence, non-Pareto optimal candidate points that
are removed when using [ f1, f2] as a basis, are not
removed now.

4.1.3 Removal criteria

Based on the previous section, checking the positivity
of ν̂1 is a fair criterion for detecting non-Pareto optimal
points. But this check has to be performed for both objec-
tive sequences. Fortunately, no additional optimisations are
needed as analytical relations can be used. For Fig. 7 the
set of candidate solutions generated by NBI and ENNC
for the sequence [ f2, f1] has been taken. As mentioned, it
is not possible to remove any of the non-Pareto optimal
solutions when solely looking at the multipliers ν̂

[1]∗
NBI,1 and

ν̂
[1]∗
ENNC,1. However, based on the (61) and (60) the corre-

sponding values ν
[2]∗
NBI,1 and ν̂

[2]∗
ENNC,1 for the sequence [ f1, f2]

can be computed. The figure depicts the ν∗
1 -values obtained

from NBI and ENNC with the sequence [ f1, f2] (� and ×
markers), and the ν∗

1 -values obtained when applying the
relations (61) and (60) to the candidates obtained from NBI
and ENNC with the sequence [ f2, f1] (� and ∗ markers).
Note that the latter values correspond to the first element of
the vector obtained with relations (62) and (63) for j = 1.
These values coincide when all additional constraints are
active. Moreover, the computed values become negative for
non-Pareto optimal points. This allows also removing non-
Pareto optimal candidates generated by NBI and ENNC for
the sequence [ f2, f1] without additional optimisations. This
observation corroborates the removal criteria (62) and (63).

The performance of the Pareto filter (PF) and removal
criterion (RC) are compared for the candidate sets gener-
ated by ENNC and NBI for the sequence [ f2, f1]. Also
the combination is made in which the removal criterion is
used followed by the Pareto filter (RC+PF). Results are
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Fig. 7 Case 1. Multipliers for sequence [ f1, f2]: original and based on
sequence [ f2, f1] and relations (62) and (63)

Table 1 Case 1: computational results for the Pareto filter (PF) and
removal criterion (RC) starting from 60 candidate solutions generated
by ENNC and NBI for the sequence [ f2, f1]

NBI ENNC

n p,rem Rel. CPU n p,rem Rel. CPU

(%) (%)

PF 11 100.0 11 100.0

RC 5 1.7 5 2.2

RC+PF 12 87.0 12 82.9

displayed in Table 1. Each time the number of removed can-
didates (n p,rem) and the computational expense relative to
the time required for the Pareto filter are given.

The Pareto filter looks for globally Pareto optimal solu-
tions and removes 11 from the 60 candidates. On the other
hand the removal criterion only acts locally and is able
to remove five candidates, which are non-Pareto optimal.
However, the removal criterion requires roughly only 2% of
the time taken by the Pareto filter. The pairwise comparison
in the Pareto filter is time consuming and the computation
time grows faster than linearly. Hence, the removal criterion
can be used as a first step to prune the set of candidate solu-
tion. In a second step the Pareto filter can be employed to
further reduce the set of solutions to global Pareto optimal
solutions. Interestingly this two-step procedure only takes
around 85% of the CPU time that is required for solely
applying the Pareto filter.

The retained solutions after post processing the candi-
date solutiuons with the PF, the RC and the combined
RC+PF are indicated in Fig. 8 by the ×, ◦ and � mark-
ers, respectively. In general, the removal criterion removes
non-Pareto optimal points in the segment BC, but cannot
remove the points in segment CD as these points are locally
but not globally Pareto optimal. In contrast, the Pareto filter
removes points that are not globally Pareto optimal in the
regions BC and CD. None of the methods removes points in
the global Pareto optimal regions AB and DE.

Fig. 8 Case 1. Results after post processing the candidate solutions
generated for the sequence of [ f2, f1] with the Pareto filter and/or the
removal criterion
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An interesting observation is that the combined RC and
PF is able to remove one candidate more than the PF. When
zooming in on the region around point B, it is seen that still
one cross exist on the right side of this point, i.e., in the
non-Pareto optimal segment BC. This point remains after
filtering as the PF is only based on pairwise comparisons of
the finite number of points in the candidate set. In contrast,
the RC is able to remove this point because it only uses the
lagrange multipliers for the point and not a set of candidate
solutions.

4.2 Case 2: General three-objective problem

The second example extends the two-objective example
presented by, e.g., Das and Dennis (1998) and Kim and
de Weck (2005) by introducing an additional objective
function f3. As can be seen, this example is highly nonlinear
due to the different objectives and constraints.

min
x∈R5

⎡

⎢
⎢
⎢
⎢
⎢
⎣

f1(x) = x2
1 + x2

2 + x2
3 + x2

4 + x2
5

f2(x) = 3x1 + 2x2 − x3
3 + 0.01(x4 − x5)

3

f3(x) = x2
1 + 3x2

2 + 0.2(x3 − x5)
3

+ log(x2
4 + x2

1 + x2
2 + 1)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(66)

s.t. x1 + 2x2 − x3 − 0.5x4 + x5 − 2 = 0, (67)

4x1 − 2x2 + 0.8x3 + 0.6x4 + 0.5x2
5 = 0, (68)

x2
1 + x2

2 + x2
3 + x2

4 + x2
5 ≤ 10. (69)

Each time the weight vector is uniformly constructed with a
stepsize of 0.1. This results in a total of 66 subproblems of
which the 1st, the 11th and the 66th, correspond to the min-
imisation of the individual objective functions f1, f2 and
f3, respectively.

4.2.1 Candidate solutions

Candidate solutions have been generated for all three meth-
ods (NNC, ENNC and NBI) and for all three sequences
[ f1, f2, f3], [ f3, f1, f2] and [ f2, f3, f1]. In view of brevity,
only the results for [ f1, f2, f3] are discussed.

Figure 9 displays the resulting 66 points in the 3D crite-
rion space for each of the methods. In contrast to the original
NNC (�), ENNC (◦) provides exactly the same results as
NBI (×) for the Pareto optimal points (when all additional
inequalities are active). The differences between NNC on
the one hand and ENNC on the other are due to the fact
that more than two objectives have to be minimized and
that the matrix T is not a diagonal matrix. As already men-
tioned by Das and Dennis (1998), NBI can return dominated
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Fig. 9 Case 2. Candidate solutions returned by NBI, NNC and ENNC
for the sequence [ f1, f2, f3]

solutions. On the other hand, NNC and ENNC are able to
avoid this in the current situation. This is seen in the upper
right corner of Fig. 9 where the � and ◦ markers have moved
away from the × markers to align at the border of the Pareto
set.

It should be noted that the same results are obtained
for the sequence [ f2, f3, f1]. However, for [ f3, f1, f2] the
(ENNC) results are identical to the NBI results, as appar-
ently it is not possible in this case to leave the constraining
hyperplanes.

4.2.2 Equivalence conditions

As only ENNC and NBI can yield identical candidates,
only the candidates obtained from these methods are fur-
ther investigated. All additional lagrange multipliers for
both methods are depicted as a function of the subproblem
number in Fig. 10. The three plots present the multipliers
related to the additional (in)equality constraints imposed by
NBI and ENNC. Figure 10 shows that the values for these
multipliers are indeed equal when all additional ENNC
inequalities are active (i.e., when the first two multipliers
ν̂1 and ν̂2 are larger than zero). The results are indicated for
ENNC and NBI by the � and + markers, respectively. Con-
sequently, this illustrates that the derived relations between
the multipliers of NBI and ENNC hold.

Figure 10 also depicts the resulting 66 candidate points
for ENNC and NBI in the 3D criterion space but now they
are classified based on the values of the lagrange multipli-
ers. For NBI, a classification is made between points in
which either none or at least one of the two first multipli-
ers of ν̂NBI is negative. In the latter situation a � marker
is used. For ENNC, a similar classification is introduced
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Fig. 10 Case 2. Multipliers for ENNC and NBI subproblem and result-
ing classification of candidate solutions for the sequence [ f1, f2, f3]

based on whether or not at least one of the first two multi-
pliers ν̂ENNC related to the additional inequalities is equal to
zero. In the latter situation, at least one of these inequal-
ities is inactive. These situations are indicated by the �
markers. It is noted that the cases for which ENNC has
inactive constraints, correspond to cases for which NBI
returns non-Pareto optimal solutions. Hence, ENNC is able
to escape from these non-Pareto points by leaving at least
one of the additional constraining hyperplanes and setting
the corresponding inequality constraint(s) to inactive. These
observations substantiate the generality of the equivalence
relations as also cases with more than two objectives are
correctly included.

Table 2 Case 2: computational results for the Pareto filter (PF) and
removal criterion (RC) starting from 66 candidate solutions generated
by ENNC and NBI for the sequence [ f3, f1, f2]

NBI ENNC

n p,rem Rel. CPU n p,rem Rel. CPU

(%) (%)

PF 6 100.0 6 100.0

RC 13 1.7 13 2.1

RC+PF 13 68.2 13 71.3

4.2.3 Removal criteria

Comparing the performance of the Pareto filter and removal
criterion is this time done based on the candidate sets gener-
ated by ENNC and NBI for the sequence [ f3, f1, f2]. Again
also the combination (RC+PF) is studied. Computational
results are given in Table 2, i.e., the number of removed can-
didates and the computational expense relative to the time
taken by the Pareto filter. The remaining candidate solutions
are displayed in Fig. 11.

Pareto filter removes six from the 66 candidates, while
the removal criterion removes 13 points, including the six
removed by the Pareto filter. Hence, in the current situation
no local Pareto optimal points are found. The points that are
removed are all non-Pareto optimal. However, the fact that
the Pareto filter removes seven points less is because these
seven lie close to the boundary of the Pareto set. As seen
before, the exact boundary is hard to determine when using
pairwise comparisons based on a finite and limited number
of candidate points.
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Fig. 11 Case 2. Results after post processing the candidate solutions
generated for the sequence of [ f3, f1, f2] with the Pareto filter and/or
the removal criterion
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With respect to the computational time, the removal
criterion requires roughly only 2% of the time taken by
the Pareto filter. Moreover, although the removal criterion
reduces the number of candidates by approximately 20%,
the combination of removal criteria followed by the Pareto
filter reduces the computation time by around 30%. Hence,
the removal criteria are also applicable for cases with more
than two objectives.

4.3 Case 3: Tubular reactor

As a third and final example a jacketed tubular reactor under
steady-state conditions is considered. Inside the reactor an
irreversible first-order reaction takes place. Figure 12 illus-
trates the reactor configuration of length L , with C the
reactant concentration, P the product concentration, T the
reactor temperature and Tw the jacket temperature.

The mass and energy balances give rise to two coupled
ordinary differential equations. The independent variable is
the position z along the reactor (see, e.g., Logist et al. 2008).
Three conflicting objectives can be considered as in Logist
et al. (2010b): (i) a conversion cost, i.e., the reactant con-
centration at the outlet, (ii) an energy cost based on the
heat recuperation via the jacket and (iii) an installation cost,
which is proportional to the reactor length L . The aim is to
find the optimal reactor length L and the optimal tempera-
ture profile for the jacket Tw(z). For constructive reasons the
reactor and the jacket temperature must be in between 280
and 400 K. The reactor length is bounded between 0.5 and 1.
A lower limit of 0.85 is imposed on the conversion for eco-
nomic reasons. For brevity, the reader is referred to Logist
et al. (2008, 2010b) for the detailed model and parameter
values.

This optimal control or dynamic optimisation problem
is solved exploiting ACADO (Houska et al. 2011), a
freely available toolkit for Automatic Control And Dynamic
Optimisation (http://www.acadotoolkit.org). ACADO also
includes scalarisation-based multi-objective optimisation
techniques as WS, NBI, NNC and ENNC (Logist et al.
2010a). To solve the optimal control problem numerically,
a multiple shooting technique with a piecewise constant
control discretisation of 50 uniform pieces is used.

Figure 13 depicts the generated Pareto fronts. Again
NBI (×) and ENNC (◦) yield identical results while
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Fig. 12 Jacketed tubular reactor
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slight differences are visible for the results based on NNC
(�). The different additional multipliers for NBI and ENNC
are not depicted as they satisfy the relations specified
by (48)–(50). In addition no non-Pareto optimal points have
been found as neither the removal criterion, nor the Pareto
filter is able to remove any of the candidates.

The different trade-offs can be recognised based on
insight into the process. Higher reactor temperatures
increase the reaction rates and, thus, the conversion. How-
ever, higher temperatures require more energy transfer from
the jacket and increase the net energy cost. Longer reac-
tors increase the residence times for the reactants in the
reactor, and as a consequence, allow more product to be
formed. Unfortunately longer reactors also have a higher
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Fig. 14 Case 3. Optimal piecewise controls generated by NBI for the
three individual objectives (top) and three intermediate values (bottom)
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installation cost. In addition, longer tubes recover on aver-
age more energy, but require a higher investment. Several
Pareto points, i.e., the three individual minima as well as
three intermediate points, are indicated with black markers.
The optimal profiles for the jacket temperature correspond-
ing to these Pareto points indicated in black are displayed in
Fig. 14.

5 Practical guidelines

To conclude the following messages are given for practition-
ers with respect the methods.

– NBI, NNC and ENNC all give an accurate and efficient
approximation of the Pareto set. No systematic advan-
tage in computational effort has been found for one of
the three methods.

– For bi-objective cases, all three methods will yield the
same solution, while for more objectives only NBI
and ENNC can give identical results. NNC and ENNC
results will in these cases most often differ. The major
underlying assumption for equivalence is always that all
additional inequalities are active.

– When the equivalence between ENNC and NBI holds,
the results can also be related to weights for a corre-
sponding WS optimisation.

– NBI always generates the same set of candidate points,
while the set generated by (E)NNC can depend on the
selected objective Jm to be minimised.

– All methods can return non-Pareto optimal candidates,
but NNC and ENNC will in general produce less non-
Pareto optimal points due to the presence of the less
restrictive additional inequalities compared to the more
strict additional equalities in NBI.

With respect to the removal of possible non-Pareto opti-
mal candidates the following messages are given.

– Non-Pareto optimal points in the set of candidate solu-
tions obtained with NBI and ENNC can be identified
via the removal criteria for both methods. As these cri-
teria only require simple matrix multiplications and no
additional optimisations, they can be checked extremely
fast.

– These removal criteria can remove locally non-Pareto
optimal candidate solutions close to the Pareto bound-
ary that may be missed by the Pareto filter which is
based on a pairwise comparison.

– As these criteria are not based on the comparison of a
set of candidates, they can be checked directly when
the candidate is generated and also the outcome is
independent of the number of points in the set.

– However, the removal criteria look only locally while
the Pareto filter takes a more global view. Hence, a first
reduction based on the removal criteria followed by a
further pruning based the Pareto filter is often a valuable
strategy to reduce the computation time.

Based on the considerations above, the authors suggest that
practitioners preferably try ENNC first, when solving their
own multi-objective optimisation problems. The removal
criterion can then be used to remove locally non-Pareto opti-
mal candidate solutions. Afterwards, a Pareto filter can take
the global view and ensure global Pareto optimality.

6 Conclusions

This paper has provided novel insights and practical impli-
cations for scalarisation-based multi-objective optimisation
methods as Normal Boundary Intersection and (Enhanced)
Normalised Constraint. It has been rigorously shown that
NBI and ENNC generate the same candidate Pareto points
if all additional inequalities in the ENNC subproblem are
active. Relations between the resulting lagrange multipliers
for the additional NBI and ENNC (in)equality constraints
have been derived. Moreover, these relations have lead to
novel criteria for removing (part of) the non-Pareto opti-
mal solutions that may be returned by NBI and ENNC. The
presented criteria are able to remove the locally non-Pareto
optimal points that would also be eliminated by a Pareto
filter. In addition, the criteria have the advantage that they
are able to remove also non-Pareto optimal points close to
the border of the Pareto set that may be missed by the filter.
This is because the filter is only based on a pairwise com-
parison of a finite number of candidate solutions. However,
the Pareto criterion only looks locally while the Pareto filter
takes a global view.

The novel insights have been illustrated on general math-
ematical and engineering examples involving both static
and dynamic multi-objective optimisation problems. Three
cases have been studied: a general bi- and three-objective
problem and a dynamic optimisation of a tubular reac-
tor. Case 1 and 2 illustrated numerically (i) the generation
of candidate results with ENNC and NBI, (ii) the equiv-
alence conditions and (iii) the removal criteria. In case 3
a real engineering application illustrated that the results
for ENNC and NBI were the same when all additional
ENNC inequalities are active. In contrast, NNC yielded
slightly different results as expected. Afterwards a number
of practical recommendations were summarised. In sum-
mary, the current analysis provides further insights in the
(E)NNC and NBI methods. Hence, it paves the way for an
increased use in various engineering disciplines as well as
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implementations in advanced software for real-time deci-
sion making.

List of acronyms

ENNC Enhanced Normalised Normal Constraint
MOOP Multi-Objective Optimisation Problem
NBI Normal Boundary Intersection
NNC Normalised Normal Constraint
PF Pareto filter
RC Removal criterion
WS Weighted Sum
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Appendix

The matlab code for both removal criteria is depicted in
Figs. 15 and 16. The corresponding matlab m-files are
available as Supplementary Material to this article.

Fig. 15 Matlab code for removal of candidate points generated by
ENNC

Fig. 16 Matlab code for removal of candidate points generated by NBI
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